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Abstract 

The important part played by the cytoskeleton In the dynamic process of polypeptide and steroid hormone 
secretion has been examined. Certain specilic endocrine tissues have been chosen to analyse the information 
avadable regarding hormone secretion. For example, for polypeptide hormones the anterior lobe of the pituitary 
and the islets of Langerhans have been discussed whereas for the steroid hormones, the ovaries and the adrenals 
have been chosen for discussion. 

Evidence suggesting the involvement of exocytosis in the secretion of the two types of hormones has heen 
d~scussed. Most ofthe data reeardine the role of the cytoskcleton in hormone secretion has so far been obtained . - 
by employing drugs known to affect either microlilaments or microtubules-thereby studying the effects of 
oharmacolonical doses ofthe druns on hormonal secretion. At these high doses. the s~ecrficilv of the diue effects . . 
isquestlonable. On theotherhand,however,afew investigators haveexamined the biochemistry of thecytoskeleton 
durmg hormone secretion. Sensitive methods have been standardised to study the equilibrium between soluble 
and polymer~sed tubulin or actin pools, the assembly of tubuhn into microtubules and the GTPase activ~ty of 
tubulin. 
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1. Introduction 

Although on the role of the cytoskeleton in hormone action were published 
not too long ago, discoveries made since then have prompted us to attempt this treatise. 
Although hormone secretion involves components besides cytoskeleton, such as CAMP, 
CaZ+, calmodulin and phosphoinositides, we have decided to restrict the scope of this 
paper to the role of microtubules and microIilaments in hormone secretion. We will examine 
the present understanding of polypeptide and steroid hormone secretion and the studies 
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on the role of cytoskeleton therein. We will present evidence to support the theory that 
secretion of protein as well as steriod hormones foliows a similar pattern in that these two 
types of hormones are packaged into secretory granules and are transportcd to the plasma 
membrane by the microtubular system for subsequent exocytosis. We will also examine 
the reports supporting the hypothesis that steroid hormones interact with the cytoskeleton 
prior to activating the genome. 

2. Cytoskeleton 

For brevity, we will includc only the important aspects of the three components of the 
cytoskeleton. For more information regarding these cytoskeletal elements, the reader is 
refcrred to detailed woiks on mi~ro tubules*~~,  acting-" and intermediate l i l ament~ '~ .  

? 
2.1: Microtubules 

Tubulin, the monomeric unit of microtubules, has a molecular weight of about 110,000 
daltons and is composed of two non-  den tical subunits, a and fl. Tubulins have remained 
very stable in evolution, histones apparently being the only class of proteins which have 
undergone less change since the origin of eukaryotes. Common antigenic determinants in 
microtubules from mammals, birds, reptiles, teleosts and diptera have been reportedL3. 
Tubulin is a glycoprotein with approximately 1.2mole neutral sugar per dimerI4. The 
possibility of tubulin being associated with phospholipids was s ~ g g e s t e d ' ~  by experiments 
wherein the addition of phospholipase A to bmin extract having the capacity to form 
microtubules, prevented the assembly at 37°C. 

Tubulin has two guanosine nucleotide-binding sites per dimer. One is exchangeable 
(E), and the other nonexchangeable (N). Although at  both sites GTP is bound non- 
covalently, the N-site can only be removed by denaturing the protein, whereas the E-site 
GTP is exchangeable with free GTP. The E-site GTP is hydrolysed during tubulin 
polymerisation8~'b. Tubulin is accompanied on the electrophoresis columns by several 
associated proteins ofhigher molecular weight. The presence of thesemicrotubule-associated 
proteins (MAPs), often in stoichiometric relation to tubulin, suggests a regulatory role of 
MAPs in the structure of microtubules". 

Tubulin from rat brain could be assembled in vitro, to form microt~bules '~ with an 
exterior diameter of 24nm, provided the following conditions are met: 1) concentration of 
tubulin is sufficiently high, 2) GTP i s  added, 3) Ca2+ is removed using EGTA, and 4) the 
temperature is 37°C with a pH of6.8. The assembly reaction isinhibited at cold temperatures. 
Microtubules generally grow in definite directions from initiation centres such as basal 
bodies or centrioles. Studies conducted in vitro on the directionality of microtubule growth 
from such initiation sites revealed that microtubules mainly increase their length in one 
directior~. Tubulin assembly appears to be a sequential process, consisti~~g of nucleation, 
elongation, ~ o ~ ~ m e r - p o l y m e r  equilibrinm and length redi~tribution"~~-"~.  

There are quite a few reliable methods3' to monitor the in vitro assembly of tuhulin into 
microtubules: turbidity measurements at  350nm, electron microscopy, viscosity measure- 
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ments and sedimentation of the polymer, estimation of the monomers remaining in the 
supernatant, flow birefringence, dark-field light microscopy, x-ray diffraction, laser light 
scattering, filtration, calorimetry and immunochemistry. Microtubule function is generally 
investigated using c ~ l c h i c i n e ~ ~ ~ ~ ' ,  v inb la~t ine~~,  D,043,44 and T ~ X O P - ~ ~  (see refs 40,42, 
43 for reviews). Colchicine is considered to be a prototype of the class of chemical inhibitors 
that act on microlubules. It is known that colchicine inhibits the assembly of tubulin 
monomers into microtubule polymers, resulting finally in the accumulation of tubulin in 
soluble pools. Addition of vinblastine to cells results in precipitation of tubulin. On the 
other hand, D,O and Taxol are known to alter the equilibrium between soluble and 
polymerised form of tubulin by overstabilising them in their polymerised form. 

2.2. Microfilaments 

Actin is ubiquitous in eukaryotes and has been highly conserved during e v o l ~ t i o n ~ ~ ~ ~ ~ .  
Actin comprises 15-20Gf  the total cell protein, and approximately 50% of total actin in 
non-muscle cells exists as a soluble pool, i.e., not polymerised into F-actin. G-actin is a 
42,000 dalton protein with one mol ATP bound per monomer and one mol Ca2+ bound 
to a specific divalent cation-binding site, different from that of the ATP-binding ~ i t e ~ ' . ~ ~ .  
There are many proteins that form tight complexes with G-actin, thus facilitating an increase 
in the pool of non-polymerised actin in the cell; there are also proteins in the cell that are 
known to accelerate the rate of actin depolymerisation". G-actin, under defined in uitro 
conditions, polymerises into F-actinlo. The microfilament polymer is a two-start, double- 
stranded, right-handed helix. The filament diameter is approximately 5 to 7nm. The 
polymerisation process is similar to that of tubulin, consisting of nucleation, elongation, 
and monomer-polymer equilibrium. Actin has an intrinsic ATPase activity. G-actin as well 
as F-actin are both capable of ATP h y d r o l y s i ~ ~ ~ , ~ ~ .  A continued hydrolysis of ATP by 
F-actin takes place during the interconversion of G-actin to F-actin. This does not mean 
that ATP hydrolysis is a prerequisite for polymerisation. The rate of polymerisation and 
the critical concentration of actin are the same in the presence of the non-hydrolysable 
nucleotide AMPPNP as in the presence of ATPS5. Cytochalasins, a group of low-molecular 
weight fungal metabolites, stimulate the ATPase activity of G-actin by 30fold. Cytochalasin 
B preferentially blocks elongation of F-actin, and cytochalasins, in general, inhibit the rate 
of actin p o l y m e r i s a t i ~ n ~ ~ . ~ ~ .  Methods to monitor the assembly of G-actin to F-actin are 
similar to those mentioned above for tubulinS8. 

2.3. Intermediatefilaments 

In contrast to microtubules and microfilaments, the intermediate filaments are composed 
of heterogeneous subunit  protein^'^-^^. The biochemical and immunological differences 
in these subunit profeins have resulted in identification of five major subclasses of 
intermediate fdaments: 1) tonofilaments consisting of cyto- or prekeratins (40-68 kDa), 
2) neurofilaments composed of triplet proteins (68,160,200 kDa), 3) glial filaments with glial 
iibrillary acidic proteins (51 kDa), 4) desmin filaments made up of desmin (53 kDa) and 
5) vimentin filaments with vimentin (53 kDa). Intermediate filaments are highly insoluble in 
physiological ionic solutions. The filanients can be soluhilised into their constituent subunit 
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proteins only under denaturing conditions or at  very low ionic strength". The denatured 
subunit proteins assemble into intermediate filaments (inner diameter 7 -1 1 nm); th: 7s process 
is independent of accessory protcins or other cofactors, suggesting that the information to 
assemble inlo the polymer is present in the secondary structure of the subunit proteins 
themselves. A pool of unpolymerised subunit proteins does not seem to exist in the cell. 
The intermediate filament polymers are extraordinarily stable, and, to date, there is no 
known specific agcnt that causes depolymerisation of the intermediate filament  polymer^'^ 
The recent finding that the Caz+-activated proteolytic enzymes are able to degrade the 
intermediate filaments in uitro led to the hypothesis that the changes in intracellular Ca2+ 
concentration could be regulating the assembly and disassembly in vivo'2,66-68. 

There is a considerable body of evidencc that intermediate filaments interact with 
microtubules and micr~fi laments~~- '~;  the disassembly of microtubules and microfilaments 
by drugs such as colchicine or cytochalasin is also accompanied by a rea'rrdngement df 
intermediate  filament^^"^^-^^. Microinjection of antibodies against intermediate filament 
proteins into cells results in a rapid and reversible collapse of all the intermediate filaments 
into a tight perinuclear cap. However, this dramatic rearrangement of intermediate filaments 
did not change Lhe cytoplasmic distribution of microtubules and microfilaments, and the 
microinjected cells retained normal mitotic and cytokinetic p r ~ p e r t i e s ' ~ - ~ ~ .  

Intermediate filaments as they normally occur in thecell are considered to  play a structural 
role in reinforcing the cyto~keleton'~. Recent reportsN'-", however, suggest that the subunit 
protcins of the intermediate filaments could act as transmitters of signals from thc cell 
periphery to the nucleus. The subunit proteins are known to bind to nucleic acids9'. Purified 
vimentm binds to different fractions of avian erythrocyte membranes through two distinct 
d o r n a i n ~ ~ ~ . ~ ~ .  Sites located at the carhoxy-terminal end or the vimentin moleculc hind 
specifically to nuclear envelopes in a cooperative fashion; the plasma membrane fraction 
interacts in a saturable manner with the amino-terminal head of the vimentin molecule. 

3. Mechanism of hormone secretion 

The general pathway of polypeptide hormone secretion in vertebrates is well 
d o c ~ m e n t e d ~ ~ - ' ~ ~ .  From their site of synthesis in the rough endoplasrnic reticulum, the 
proteins are transported Lo the Golgi apparatus, where glycosylation and packaging into 
secretory granules take place. From the Golgi apparatus the secretory granules are 
transported to the cell membrane where exocytosis occurs. Exocytosis is a process by which 
cells release materials into the extracellular milieu. Upon appropriate stimulus, the secretory 
granules migrate.to the luminal plasma membrane, fuse with the membrane, and the 
hormones are then secreted. 

On the other hand, it was believed that steroid hormones, after being synthesised in the 
steroidogenic tissue, are released into the extracellular milieu by simple d i f f u s i ~ n ' ~ ' ~ ' ~ ~ .  
However, recent  report^'^^-'^^ suggest that steroid hormone secretion by the corpus 
luteum as well as the adrenals could he an active process related to or identical with 
exocytosis. A correlation between the presence and concentration of densely staining 
granules in the corpus luteum and progesterone secretion has been notedlo3. Quirk et a1105 
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reported that progesterone is localised within electron-dense granules and suggested that 
these granules are released into extracellular medium by exocytosis. Sawyer et allo4 
proposed that a progesterone-carrier protein (without progesterone) was packaged into 
secretory granules at the level of the Golgi apparatus; these granules pick up progesterone 
from the tubular elements of the agranular endoplasmic reticulum as they move towards 
the plasma membrane; finally the granules are exocytosed. 

Although it is generally accepted that cytoskeleton plays a major role in the transport 
of secretory granules from the Golgi apparatus to the plasma membrane, the exact mechanism 
of this transport is yet to be delineated. Most of the work regarding the involvement of 
cytoskeleton in hormone secretion was performed using drugs such as colchicine, yinblastine 
or cytochalasin. These agents are known to perturb either the microtubules or micro- 
filaments, and the effects these compounds exert on hormone secretion have been related 
to the cytoskeleton. However, more often than not, these agents were employed at 
high doses and at these concentrations the drugs are known to affect other cellular 
functions as we114,110-115, besides disrupting the cytoskeleton. Therefore, the results 
obtained with the drugs should be viewed with caution. 

The very heterogeneous nature of intermediate filaments-there being at least five protein 
subunits-and the unavailability of a drug known to affect their function, have made it 
difficult for the endocrinologist to study the role of the intermediate filaments during 
hormone secretion. However, the three components of the cytoskeleton are known to 
interact with each other, and any stimulus affecting one of the three could also affect the 
other two. 

3.1. Anterior pituitary lobe 

Anti-cytoskeletal drugs were employed to demonstrate the involvement of microtubules 
and microfilaments in the secretion of gonadotropins by the anterior pituitary lobe in 
response to GnRHH6-''l. Colchicine was observed to: inhibit the secretion of ACTH'22 
in the rat in vitro; accumulate secretory granules and cause disappearance of microtubules 
in somatotrophic cells1z3; inhibit PRL and GH s e ~ r e t i o n ' ~ ~ - ' ~ ~ .  In only one case colchicine 
was shown to stimulate"' the release of LH, FSH, and TSH. Vincristine, another drug 
which interacts with the microtubules, was shown to inhibit PRL and GH relea~e'~'. All 
these s t u d i e ~ " ~ ~ ~ ~ ~  employed high concentr&ions of the drugs, and the specificity of their 
effects on the microtubules was not evaluated with the use of lumicolchicine, an inactive 
isomer of colchicine which does not affect the microtubule function. 

Shino et a1 employed electron microscopy to correlate PRL secretion to the microtubules 
in the anterior pituitary Although they visualised the microtubules, they could not 
observe changes in the tuhulin during increased PRL secretion. Sheterline etal, using 
morphometric techniques, demonstrated that stimulation of GH secretion from bovine 
somatotrophs by non-physiological secretagogues, was accompanied by a decrease in the 
polymerised m i c r ~ t u b u l e s ~ ~ ~ .  Holck et al, employing immunofluorescent methods, observed 
more intense tuhulin staining of gonadotrophs in castrated rats1j4. This finding was later 
confirmed by Valenti et a1 by direct measurements of total tubulin by the colchicine binding 
a ~ s a y ' ~ ~ , ' ~ ~ .  Using morphological techniques, it was demonstrated that in human FSH- 
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producing adenomas, microtubules were often conspicuous and might increase in number 
in the cytoplasm of the adenoma the gonadotrophic cells of the non-tumorous 
pituitary contained only a few micro tubule^'^^. Niwa eta1 demonstrated that in uitro 
treatment of rat prolactinoma cells with bromocriptine resulted in changing the fine reticular 
networks of microtubules into coarse aggregates, thus implicating microtubules in PRL 
secretionL3'. 

In our attempts to examine the anterlor pituitary lobe microtubules, we have chosen the 
lactating rat as our model and stimulated PRL secretion by suckling the mothers with the 
pups. Instead of using drugs which are known to disrupt the microtubule system and then 
examining hormone secretion, we have applied a physiological stimulus to release PRL 
from the anterior pituitary lobe and then studied the pituitary tubulin status. Using the 
3H-colchicine-binding assay, we have initially observed that suckling resulted in a significant 
elevation in tubulin levels in the anterior pituitary lobe'40. Next we have standardised the 
buffer conditions to estimate the soluble and polymerised tubulin pools in the anterior 
pituitary lobe and reported that suckling resulted in a shift in the equilibrium between 
soluble and polymerised tubulin pools in the anterior pituitary14'. The total amount of 
the two tubulin pools did not change appreciably during suckling (fig. 1). In another study 
we have assayed the GTPase activity of the soluble and polymerised tubulin pools and 
observed (fig.2) that the GTPase activities of the two tubulin pools during suckling also 
appeared to be in a dynamic flux'4'. We followed these observations with the standardiza- 
tion of a method to monitor the in uitro assembly of anterior pituitary lobe tubulin into 

0 30 60 90 
mln Suckling 

FIG- 1. Efiect of suckllng on the soluble (SQ and 
polymerised (PQ tubulin pools Each point represents 
the mean i s e m  from six to eight rats. One-half 
microgram of protein from each antenor pituitary lobe 
was assayed in triplicate for colchidne binding. For PT: 
0 us 30 min, P < 0.05; 30 us 60min. P=NS; 60 us 90 
min,P<0.05. For ST0 us30min, pc0.05;30us 60min, 
P=NS; 60 us 90 min, Ps0.05 (Reproduced with 
permission from ref. 141). 
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mln SUCKLING 

FIG. 2. Erect of suckling on GTPase activity in the 
soluble and polymerised tubulin fractions. Each point 
represents mean _t sem obtamed from slx to etght 
rats. The GTPase activity in soluble and polymerised 
fractions from individual pituitary eland was assayed . . -  
In lrlpllwle uslng?S$g prurein From each fracuon. For 
ST lSol~blcrubulmr O rr IS  mm P<OOS: IS us 60 mln. 
P<0.05; 60 us 90' min=NS. For PT' (polymerised 
tubulin). 0 us 15 min P<O.OS; 15 us 30, MI, 90 min 
P<O.O5 (Ravindra and Grosvenor, unpublished data). 
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FIG. 3. EIlecr of su~kling on tubulin assembly. The antenor 
pilultary giands from iix suckled (fur 30 mm) and SIX nonsuckled 
rats were ~nd~v~dua l ly  processed to obtain the 'tubulm fracoon' 
Protein ob tamd from each pilu~tary gland was incubated in 
dupl~carc at a cmcentratmn o f 0 6  rng/ml In MES buffer, pH 
6.8. 37°C. GTP 2 mM for one mln. Thc results are expressed as 
mean _isern and the suckled group (hatched bar) is sigm- 
ficanrly dlllercnt (P<O.05) from the nansuckled group (open bar) 
(Figure reproducd wlth permusion from reference 143) 

microtubules. This technique was found to he sensitive and capable of measuring the 
assembly in approximately 2pg of tubulin present in the 100,000 x g supernatants. After 
extensively validating this protocol we have observed (fig. 3) that suckling affected the 
extent to which anterior pituitary tubulin of the rat assembled into micr~tubules '~~.  These 
observations are consistent with the hypothesis that microtubules are being recruited to 
transport PRL granules from the Golgi apparatus to the plasma membrane. This process 
could conceivably involve many cycles of polymerisation/depolymerisation. Although our 
studies suggest that microtubules could be involved in PRL secrelion by the anterior 
pituitary lobe, it was pointed out that the changes we have observed in the microtubules 
during PRL secretion may not be specifically occurring in the lactotrophs, as we were 
dealing with the total cell population of the anterior pituitary lobe. In the rat, suckling 
slimulates the release of TSI-1144.'45, GH14' and ACTH/fl-end~rphin'~' in addition to 
PRL. However, electron microscopy has revealed that in most species examined, PRL 
secretory cells increase in number and cytoplasmic volume and become the dominant cell 
type during la~ta t ion '~?  We have attempted to address this question by employing drugs 
that are known to affect PKL secretion. We have demonstrated that domperidone-elevated 
anterior pituitary lobe polymerised tubulin levels and plasma PRL concentration compara- 
ble to those increases caused by suckling. Rromocriptine blocked the suckling-induced rise 
in polymerised tubulin and the rise in plasma PRL levels as well'4'. Domperidone was 
also demonstratcd to increase the soluble tubulin GTPase activity comparable with that 
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at 15min suckling, and bromocriptine blocked the suckling-induced rise in the polymerised 
tubulin GTPase activity (Ravindra & Grosvenor, manuscript in preparation). The in vitro 
assembly or anterior pituitary lobe tubulin inro microtubules was also affected by 
domperidone, bromocriptine, and oPRLi4!'. Treatment of lactating rats with oPRL prior 
to suckling was shown to inhibit the relcase of PRL into plasma150; the same dose of oPRL 
also resulted in a shift in the equilibrium in the two tubulin pools and their GTPase 
activities (Ravindra & Grosvenor, unpublished results). Furthermore, we have observed 
that the equilibrium between the two tubulin pools was also affected in the lactotrophs of 
ovariectomised rats primed with estradiol (Ravindra, Hymer & Grosvenor, preliminary 
observations). Thus, these results support our contention that the changes seen in the 
anterior pit~itary microtubules in response to a physiological stimulus could be correlated 
to those occurring in the lactotrophs during PRL secretion. 

Sherline eta1 reported that porcine pituitary secretory granules, enriched in G H  and 
PRL, bound to brain microtubules in vitro, but not to depolymerised microtubules (i.e., 
tubulin), suggesting that microtubules might facilitate the cell interior to cell surface 
movement of PRL secretory granules by providing tracks along which granules could 
move'51. Bloom eta1 published a good method to purify tubulin from the bovine anterior 
pituitary tissue and GH, cells which secrete G H  and PRL15'. These methods should 
stimulate more work regarding the biochemical interaction between the secretory granules 
and tubulin system in the anterior pituitary lobe. 

The role of actin in the pituitary hormone secretion bas not been as vigorously pursued 
as that of tubulin. Benzonana c ta l  adapted the DNAse method to the anterior pituitary 
lobe for estimating the G-actin ~onten t"~ .  Ostlund et demonstrated that anterior 
pituitary gland secretory granules bound to G-actin in vitro. 

3.2. Islets ofLangerhans 

The secretion of insulin has been well studied, using either the whole organ or  isolated 
ce{]s155-~160 . Although the bulk of the work was done using pharmacological doses of 
drugs known to disrupt the cytoskeleton, some studies combined this approach with 
morphological examination of the cytoskeleton, while others investigated the biochemistry 
of the cytoskeleton in these cells. Taken together, these results suggest that insulin secretion 
is a two-step process, involving both microtubules and microfilaments. The first step involves 
the transport of the insulin secretory granules from the Golgi apparatus to the periphery 
of the cell; microtubules appear to be involved in this process. In the second step, the 
insulin-containing secretory granules which are at  the periphery of the cell membrane fuse 
with the plasma membrane to release insulin into the extracellular milieu; microfilaments 
are implicated in this step. 

The secretion of glucagon has not received much attention, and the reports are rather 
a r n b i g u o u ~ ~ " " ~ ~ .  

3.3. Adrenals 

Information regarding adrenal steroid secretion was obtained mainly with the use of drugs 
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that arc known to interact with the cytoskeleton. Vinblastine caused the appearance of 
tubulin crystals in the ratIb3 and stimulated the secretion of adrenal steroid hormones in 
the mouseLb4. Stimulation of tissue cultures by ACTH and CAMP appeared to increase 
the number of visible microtubules as seen by immunofluorescence, indicating that the 
hormone might ~nduce tubulin polymerisalion. The nncrotubules thus formed could help 
in the translocation of steroid containing granules'65. Payet era1 reported that administra- 
tion of colchicine to rats stimulated aldosterone and corticosterone ~ e c r e t i o n ' ~ ~ .  Colchicine 
and other antimicrotubular drugs increased steroid secretion by cultures of Y-1 adrenal 
tumor cells"j7, and in normal rat adrenocortical ~ e l l s ' " ~ ' ~ ~ .  O'Hare, however, found that 
steroid secretion in the normal rat adrenal cells was inhibited by these drugs170. 

Cytochalasins stimulated Y-1 cell steroidogenesis within an hour of incubation in uitro; 
this effect of the drug was reversible by washing17'. On the other hand, other studies found 
that in the Y-1 cells, cytochalasin and anti-actin antibodies inhibited the ACTH- or 
CAMP-stimulated steroid secretion2,"' 12. Cytochalasin also inhibited the ACTH-stimulated 
steroid secretion by normal adrenal  cell^'^^^"^. Employing dispersed bovine adrenal cells, 
it was reported that actin fibre bundles were distributed transversely in the cytoplasm; after 
the addition of ACTH or cAMP the microfilaments became inconspicuous with dot-like 
appearance and their distribution pattern was altered from circular to It 
was also observed'76 that after ACTH treatment, bovine adrenocortical cells became 
rounded with the breakdown of microtubules. It is doubtful that there is any correlation 
between steroidogenesis and cell shape. Using immunoelectron microscopy, Loesser and 
Malamed'" showed that in freshly isolated rat adrenocortical cells, ACTH had no effect 
in actin content in cytoplasm, mitochondria or lipid droplets; ACTH increased the actin 
concentration in the peripheral cytoplasmic band. These findings are in contradiction to 
those reported by Cheitlin and R a m a ~ h a n d r a n ' ~ ~ , " ~ .  These conflicting results suggest that 
more work needs to be done to clarify the role of cytoskeleton in the secretion of adrenal 
steroids. 

3.4. Ouary 

Soto et aPaO reported that the stimulation of progestins by hCG and hLH in human 
granulosa cells in uilro was accompanied by an alteration in the cell shape, and the changes 
in cell shape brought about by the hormones were mimicked by treating the cultures with 
cytochalasin B or D. However, the response of the cells to these agents was much more 
rapid than the hormones, occurring within 20min as compared to 4 h  with the hormones. 
Using rat granulosa cell cultures, it was o h ~ e r v e d ' ~ ~ - ' ~ ~  that colchicine, cytochalasin and 
Ca2+ ionophore-stimulated steroid secretion and was accompanied by a change in cell 
morphology. Zor dcmonstrated that the presence of anti-actin antibodies 
or cytochalasin B in the culture medium prevented the rat Graafian follicles from 
responding to LII or FSH; they also reported that colchicine did not impair the response 
to LH but prevented the stimulatory effect of FSH and PGE, on follicular cAMP 
production. 

In bovine luteal cells colcemid, vinblastine and cytochalasin B inhibited the CAMP- or 
LH-induced morphological changes, suggesting that LH and cAMP could be promoting 
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the formation of cytoskeleton1s6. Cytochalasin inhibited hCG-induced progesterone 
production by rat187 luteal cells in uitro: cytochalasin inhibited basal as well as LH- 
stimulated progesterone production by the bovinelS8 luteal tissue. Cytochalasin and 
colchicine inhibited progesterone production by o ~ i n e ' ~ ~ . ' ~ ~  luteal cells in vitro. In viuo 
treatment of ewes191 and rats'92 with pharmacological doses of colchicine resulted in a 
significant reduction in plasma progesterone. However, anti-microtubule drugs had no 
effect on either the basal or LH-stimulated steroid production in uitro by collagenase- 
dispersed ratIn7 luteal cells and bovineLa8 luteal tissue. Using ovine luteal tissue, Sawyer 
etalro4 reported that LH-stimulated progesterone secretion was significantly reduced in 
the presence of colchicine. It was observed that in viuo colchicine treatment inhibited the 
in uitro progesterone production (cells + medium) by collagenase-dispersed rat luteal cells, 
but did not alter themicrotubule content as assessed by quantitative electron m i c r ~ s c o p y ~ ' ~ .  
We know from experience that sensitive biochemical methods are required to monitor 
the subtle changes in the equilibrium between the soluble and polymerised tubulin 
poolsL40-143.149 

The use of collagenase or trypsin to prepare cells from the luteal tissue could affect their 
function, and this might complicate matters when the cells are immediately incubated with 
cytoskeletal inhibitors. Carnegie et a1 have, in fact, demonstratedln4 that when rat granulosa 
cells were grown on collagen gels, they secreted almost three fold more progesterone than 
cells cultured in minimal essential medium alone. Also, it is a general practice to keep the 
luteal tissue on ice until the required amount of tissue is dissected out of the animals. It is 
knowna that in vitro microtubules (polymerised from purified brain tubulin) depolymerise 
when exposed to cold temperatures and can be readily repolymerised by incubating at 
37°C. However, we do not have extensive knowledge of the behaviour of microtubules 
present in a tissue. In one study using the hamster corpora lutea the tissue was not exposed 
to either enzymes or cold tempe~atures''~. The tissue was kept in minimal essential medium 
at room temperature for not more than 15min and then was incubated at  37°C. Vinblastine 
and colchicine inhibited progesterone secretion in vitro by the corpora lutea; the effect of 
colchicine was observed at about 30min and was significant at 60 min, indicating that these 
drugs act rapidly. In an attempt to demonstrate the specificity of colchicine binding and 
relate its eMect to the disassembly of microtubules, experiments were conducted with 
lumicolchicine, an isomer of colchicine that has no effect on microtubule assembly. 
Lumicolchicine did not inhibit progesterone secretion by the hamster corpora lutea. 
Moreover, colchicine inhibition of progesterone secretion could be overcome by preincubat- 
ing the corpora lutea with D,O. D 2 0  is known to alter the equilibrium between soluble 
and polymerised form of t u b ~ l i n ~ ~ , ~ ~ .  Preincubation of corpora lutea with anti-tubulin 
antiodies prevented the inhibitory effect of colchicine on progesterone secretion; anti-tubulin 
antibodies did not affect basal or LH-stimulated progesterone secretion. This observation 
suggested that the antibody bound to cell surface of the luteal tissue and prevented the 
effects of colchicine. The presence of a plasma membrane-associated tubulin has been 
demonstrated in the brain of a few  specie^'^^.'^^. The presence of plasma membrane- 
associated tubulin in the hamster corpus luteum might explain these effects of anti-tubulin 
antibodies. Zor eta1 also observed that the presence of antibodies to tubulin in the medium 
did not inhibit the stimulatory effect of LH on the rat Graafian follicles'85, 
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It was observed that estradiol inhibited the progesterone secretion by the hamster corpus 
luteum by interfering with microtubule function of the lateal ce13'94,'97-199 . Sub-optimal 
concentrations of estradiol and colchicine added together resulted in a maximal inhibition 
of steroid secretion. Preincubating the corpora lutea with either anti-tubulin antibodies or 
D 2 0  prevented the inhibitory effect of estradiol on steroid secretion, suggesting that the 
hormone could be initially binding to a membrane component'94. The concept that steroid 
hormones interact with membrane components is relatively new200-z09. It was assumed 
until r e c ~ n t l y ~ ' ~  that steroid hormonespassively diffuse to bind to the cytoplasmicreceptors. 
The hormone-receptor complexcs thus formed provoke increased transcription of specific 
genes, Leading to the accumulation of specific ~ R N A S ~ " - " ~ .  The initial localisation of 
thc receptor in the absence of hormone is not known. It is suggested that the receptor may 
be attached to, or a component of, the plasma membrane from which it is quite easily 
detached during homogenisation and hence obtained in the ~ y t o p l a s m ~ ' ~ ~ ~ ' ~ .  A marked 
saturability and temperature dependence of steroid hormone entry, which cannot be 
attributed to the funclion olcyloplasmic r e ~ e p t o r s ~ ' ~ - ~ ' ~ ,  has been noted. Rat endometrial 
cells exposed to estradiol for a brief period of time exhibited pronounced altered membrane 
 function^^^'^^^^ and micropinocytot~c vacuolation of p l a ~ m a l e m m a ~ ' ~ .  

R ~ p o r t s ~ ' ~ - ~ ~ '  from the Szego laboratory suggest that estradiol interacts with compo- 
nents of biological membranes and may enter cells by a membrane-mediated process. Szego 
and coworkers demonstrated specific, saturable and temperature-dependent cell surface- 
binding sites on endometrial cclls ro estradiol-BSA conjugatc immobilised to nylon fibreszo3. 
Employing carefully controlled homogenisation and isolation procedures that are different 
from the methods generally usedzz", Pietras and Szego2I3 demonstrated that approximately 
27% ofreceptor component with high affinity and ligand specificity for binding estradiol-178 
is concentrated in plasma membranes purified from isolated uterine cells of ovariectomised 
rats. This is in contrast to the widely reported occurrence of estradiol receptors in cytosolic 
fractions214. High-affinity and low-capacily receptors for estradiol have also been reported 
for hepatocyte plasma membrane  fraction^^^^.^^^. E s t r a d i ~ l ~ ~ ~  was demonstrated to alter 
the morphology and arrest m~tosis in a Chinese hamsler cell line. 

There is also evidence that the membrane surface is involved in the progesterone-induced 
meiosis in Xenopus iaevis oocyteszZ6 and LHRH secretion in uitro by mediobasal 
hypothalamic slices of ratsZz7. It is known that in endometrial cell suspensions obtained 
from uteri of ovariectomised rats, estradiol increases CaZf  uptake to  a large extent within 
30 minZo1. In light of the reports that CaZ+ depolymerises r n i c r o t u b ~ l e s ~ ~ ~ ~ ~ ~ ~ ,  it is possible 
that Ca2 + may be mediating the effect of estradiol on progesterone s e ~ r e t i o n ' ~ ~ . ' ~ ~ - ' ~ ~ .  
Based on their experiments with CHO-KI cell lines and the effect of testosterone on the 
cell morphology, Hsie and PuckZ30 postulated that the effect of testosterone was mediated 
uiu the microtubules. Using Drosophila melanogaster Kc cells, Sobrier et a1 demonstrated 
that the insect-moulting hormone, 20-bydroxyecdysone affected actin and tubulin function 
as well as their b io~ynthes i s~~ ' .  It was reported that the synthetic estrogen diethystilhestrol 
inhibited the in oitro assembly of brain t ~ b u l i n ~ ~ ~ - " ' .  Sato r t  a1 briefly mentioned that 
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estradiol had no effect on tubulin assembly, but did not give details regarding their 
experimental conditions232. 

In an attempt to check whether the effect of estradiol on  progesterone secretion by the 
hamster corpus luteum was due to the direct action of this steroid hormone on the tubulin 
system, rat brain tubulin was purified by phosphocellulose chromatography and the effects 
of estradiol on tubulin GTPase activity and assembly were monitored. Brain tubulin was 
used based on the fact that it is a highly conserved protein and the differences between tubulin 
from hamster corpus luteum and rat brain could be minimal; also, rat brain is a rich source 
of this protein, whereas too many hamsters had to  be sacrificed to purify a few mg of 
protein from the corpus luteum. Estradiol inhibited tubulin GTPase activity in a 
dose-dependent manner, and this inhibition could be overcome by excess GTP, suggesting 
that the effect of this steroid on tubulin function is reversible. Estradiol also inhibited the 
assembly in a dose-dependent manner, as monitored by turbidimetric measurements and 
electron microscopy'99. Taken together, these resuIts'94.'97-199 suggest that estradiol 
inhibited progesterone secretion by the hamster corpora lutea by interfering with the 
equilibrium between the soluble and polymerised tubulin pools. It is essential to maintain 
the equilibrium between soluble and polymerised forms of tubulin in cells, and regulatory 
mechanisms must exist to prevent all cytoplasmic tubulin from assembling into micro- 
tubules. It is tempting to speculate that estradiol may be one such molecule which has a 
role in regulating tubulin function in vivo. 

5. Perspective 

Recent work on the interaction of synaptic vesicles and microtubules provided some 
interesting data regarding the transport of vesicles on microtubules and could very well 
inspire similar work on  hormone secretion via the cytoskeleton (see 235 and 236 for 
references). In an elegant paper, Gray2" observed that microtubules are in contact with 
presynaptic dense projections of the central nervous system leading to the suggestion that 
microtubules translocated the synaptic vesicles. Subsequently, Baines and Bennett236 
demonstrated that synapsin I, a synaptic vesicle protein from calf brains, bound saturably 
to microtubules in vitro. Crosslinking of microtubules by synapsin I was observed by 
electron microscopy. Thus, synapsin I could play a role in mediating the synaptic vesicle- 
microtubule interaction. Other models of cell motility in metazoa are actomyosin-based 
system in muscle237, and the dynein-based system in the axonemes of flagella and cilia2". 
Another 'motor'system has been recently described in the chick brain239, squid giant axons 
and bovine brain2". Subsequently this protein was demonstrated to be widely distributed 
among organisms and cell cultures241. B ~ a d y ' ~ ~  and Vale et aP40, working independently, 
have reported that this protein is distinct in molecular weight and enzymatic behaviour 
from myosin or dynein. Vale et proposed the name Kinesin (from the Greek Kinein, 
to move). In gel filtration columns, both the squid and bovine translocators elute with a n  
apparent molecular weight of 6M)kDa. The quaternary structure of kinesin is yet to be 
described. Stoichiometry studies by gel densitometry of the polypeptides in highly purified 
kinesin preparations indicate that kinesin is a complex of two or three different polypeptides. 
Addition of kinesin to a mixture of highly purified microtubules (free of microtubule- 
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associated proteins) and membrane organelles from squid axoplasm resulted in the 
translocation of the organelle on the microtubule as visualised with video-enhanced 
diffcrcntial interference contrast microscopy. Trypsinisation of the organelles blocked their 
movement, suggesting that the binding of the organelle may be protein mediated. Latex 
beads adsorbed to k~nesin could also be translocated along microtubules. Moreover, the 
movement of microtubules was noted in the presence of kinesin. ATP facilitated the initial 
interaction between kinesin and microtubules, but the intrinsic ATPase activity of kinesin 
caused ATP hydrolysis and eventual dissociation of kinesin and microtubules. In the 
presence of AMP-PNP, a non-hydrolysable analog, kinesin binding to microtubules was 
enhanced. 

Paschal and Vallee242 reported that MAPlC, one of the five high molecular-mass 
microtubule-associated proteins, has the ability to translocate microtubules. When micro- 
tubules were placed on a glars microscope slide coated with MAPlC, microtubule gliding 
occurred in a continuous, unidirectional manner. MAPlC was demonstrated to be a soluble 
form of dynein. I t  was also shown to be a retrograde translocator i.e., movement from the 
cell periphery to the cell centre suggesting a role for MAPlC in endocytosis. Kinesin, on 
the .other hand, was observed to operate in the opposite direction, anterograde, ie., 
movement from the cell centre to the cell periphery. Thus kinesin appears to be candidate 
for exocytosis. Future work should reveal if similar 'motor' systems could be characterised 
in endocrine glands. 
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