Application of Lemard-Jones (n, m) potential to pure gases and gaseous mixtures

S. KALYANI* and D. N. SESHADRI
Deparment of Chenucal Engmeering, Indian Institute of Science, Bangatore 560012.
Received on November 27, 1987; Revised on June 6, 1988,

Abstract

Reduced second virral coeltosents and thoir first and second derivatives with respect to reduced temperature T^{*} are evaluated for Lenard-Jones $(4-n)$ and $(5-n)$ potentials over a range of $T^{*}=0.3$ to 500 .

Empirical equations for the reduced virial coefficients and their derivatives are presented. Force constants for $L J$ (m, mpotentalare evaluated for 28 pure substances and ten maxtures and Boyle temperature and volume for 28 pure substances are evaluated.

Key words: Virial coeflicents, gaseous mixtures, Lennard-Jones potential, Boyle temperature.

1. Introduction

To cvaluate the thermodynamic properties using virial equation of state, a knowledge of virial coefficients is essential. Virial coefficients may be evaluated by using a potential energy function. By using mixing rules it is possible to evaluate the thermodynamic properties of mixtures. In the present study a general Lennard-Jones potential ${ }^{1}$, namely,

$$
\begin{equation*}
\phi(r)=\lambda r^{-n}-\mu r^{-m} \tag{1}
\end{equation*}
$$

has been used.
Lennard-Jones ${ }^{2}$ has derived an expression for the evaluation of second virial coeflicients using equation (2) which can be written as

$$
\begin{equation*}
B^{*}\left(T^{*}\right)=\frac{B(T)}{\frac{2}{3} \pi N \sigma^{3}}=-\frac{3}{n_{j}} \sum_{j=0}^{x} \frac{1}{j!}\left(\frac{T^{*}}{\alpha}\right)^{(m-n!)-3 / n} \Gamma\left(\frac{j m-3}{n}\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\left(\frac{n}{n-m}\right)\left(\frac{n}{m}\right)^{m /(n-m)} . \tag{3}
\end{equation*}
$$

*Present address: Department or Chemical Engineering, M. S. Ramaiah Instute of Technology, Bangatore 560054.

2. Present work

In the present study, the second virial coefficients for $L J(4-n)$ and $L J(5-n)$ potentials are evaluated over a reduced temperature of 0.30 to 500.0 . The temperature derivatives of the second virial coefficients are evaluated using the equations

$$
\begin{equation*}
B_{1}^{*}\left(T^{*}\right)=T^{*}\left(\mathrm{~d} B^{*} / \mathrm{d} T^{*}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{2}^{*}\left(T^{*}\right)=T^{* 2}\left(\mathrm{~d}^{2} B^{*} / \mathrm{d} T^{* 2}\right) \tag{5}
\end{equation*}
$$

2.1. Empirical equation for B^{*}, B_{1}^{*} and B_{2}^{*}

The values of $B^{*}\left(T^{*}\right), B_{1}^{*}\left(T^{*}\right)$ and $B_{2}^{*}\left(T^{*}\right)$ evaluated are fitted to an equation of the form

$$
\begin{equation*}
\phi\left(T^{*}\right)=A+B / T^{*}+C /\left(T^{*}\right)^{2}+D /\left(T^{*}\right)^{3}+E /\left(T^{*}\right)^{4}+F /\left(T^{*}\right)^{5} \tag{6}
\end{equation*}
$$

where ϕ is one of B_{1}^{*}, and B_{2}^{*}.
For getting a better fit, the data are fitted over two ranges, namely, $T^{*}=0.3-2.10$ and $T^{*}=2.0-11.0$. The second virial coefficients and their temperature derivatives and the constants of the polynomial for $B^{*}\left(T^{*}\right)$ evaluated for $L J(4-n)$ and $L J(5-n)$ potentials are available with the authors.

2.2. Evaluation of Boyle temperature and volume

Boyle temperature is the temperature at which the second virial coefficient is zero, and

Table I

T_{B}^{*} and $B_{1 /}^{*}$ values for ($m-n$) potential

m	n	T_{B}^{*}	$B_{1 \beta}^{*}$
4.0	5.0	59.29	0.1937
4.0	6.0	32.17	0.2923
4.0	7.9	22.16	03726
4.0	8.0	17.15	0.4383
4.0	10.0	12.27	0.5379
4.0	12.0	9.917	0.6095
4.0	14.0	8.541	0.6632
4.0	18.0	7.006	07383
4.0	20.0	6.533	0.7656
4.0	28.0	5442	0.8380
5.0	7.0	9.728	05188
5.0	80	7.849	0.5794
5.0	9.0	6.687	0.6282
5.0	10.0	5901	0.6685
5.0	12.0	4.906	0.7311
5.0	15.0	4.082	0.7968
5.0	20.0	3.385	08659
5.0	30.0	2.782	0.9390
50	40.0	2.505	0.9774

Boyle volume is the volume which corresponds to that temperature. For each value of m for $L J(4-n)$ and $L J(5-n)$ potentials, values of T^{*} and B_{1}^{*} at which the value of B^{*} is smaller than 10^{-7} are evaluated (Tabic l). Boyle temperature and volume can be evaluated using the equations:

$$
\begin{equation*}
T_{B}=T_{B}^{*} \cdot \sigma / k \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{B}=B_{1 B}^{*} \cdot b_{0} . \tag{8}
\end{equation*}
$$

2.3. Application of $L J(m-n)$ potential to pure gases

The $L J(m-n)$ potential is applied to 28 pure substances. The force constants c / k and b_{0} are evaluated for each potential function by a non-lincar least-squares technique. From these sets the values of ε / k and b_{0} which gave the lowest value of the sum of squares of deviation in calculated $B(T)$ values are selected as the best (Table M).

2.4. Application to mixtures

For the evaluation of force constants of mixtures, following mixing rules are used:

$$
\begin{align*}
\delta_{i j} & =\left(\varepsilon_{i \mathrm{i}} \cdot \varepsilon_{j j}\right)^{1 / 2} \tag{9}\\
\sigma_{t j} & =\left(\sigma_{t i} \cdot \sigma_{i j}\right)^{1 / 2} \tag{10}
\end{align*}
$$

and

$$
\begin{equation*}
B_{m}=\sum_{i=1}^{n} \sum_{j=1}^{n} x_{1} x_{j} B_{l l} \tag{11}
\end{equation*}
$$

In the present study, only binary mixtures are considered. The calculated values of B_{m}, the mixture second virial coefficient are evaluated for various mole fractions and potential functions. For a mixture, the potential function which gives the minimum sum of squares of deviation in calulated and experimental mixture second virial coefficients is chosen as the best (Table III).

A comparison of mixture properties evaluated by $L J(6-12)$ potential with the $L J(m-n)$ potential shows that the latter predicts mixture second virial coefficients better. Similar observation is found in the case of pure substances also.

The computations were made in double precision on an IBM 360/44 digital computer.

Nomenclature

A, B, C, D, E, F	$=$ constants in eqn (8)
$B(T)$	$=$ second virial coefficients, $\mathrm{cm}^{3} \mathrm{~mol}^{-1}$
$B^{*}\left(T^{*}\right)=T^{*}\left(\mathrm{~d} B^{*} / \mathrm{d} T^{*}\right)$	$=$ first derivative of the second virial coeflicient
$B_{1}^{*}\left(T^{*}\right)=B(T) / b_{0}$	$=$ reduced second virial coefficient
$B_{2}^{*}\left(T^{*}\right)=T^{* 2}\left(\mathrm{~d}^{2} B^{*} / \mathrm{d} T^{* 2}\right)$	$=$ second derivative of the second virial coefficient
B_{m}	$=$ mixture second virial coefficient
$B_{1 j}$	$=$ interaction second virial coefficient
$\phi\left(T^{*}\right)$	$=$ one of $B^{*}\left(T^{*}\right), B_{1}^{*}\left(T^{*}\right), B_{2}^{*}\left(T^{*}\right)$ in eqn (6)

Table II
Force constants, Boyle temperature and volume, and potential energy functions for pure substances

Substance	$\begin{aligned} & \text { Boyle } \\ & \text { tmp. } \\ & \left(T_{R}{ }^{\wedge} \mathrm{K}\right) \end{aligned}$	Boyle volume (cc/mole)	No. of points	Range of temp. (${ }^{\circ} \mathrm{K}$)	Potential energy function	$\begin{gathered} \varepsilon / k \\ (K) \end{gathered}$	$\begin{aligned} & b_{0} \\ & (\mathrm{cc} / \mathrm{mole}) \end{aligned}$	Average deviation \%	Max. deveation \%	Sum of squares of deviation	Ref
Ammonia	1353	23.9	8	273-573	(12-15)	987.7	21.3	2.16	-8.74	33.4	3
Acetone	529.8	2006	6	303-403	(9-33)	445.3	1685	082	1.50	548.7	6
Argon	431.6	35.86	18	84-271	(7-12)	159.0	41.1	086	-5.56	23.6	4
Benzene	672.4	868.0	8	300-440	(7-63)	5230	750	0.95	-1.58	844	3
n-Butane	771.7	382.3	6	411-511	(4-20)	118.1	499	0.57	1.23	18.3	5
Carbon tetrachioride	3222	71.05	6	320-420	(5-15)	7894	89.2	1.17	2.02	1169	3
Carbon tetrafluoride	518.6	103.3	16	273-623	$(7-30)$	322.0	96.4	0.25	-144	0.027	3
Chloroform	666.1	2518	10	239-450	(9-27)	518.2	2180	3.50	11.1	1228	6
Cyclohexane	533.9	1986	8	310-380	(4-28)	98.1	2370	0.56	1.34	448	3
Denterium	114.8	2759	14	123-423	(9-72)	120.1	21.43	0.69	3.68	0.493	3
Diethyl ether	549.5	1206	6	300-400	(6-60)	341.6	1109	3.34	6.50	5747	3
Ethane	828.1	72.88	8	298-473	(7-24)	4677	70.48	0.37	-0.74	1.36	7
Methylchloride	718.2	395.7	5	323-403	(6-30)	360.2	391.8	052	-1.10	3122	6
n-Heptane	644.6	1647	6	349-400	(9-42)	586.9	1343	0.10	0.19	14.26	8
Hydrogensulfide	1027	44.19	8	298-473	(7-56)	776.6	38.53	0.27	-083	0.973	7
Krypton	580.4	47.47	13	110-600	(6-20)	240.9	60.56	2.71	23.03	27.80	3
Methylchlonde	774.8	183.8	10	280-580	(7-28)	468.0	173.3	1.00	245	5192	3
Methylfluoride	770.5	75.29	8	280-420	(9-36)	667.5	62.53	0.41	0.79	2.713	3
Neon	126.6	20.98	10	60-600	(4-16)	16.58	29.76	3.93	26.60	0.261	3
Neopentane	847.5	3324	9	310-590	(7-24)	478.7	321.4	034	0.54	27.22	5
Nitrogen	304.9	50.81	11	80-250	(7-35)	200.4	46.46	15.9	-515	1531	3
n-octane	661.0	1866	10	373-413	(12-78)	884.7	1289	0.55	1.24	1531	9
Oxygen	418.7	3610	10	90-350	(6-30)	210.0	35.75	1.86	-3.66	26.31	3
Perfluro n-hexane	547.7	2414	6	308-384	(4-24)	93.08	2900	1.51	-2.13	3900	9
Perfluro n-pentane	645.1	831.0	6	308-383	(9-72)	675.2	645.4	0.94	340	951.0	9
Propane	3598	25.72	13	260-550	(7-24)	551.2	105.6	0.42	1.13	5107	5
Sulfa-hexalluorde	975.8	109.2	5	313-393	(6-7)	95.22	393.1	0.95	-1.79	1850	5
Tetramethylsilane	841.8	427.2	7	323-403	(7-30)	522.7	398.7	0.34	-0.50	56.95	3

Table III
Force constants and potential function for mixtures

Mixture	No. of points	Range of temperature (${ }^{\circ} \mathrm{K}$)	Potential function	$\begin{aligned} & \varepsilon_{i} \mathrm{k} \\ & \left({ }^{\circ} \mathrm{K}\right) \end{aligned}$	b_{0} (cc/mole)	Average deviation $\%$	Maximum deviallon $\%$	Sum of source of deviatoon	Ref
Argonkrypton	12	116.53-253.85	(5-35)	195.7	45.69	1.60	-3.6	65.588	4
Argon-carbon-tetra chloride	4	273.15-348.16	(7.16)	354.3	60.81	6.38	-13.8	238.224	10
Argonnitrogen	8	148.2-323.2	(7-18)	178.5	44.06	4.14	6.0	10.887	12
Benzenechloroform	5	315.7-349.3	(7-49)	637.3	40435	4.10	-56	1.139×10^{4}	11
Benzenecyclohexane	3	308.2-343.2	(7-12)	226.5	1334.97	1.04	1.6	552.141	5
Carbon-tetra chloride chloroform	6	319.5-343.2	(7-18)	783.0	153.02	4.13	-6.4	1.558×10^{4}	5
Carbon-tetra chloridemitrogen	4	273.16-348.16	(7-28)	397.8	64.41	5.97	-13.2	116.416	10
Chloroformdiethyl ether	5	326.2-393.0	(9-15)	515.1	491.51	22.98	-69.5	2.112×10^{5}	11
Ethanc hydrogen sulfide	4	323.16-398.16	(7-49)	602.7	51.94	1.33	-2.3	11.839	7
a Pentaneper fluoro n pentanc	3	30786-383.26	(7-42)	825.2	146.1	7.54	11.6	91138	9

m, n	$=$ parameters in Lennard-Jones potential, eqn (1)
N	$=$ Avagadros' number
T	$=$ temperature, ${ }^{\circ} \mathrm{K}$
$T^{*}=T /(\varepsilon / k)$	$=$ reduced temperature
$x_{L^{\prime}} x_{j}$	$=$ mole fractions of components i and j
T_{B}	$=$ Boyle temperature, ${ }^{\circ} \mathrm{K}$
V_{B}	$=$ Boyle volume, cc/mole

Greek letters

$\lambda \quad=$ parameters in Lennard-Jones potential, eqn (1)
$\sigma \quad=$ collision diameter, A
$\varepsilon \quad=$ depth of the potential well
s/k $\quad=$ parameter in Lennard-Jones potential, ${ }^{\circ} \mathrm{K}$
$\phi(r) \quad=$ potential energy function

References

1. Jones, J. E.
2. Lennard-Jones, J. E.
3. Dymond, J. H. and Smith, E. B. Virial coefficients of gases-Critical compilation, Clarendon, 1969.
4. Byrne, M A., Jones, M. R. and Staveley, L. A. K.
5. Huff, J. A. and Reed T. M. III,
6. Suh, K. W. and Storvick, T. S. J. Phys. Chem., 1967, 71, 1450-1456.
7. Khoury, F. and Robinson, D. B. J. Chem. Phys, 1971, 55, 834 - 839.
8. McGlashan, M. L. and Potter, D. J. B.
9. Garner, M. D. G. and McCoubrey, J. C.
10. Gupta, S. K. and King, A. D. Jr.
11. Saksena, M. P., Nain, V. P. S. Indian J Phys., 1967, 41, 123-133. and Saxena, S. C
12. Douslen, D. R, Harrison, R. H. J Phys. Chem., 1967, 71, 3477-3488. and Moore, R. T.

Proc. R. Soc. Lond. (A), 1924, 106, 463-477.
Physıca, 1937, 4, 941-956.

Trans. Faraday Soc., 1968, 64, 1747-1756.
J. Chern. Engng Data, 1963, 8, 306-311.

Proc R. Soc. Lond. (A), 1562, 267, 478-500.

Trans. Faraday Soc., 1959, 55, 1524-1530

Can J. Chem., 1972, 50, 660-668

