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Abstract

The important part played by the cytoskeleton in the dynami¢ process of polypeptide and steroid hormone
secretion has been examined. Certain specific endocrine tissues have been chosen to analyse the information
available regarding hormone secretion. For example, for polypeptide hormones the anterior lobe of the pituitary
and the islets of Langerhans have been discussed whereas for the steroid hormones, the ovaries and the adrenals
have been chosen for discussion.

Evidence suggesting the involvement of exocytosis in the secretion of the two types of hormones has been
discussed. Most of the data regarding the role of the cytoskeleton in hormone secretion has so far been obtained
by employing drugs known to affect either microfilaments or microtubules—thereby studying the effects of
pharmacological doses of the drugs on hormonal seeretion. At these high doses, the specificity of the drug effects
is questionable. On the other hand, however, afew investigators have examined the biochemistry of the cytoskeleton
during hormone secretion. Sensitive methods have been standardised to study the equilibrium between soluble
and polymenised tubulin or actin pools, the assembly of tubulin into microtubules and the GTPase activity of
tubulin.
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1. Introduction

Although reviews'™> on the role of the cytoskeleton in hormone action were published
not too long ago, discoveries made since then have prompted us to attempt this treatise.
Although hormone secretion involves components besides cytoskeleton, such as cAMP,
Ca?*, calmodulin and phosphoinositides, we have decided to restrict the scope of this
paper to the role of microtubules and microfilaments in hormone secretion. We will examine
the present understanding of polypeptide and steroid hormone secretion and the studies
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on the role of cytoskeleton therein. We will present evidence to support the theory that
secretion of protein as well as steriod hormones follows a similar pattern in that these two
types of hormones are packaged into secretory granules and are transporied to the plasma
membrane by the microtubular system for subsequent exocytosis. We will also examine
the reports supporting the hypothesis that steroid hormones interact with the cytoskeleton
prior to activating the genome.

2. Cytoskeleton

For brevity, we will include only the important aspects of the three components of the
cytoskeleton. For more information regarding these cytoskeletal elements, the reader is
referred to detailed works on microtubules*™®, actin® ! and intermediate filaments'2.

. 7
2.1. Microtubules

Tubulin, the monomeric unit of microtubules, has a2 molecular weight of about 110,000
daltons and is composed of two non-identical subunits, o and §. Tubulins have remained
very stable in evolution; histones apparently being the only class of proteins which have
undergone less change since the origin of eukaryotes. Common antigenic determinants in
microtubules from mammals, birds, reptiles, teleosts and diptera have been reported*®.
Tubulin is a glycoprotein with approximately 1.2mole neutral sugar per dimer!®. The
possibility of tubulin being associated with phospholipids was suggested'® by experiments
wherein the addition of phospholipase A to brain extract having the capacity to form
microtubules, prevented the assembly at 37°C.

Tubulin has two guanosine nucleotide-binding sites per dimer. Ope is exchangeable
(E), and the other nonexchangeable (N). Although at both sites GTP is bound non-
covalently, the N-site can only be removed by denaturing the protein, whereas the E-site
GTP is exchangeable with free GTP. The E-site GTP is hydrolysed during tubulin
polymerisation®'®. Tubulin is accompanied on the electrophoresis columns by several
associated proteins of higher molecular weight. The presence of these microtubule-associated

proteins (MAPs), often in stoichiometric relation to tubulin, suggests a regulatory role of
MAPs in the structure of microtubules!”.

Tubulin from rat brain could be assembled in vitro, to form microtubules*® with an
exterior diameter of 24 nm, provided the following conditions are met:1) concentration of
tubulin is sufficiently high, 2) GTP is added, 3) Ca2* is removed using EGTA, and 4) the
temperature is 37°C with a pH of 6.8, The assembly reaction is inhibited at cold temperatures.
Microtubules generally grow in definite directions from initiation centres such as basal
bodies or centrioles. Studies conducted in vitro on the directionality of microtubule growth
fr_om §uch initiation sites revealed that microtubules mainly increase their length in one
direction. Tubulin assembly appears to be a sequential process, consisting of nucleation,
clongation, monomer-polymer equilibrium and length redistribution®?~36,

.There are quite a few reliable methods®” to monitor the in vitro assembly of tubulin into
microtubules: turbidity measurements at 350 nm, electron microscopy, viscosity measure-
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ments and sedimentation of the polymer, estimation of the monomers remaining in the
supernatant, flow birefringence, dark-field light microscopy, x-ray diffraction, laser light
scattering, filtration, calorimetry and immunochemistry, Microtubule function is generally
investigated using colchicine®®™*4, vinblastine*?, D,0**** and Taxol*3™*8 (see refs 40, 42,
43 for reviews). Colchicine is considered to be a prototype of the class of chemical inhibitors
that act on microtubules. It is known that colchicine inhibits the assembly of tubulin
monomers into microtubule polymers, resuiting finally in the accumulation of tubulin in
soluble pools. Addition of vinblastine to cells resuits in precipitation of tubulin. On the
other hand, D,0 and Taxol are known to alter the equilibrium between soluble and
polymerised form of tubulin by overstabilising them in their polymerised form.

2.2. Microfilaments

Actin is ubiquitous in eukaryotes and has been highly conserved during evolution*®+>°,
Actin comprises 15-20% of the total cell protein, and approximately 50% of total actin in
non-muscle cells exists as a soluble pool, i.e., not polymerised into F-actin. G-actin is a
42,000 dalton protein with one mol ATP bound per monomer and one mol Ca?* bound
to a specific divalent cation-binding site, different from that of the ATP-binding site5!+32,
There are many proteins that form tight complexes with G-actin, thus facilitating an increase
in the pool of non-polymerised actin in the cell; there are also proteins in the cell that are
known to accelerate the rate of actin depolymerisation'®. G-actin, under defined in vitro
conditions, polymerises into F-actin!®. The microfilament polymer is a two-start, double-
stranded, right-handed helix. The filament diameter is approximately 5 to 7nm. The
polymerisation process is similar to that of tubulin, consisting of nucleation, elongation,
and monomer-polymer equilibrium. Actin has an intrinsic ATPase activity. G-actin as well
as F-actin are both capable of ATP hydrolysis’*3*. A continued hydrolysis of ATP by
F-actin takes place during the interconversion of G-actin to F-actin. This does not mean
that ATP hydrolysis is a prerequisite for polymerisation. The rate of polymerisation and
the critical concentration of actin are the same in the presence of the non-hydrolysable
nucleotide AMPPNP as in the presence of ATP*3. Cytochalasins, a group of low-molecular
weight fungal metabolites, stimulate the ATPase activity of G-actin by 30 fold. Cytochalasin
B preferentially blocks elongation of F-actin, and cytochalasins, in general, inhibit the rate
of actin polymerisation®%37. Methods to monitor the assembly of G-actin to F-actin are
similar to those mentioned above for tubulin®®.

2.3. Intermediate filaments

In contrast to microtubules and microfilaments, the intermediate filaments are composed
of heterogeneous subunit proteins®*~** The biochemical and immunological differences
in these subunit proteins have resulted in identification of five major subclasses of
intermediate filaments: 1) tonofilaments consisting of cyto- or prekeratins (40-68 kDa),
2) neurofilaments composed of triplet proteins (68,160,200 kDa), 3) glial filaments with glial
fibrillary acidic proteins (51kDa), 4) desmin filaments made up of desmin (53 kDa) and
5) vimentin filaments with vimentin (53 kDa). Intermediate filaments are highly inscluble in
physiological ionic solutions. The filariients can be solubilised into their constituent subunit
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proteins only under denaturing conditions or at very low ionic strength®®. The denatured
subunit proteins assemble into intermediate filaments (inner diameter 7--11 nm); this process
is independent of accessory proteins or other cofactors, suggesting that the information to
assemble into the polymer is present in the secondary structure of the subunit proteins
themselves. A pool of unpolymerised subunit proteins does not seem to exist in the cell.
The intermediate filament polymers are extraordinarily stable, and, to date, there is no
known specific agent that causes depolymerisation of the intermediate filament polymers'?
The recent finding that the Ca?*-activated proteolytic enzymes are able to degrade the
intermediate filaments in vitro led to the hypothesis that the changes in intracellular Ca?*
concentration could be regulating the assembly and disassembly in vivo?>56768,

There is a considerable body of evidence that intermediate filaments interact with
microtubules and microfilaments®®~"¢; the disassembly of microtubules and microfilaments
by drugs such as colchicine or cytochalasin is also accompanied by a redrrangement df
intermediate filaments®® 7785, Microinjection of antibodies against intermediate filament
proteins into cells results in a rapid and reversible collapse of all the intermediate filaments
into a tight perinuclear cap. However, this dramatic rearrangement of intermediate filaments
did not change the cytoplasmic distribution of microtubules and microfilaments, and the
microinjected cells retained normal mitotic and cytokinetic properties®®8°.

Intermediate filaments as they normally occur in the cell are considered to play a structural
role in reinforcing the cytoskeleton®®. Recent reports® 4, however, suggest that the subunit
proteins of the intermediate filaments could act as transmitters of signals from the cell
periphery to the nucleus. The subunit proteins are known to bind to nucleic acids®*. Purified
vimentin binds to different fractions of avian erythrocyte membranes through two distinct
domains®>®*, Sites located at the carboxy-terminal end of the vimentin molecule bind
specifically to nuclear envelopes in a cooperative fashion; the plasma membrane fraction
interacts in a saturable manner with the amino-terminal head of the vimentin molecule.

3. Mechanism of hormone secretion

The general pathway of polypeptide hormone secretion in vertebrates is well
documented®* ™%, From their site of synthesis in the rough endoplasmic reticulum, the
proteins are transported Lo the Golgi apparatus, where glycosylation and packaging into
secretory granules take place. From the Golgi apparatus the secretory granules are
transported to the cell membrane where exocytosis occurs. Exocytosis is a process by which
cells release materials into the extracellular milieu: Upon appropriate stimulus, the secretory
granules migrate to the luminal plasma membrane, fuse with the membrane, and the
hormones are then secreted.

On the other hand, it was believed that steroid hormones, after being synthesised in the
steroidogenic tissue, are released into the extracellular milieu by simple diffusion®1-192,
However, recent reports'®*™% suggest that steroid hormone secretion by the corpus
luteum as well as the adrenals could be an active process related to or identical with
exocytosis. A correlation between the presence and concentration of densely staining
granules in the corpus luteum and progesterone secretion has been noted%3. Quirk et al*03
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reported that progesterone is localised within electron-dense granules and suggested that
these granules are released into extracellular medium by exocytosis. Sawyer et al'®*
proposed that a progesterone-carrier protein (without progesterone) was packaged into
secretory granules at the level of the Golgi apparatus; these granules pick up progesterone
from the tubular elements of the agranular endoplasmic reticulum as they move towards
the plasma membrane; finally the granules are exocytosed.

Although it is generally accepted that cytoskeleton plays a major role in the transport
of secretory granules from the Golgi apparatus to the plasma membrane, the exact mechanism
of this transport is yet to be delineated. Most of the work regarding the involvement of
cytoskeleton in hormone secretion was performed using drugs such as colchicine, vinblastine
or cytochalasin. These agents are known to perturb either the microtubules or micro-
filaments, and the effects these compounds exert on hormone secretion have been related
to the cytoskeleton. However, more often than not, these agents were employed at
high doses and at these concentrations the drugs are known to affect other cellular
functions as well**1974*3, besides disrupting the cytoskeleton. Therefore, the results
obtained with the drugs should be viewed with caution.

The very heterogeneous nature of intermediate filaments— there being at least five protein
subunits—and the unavailability of a drug known to affect their function, have made it
difficult for the endocrinologist to study the role of the intermediate filaments during
hormone secretion. However, the three components of the cytoskeleton are known to
interact with each other, and any stimulus affecting one of the three could also affect the
other two.

3.1. Anterior pituitary lobe

Anti-cytoskeletal drugs were employed to demonstrate the involvement of microtubules
and microfilaments in the secretion of gonadotropins by the anterior pituitary lobe in
response to GnRH!'15712!, Colchicine was observed to: inhibit the secretion of ACTH*!*?
in the rat in vitro; accumulate secretory granules and cause disappearance of microtubules
in somatotrophic cells**3; inhibit PRL and GH secretion' 2473 In only one cas¢ colchicine
was shown to stimulate’®? the release of LH, FSH, and TSH. Vincristine, another drug
which interacts with the microtubules, was shown to inhibit PRL and GH release!%, All
these studies!!5~132 employed high concentrations of the drugs, and the specificity of their
effects on the microtubules was not evaluated with the use of lumicolchicine, an inactive
isomer of colchicine which does not affect the microtubule function.

Shino et al employed electron microscopy to correlate PRL secretion to the microtubules
in the anterior pituitary lobe*33, Although they visualised the microtubules, they could not
observe changes in the tubulin during increased PRL secretion. Sheterline etal, using
morphometric techniques, demonstrated that stimulation of GH secretion from bovine
somatotrophs by non-physiological secretagogues, was accompanied by a decrease in the
polymerised microtubules' 26, Holck et al, employing immunofluorescent methods, observed
more intense tubulin staining of gonadotrophs in castrated rats***. This finding was later
confirmed by Valenti et al by direct measurements of total tubulin by the colchicine binding
assay'3>1%6_ Using morphological techniques, it was demonstrated that in human FSH-
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producing adenomas, microtubules were often conspicuous and might increase in number
in the cytoplasm of the adenoma cell'®’; the gonadotrophic cells of the non-tumorous
pituitary contained only a few microtubules'®®, Niwa etal demonstrated that in sitro
treatment of rat prolactinoma cells with bromocriptine resulted in changing the fine reticular
networks of microtubules into coarse aggregates, thus implicating microtubules in PRL
secretion’ %,

In our attempts to examine the anterior pituitary lobe microtubules, we have chosen the
lactating rat as our model and stimulated PRL secretion by suckling the mothers with the
pups. Instead of using drugs which are known to disrupt the microtubule system and then
examining hormone secretion, we have applied a physiological stimulus to release PRL
from the anterior pituitary lobe and then studied the pituitary tubulin status. Using the
*H-cokchicine-binding assay, we have initially observed that suckling resulted in a significant
elevation in tubulin levels in the anterior pituitary lobe'?. Next we have standardised the
buffer conditions to estimate the soluble and polymerised tubulin pools in the anterior
pituitary lobe and reported that suckling resulted in a shift in the equilibrium between
soluble and polymerised tubulin pools in the anterior pituitary'4!. The total amount of
the two tubulin pools did not change appreciably during suckling (fig. 1). In another study
we have assayed the GTPase activity of the soluble and polymerised tubulin pools and
observed (fig. 2) that the GTPase activities of the two tubulin pools during suckling also
appeared to be in a dynamic flux*42, We followed these observations with the standardiza-
tion of a method to monitor the in vitro assembly of anterior pituitary lobe tubulin into
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(Figure reproduced with permission from reference 143).

microtubules. This technique was found to be sensitive and capable of measuring the
assembly in approximately 2ug of tubulin present in the 100,000 x g supernatants. After
extensively validating this protocol we have observed (fig. 3) that suckling affected the
extent to which anterior pituitary tubulin of the rat assembled into microtubules**3. These
observations are consistent with the hypothesis that microtubules are being recruited to
transport PRL granules from the Golgi apparatus to the plasma membrane. This process
could conceivably involve many cycles of polymerisation/depolymerisation. Although our
studies suggest that microtubules could be involved in PRL secretion by the anterior
pituitary lobe, it was pointed out that the changes we have observed in the microtubules
during PRL secretion may not be specifically occurring in the lactotrophs, as we were
dealing with the total cell population of the anterior pituitary lobe. In the rat, suckling
stimulates the release of TSH'#!43, GH!*® and ACTH/f-endorphin’*” in addition to
PRL. However, electron microscopy has revealed that in most species examined, PRL
sccretory cells increase in number and cytoplasmic volume and become the dominant cell
type during lactation#®, We have attempted to address this question by employing drugs
that are known to affect PRL secretion. We have demonstrated that domperidone-elevated
anterior pituitary lobe polymerised tubulin levels and plasma PRL concentration compara-
ble to those increases caused by suckling. Bromocriptine blocked the suckling-induced rise
in polymerised tubulin and the rise in plasma PRL levels as well'*!. Domperidone was
also demonstrated to increase the soluble tubulin GTPase activity comparable with that
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at 15min suckling, and bromocriptine blocked the suckling-induced rise in the polymerised
tubulin GTPase activity (Ravindra & Grosvenor, manuscript in preparation). The in vitro
assembly of anterior pituitary lobe tubulin into microtubules was also affected by
domperidone, bromocriptine, and oPRL'*?. Treatment of lactating rats with oPRL prior
to suckling was shown to inhibit the release of PRL into plasma**; the same dose of oPRL
also resulted in a shift in the equilibrium in the two tubulin pools and their GTPase
activities (Ravindra & Grosvenor, unpublished results). Furthermore, we have observed
that the equilibrium between the two tubulin pools was also affected in the lactotrophs of
ovariectomised rats primed with estradiol (Ravindra, Hymer & Grosvenor, preliminary
observations). Thus, these results support our contention that the changes seen in the
anterior pituitary microtubules in response to a physiological stimulus could be correlated
to those occurring in the lactotrophs during PRL secretion.

Sherline ez al reported that porcine pituitary secretory granules, enriched in GH and
PRL, bound to brain microtubules in vitro, but not to depolymerised microtubules (i.e.,
tubulin), suggesting that microtubules might facilitate the cell interior to cell surface
movement of PRL secretory granules by providing tracks along which granules could
move'*X, Bloom et al published a good method to purify tubulin from the bovine anterior
pituitary tissue and GH; cells which secrete GH and PRL52 These methods should
stimulate more work regarding the biochemical interaction between the secretory granules
and tubulin system in the anterior pituitary lobe.

The role of actin in the pituitary hormone secretion has not been as vigorously pursued
as that of tubulin. Benzonana et al adapted the DNAse method to the anterior pituitary
lobe for estimating the G-actin content**3. Ostlund et al/*>* demonstrated that anterior
pituitary gland secretory granules bound to G-actin in vitro.

3.2. Islets of Langerhans

The secretion of insulin has been well studied, using either the whole organ or isolated
cells'*>%°_ Although the bulk of the work was done using pharmacological doses of
drugs known to disrupt the cytoskeleton, some studies combined this approach with
morphological examination of the cytoskeleton, while others investigated the biochemistry
of the cytoskeleton in these cells. Taken together, these results suggest that insulin secretion
is a two-step process, involving both microtubules and microfilaments. The first step involves
the transport of the insulin secretory granules from the Golgi apparatus to the periphery
gf the cell; microtubules appear to be involved in this process. In the second step, the
1n§ulin-containing secretory granules which are at the periphery of the cell membrane fuse
with the plasma membrane to release insulin into the extracellular miliey; microfilaments
are implicated in this step.

The secretion of glucagon has not received much attention, and the reports are rather
ambiguous!©1-162,

3.3. Adrenals

Information regarding adrenal steroid secretion was obtained mainly with the use of drugs
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that are known to interact with the cytoskeleton. Vinblastine caused the appearance of
tubulin crystals in the rat'®? and stimulated the secretion of adrenal steroid hormones in
the mouse'®*. Stimulation of tissue cultures by ACTH and cAMP appeared to increase
the number of visible microtubules as seen by immunofluorescence, indicating that the
hormone might induce tubulin polymerisation. The microtubules thus formed could help
in the translocation of steroid containing granules'®. Payet et al reported that administra-
tion of colchicine to rats stimulated aldosterone and corticosterone secretion?®S. Colchicine
and other antimicrotubular drugs increased steroid secretion by cultures of Y-1 adrenal
tumor cells*®”, and in normal rat adrenocortical cells!®%*%°, O’Hare, however, found that
steroid secretion in the normal rat adrenal cells was inhibited by these drugs'7°.

Cytochalasins stimulated Y-1 cell steroidogenesis within an hour of incubation in vitro;
this effect of the drug was reversible by washing 7!, On the other hand, other studies found
that in the Y-1 cells, cytochalasin and anti-actin antibodies inhibited the ACTH- or
cAM P-stimulated steroid secretion®>' 72, Cytochalasin also inhibited the ACTH-stimulated
steroid secretion by normal adrenal cells'?*174. Employing dispersed bovine adrenal cells,
it was reported that actin fibre bundles were distributed transversely in the cytoplasm; after
the addition of ACTH or cAMP the microfilaments became inconspicuous with dot-like
appearance and their distribution pattern was altered from circular to radial'?®. It
was also observed!’S that after ACTH treatment, bovine adrenocortical cells became
rounded with the breakdown of microtubules. It is doubtful that there is any correlation
between steroidogenesis and cell shape. Using immunoelectron microscopy, Loesser and
Malamed!”” showed that in freshly isolated rat adrenocortical cells, ACTH had no effect
in actin content in cytoplasm, mitochondria or lipid droplets; ACTH increased the actin
concentration in the peripheral cytoplasmic band. These findings are in contradiction to
those reported by Cheitlin and Ramachandran’ %17, These conflicting results suggest that
more work needs to be done to clarify the role of cytoskeleton in the secretion of adrenal
steroids.

3.4. Ovary

Soto et al*8® reported that the stimulation of progestins by hCG and hLH in human
granulosa cells in vitro was accompanied by an alteration in the cell shape, and the changes
in cell shape brought about by the hormones were mimicked by treating the cultures with
cytochalasin B or D. However, the response of the cells to these agents was much more
rapid than the hormones, occurring within 20 min as compared to 4h with the hormones.
Using rat granulosa cell cultures, it was observed'®!™34 that colchicine, cytochalasin and
Ca?* ionophore-stimulated steroid secretion and was accompanied by a change in cell
morphology. Zor etal'®® demonstrated that the presence of anti-actin antibodies
or cytochalasin B in the culture medium prevented the rat Graafian follicles from
responding to LH or FSH; they also reported that colchicine did not impair the response
to LH but prevented the stimulatory effect of FSH and PGE, on follicular cAMP
production.

In bovine luteal cells colcemid, vinblastine and cytochalasin B inhibited the cAMP- or
LH-induced morphological changes, suggesting that LH and cAMP could be promoting



258 R. RAVINDRA AND C E. GROSVENOR

the formation of cytoskeleton'®. Cytochalasin inhibited hCG-induced progesterone
production by rat'S7 luteal cells in vitro; cytochalasin inhibited basal as well as LH-
stimulated progesterone production by the bovine'®® futeal tissue. Cytochalasin and
colchicine inhibited progesterone production by ovine'8%° luteal cells in vitr. In vivo
treatment of ewes'®! and rats!®? with pharmacological doses of colchicine resulted in a
significant reduction in plasma progesterone. However, anti-microtubule drugs had no
effect on either the basal or LH-stimulated steroid production in vitro by collagenase-
dispersed rat'®” luteal cells and bovine'®® luteal tissue. Using ovine luteal tissue, Sawyer
et al*®* reported that LH-stimulated progesterone secretion was significantly reduced in
the presence of colchicine. It was observed that in vivo colchicine treatment inhibited the
in vitro progesterone production (cells + medium) by collagenase-dispersed rat luteal cells,
but did not alter the microtubule content as assessed by quantitative electron microscopy*®3.
We know from experience that sensitive biochemical methods are required to monitor

the subtle changes in the equilibrium between the soluble and polymerised tubulin
p0013140—143,149.

The use of collagenase or trypsin to prepare cells from the luteal tissue could affect their
function, and this might complicate matters when the cells are immediately incubated with
cytoskeletal inhibitors. Carnegie et al have, in fact, demonstrated’ 84 that when rat granuiosa
cells were grown on collagen gels, they secreted almost three fold more progesterone than
cells cultured in minimal essential medium alone. Also, it is a general practice to keep the
luteal tissue on ice until the required amount of tissue is dissected out of the animals, It is
known® that in vitro microtubules (polymerised from purified brain tubulin) depolymerise
when exposed to cold temperatures and can be readily repolymerised by incubating at
37°C. However, we do not have extensive knowledge of the behaviour of microtubules
present in a tissue. In one study using the hamster corpora lutea the tissue was not exposed
to either enzymes or cold temperatures!®+. The tissue was kept in minimal essential medium
at room temperature for not more than 15 min and then was incubated at 37°C. Vinblastine
and colchicine inhibited progesterone secretion in vitro by the corpora lutea; the effect of
colchicine was observed at about 30 min and was significant at 60 min, indicating that these
drugs act rapidly. In an attempt to demonstrate the specificity of colchicine binding and
relate its effect to the disassembly of microtubules, experiments were conducted with
lumicolchicine, an isomer of colchicine that has no effect on microtubule assembly.
Lumicolchicine did not inhibit progesterone secretion by the hamster corpora lutea.
Moreover, colchicine inhibition of progesterone secretion could be overcome by preincubat-
ing the corpora lutea with D,0. D,0 is known to alter the equilibrium between soluble
and polymerised form of tubulin®®*4. Preincubation of corpora lutea with anti-tubulin
antiodies prevented the inhibitory effect of colchicine on progesterone secretion; anti-tubulin
antibodies did not affect basal or LH-stimulated progesterone secretion. This observation
suggested that the antibody bound to cell surface of the luteal tissue and prevented the
effects of colchicine. The presence of a plasma membrane-associated tubulin has been
demonstrated in the brain of a few species'®>19%, The presence of plasma membrane-
associated tubulin in the hamster corpus luteum might explain these effects of anti-tubulin
antibodies. Zor et al also observed that the presence of antibodies to tubulin in the medium
did not inhibit the stimulatory effect of LH on the rat Graafian follicles*85.
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4. Steroid-cytoskeleton interaction

It was observed that estradiol inhibited the progesterone secretion by the hamster corpus
iuteum by interfering with microtubule function of the tuteal celi'9+19771%% Sub.optimal
concentrations of estradiol and colchicine added together resuited in a maximal inhibition
of steroid secretion. Preincubating the corpora lutea with either anti-tubulin antibodies or
D, O prevented the inhibitory effect of estradiol on steroid secretion, suggesting that the
hormone could be initially binding to a membrane component*®*. The concept that steroid
hormones interact with membrane components is relatively new?°°729, 1t was assumed
until recently?! that steroid hormones passively diffuse to bind to the cytoplasmic receptors.
The hormone-receptor complexes thus formed provoke increased transcription of specific
genes, leading to the accumulation of specific mRNAs?' 17213, The initial localisation of
the receptor in the absence of hormone is not known. It is suggested that the receptor may
be attached to, or a component of, the plasma membrane from which it is quite easily
detached during homogenisation and hence obtained in the cytoplasm?!*2*°, A marked
saturability and temperature dependence of steroid hormone entry, which cannot be
attributed to the function of cytoplasmic receptors?1¢215 has been noted. Rat endometrial
cells exposed to estradiol for a brief period of time exhibited pronounced altered membrane
functions?®!2°2 and micropinocytotic vacuolation of plasmalemma?®!?.

Reports?!°72* from the Szego laboratory suggest that estradiol interacts with compo-
nents of biological membranes and may enter cells by a membrane-mediated process. Szego
and coworkers demonstrated specific, saturabie and temperature-dependent cell surface-
binding sites on endometrial cells to estradiol-BSA conjugatc immobilised to nylon fibres?93.
Employing carcfully controlled homogenisation and isolation procedures that are different
from the methods generally used?**, Pietras and Szego?%3 demonstrated that approximately
27%, of receptor component with high affinity and ligand specificity for binding estradiol-178
is concentrated in plasma membranes purified from isolated uterine cells of ovariectomised
rats. This is in contrast to the widely reported occurrence of estradiol receptors in cytosolic
fractions?**. High-affinity and low-capacity receptors for estradiol have also been reported
for hepatocyte plasma membrane fractions®®5-2°¢, Estradiol?* was demonstrated to alter
the morphology and arrest mitosis in a Chinese hamster cell line.

There is also evidence that the membrane surface is involved in the progesterone-induced
meiosis in Xenopus laevis oocytes®*® and LHRH secretion in vitro by mediobasal
hypothalamic slices of rats?2”. It is known that in endometrial cell suspensions obtained
from uteri of ovariectomised rats, estradiol increases Ca®* uptake to a large extent within
30 min?°!, In light of the reports that Ca®* depolymerises microtubules22%:22 it is possibte
that Ca®* may be mediating the effect of estradiol on progesterone secretion!®+1977199,
Based on their experiments with CHO-K1 cell lines and the effect of testosterone on the
cell morphology, Hsie and Puck?3° postulated that the effect of testosterone was mediated
via the microtubules. Using Drosophila melanogaster Kc cells, Sobrier er al demonstrated
that the insect-moulting hormone, 20-hydroxyecdysone affected actin and tubulin function
as well as their biosynthesis?3'. It was reported that the synthetic estrogen diethystilbestrol
inhibited the in vitro assembly of brain tubulin®*?723% Sato er al briefly mentioned that
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estradiol had no effect on tubulin assembly, but did not give details regarding their
experimental conditions?32.

In an attempt to check whether the effect of estradiol on progesterone secretion by the
hamster corpus luteum was due to the direct action of this steroid hormone on the tubulin
system, rat brain tubulin was purified by phosphocellulose chromatography and the effects
of estradiol on tubulin GTPase activity and assembly were monitored. Brain tubulin was
used based on the fact that it is a highly conserved protein and the differences between tubulin
from hamster corpus luteum and rat brain could be minimal; also, rat brain is a rich source
of this protein, whereas too many hamsters had to be sacrificed to purify a few mg of
protein from the corpus luteum. Estradiol inhibited tubulin GTPase activity in a
dose-dependent manner, and this inhibition could be overcome by excess GTP, suggesting
that the effect of this steroid on tubulin function is reversible. Estradiol also inhibited the
assembly in a dose-dependent manner, as monitored by turbidimetric measurements and
electron microscopy'®®. Taken together, these results®*197719% suggest that estradiol
inhibited progesterone secretion by the hamster corpora lutea by interfering with the
equilibrium between the soluble and polymerised tubulin pools. It is essential to maintain
the equilibrium between soluble and polymerised forms of tubulin in cells, and regulatory
mechanisms must exist to prevent all cytoplasmic tubulin from assembling into micro-
tubules. It is tempting to speculate that estradiol may be one such molecule which has a
role in regulating tubulin function in vivo.

5. Perspective

Recent work on the interaction of synaptic vesicles and microtubules provided some
interesting data regarding the transport of vesicles on microtubules and could very well
inspire similar work on hormone secretion via the cytoskeleton (see 235 and 236 for
references). In an elegant paper, Gray?** observed that microtubules are in contact with
presynaptic dense projections of the central nervous system leading to the suggestion that
microtubules translocated the synaptic vesicles. Subsequently, Baines and Bennett?*S
demonstrated that synapsin I, a synaptic vesicle protein from calf brains, bound saturably
to microtubules in vitro. Crosslinking of microtubules by synapsin I was observed by
electron microscopy. Thus, synapsin I could play a role in mediating the synaptic vesicle—
microtubule interaction. Other models of cell motility in metazoa are actomyosin-based
system in muscle?*’, and the dynein-based system in the axonemes of flagella and cilia?®8,
Another ‘motor’ system has been recently described in the chick brain?®%, squid giant axons
and bovine brain**, Subsequently this protein was demonstrated to be widely distributed
among organisms and cell cultures>*, Brady?*® and Vale et al**°, working independently,
have reported that this protein is distinct in molecular weight and enzymatic behaviour
from myosin or dynein. Vale et ai**® proposed the name Kinesin (from the Greek Kinein,
to move). In gel filtration columns, both the squid and bovine translocators elute with an
apparent molecular weight of 600kDa. The quaternary structure of kinesin is yet to be
described. Stoichiometry studies by gel densitometry of the polypeptides in highly purified
kinesin preparations indicate that kinesin is a complex of two or three different polypeptides.
Addition of kinesin to a mixture of highly purified microtubules (free of microtubule-
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associated proteins) and membrane organelles from squid axoplasm resulted in the
translocation of the organelle on the microtubule as visualised with video-enhanced
differential interference contrast microscopy. Trypsinisation of the organelles blocked their
movement, suggesting that the binding of the organelle may be protein mediated. Latex
beads adsorbed to kinesin could also be translocated along microtubules. Moreover, the
movement of microtubules was noted in the presence of kinesin. ATP facilitated the initial
interaction between kinesin and microtubules, but the intrinsic ATPase activity of kinesin
caused ATP hydrolysis and eventual dissociation of kinesin and rmicrotubules. In the
presence of AMP-PNP, a non-hydrolysable analog, kinesin binding to microtubules was
enhanced.

Paschal and Vallee?*? reported that MAPIC, one of the five high molecular-mass
microtubule-associated proteins, has the ability to translocate microtubules. When micro-
tubules were placed on a glass microscope slide coated with MAP1C, microtubule gliding
occurred in a continuous, unidirectional manner. MAP1C was demonstrated to be a soluble
form of dynein. It was also shown to be a retrograde translocator ie., movement from the
cell periphery to the cell centre suggesting a role for MAP1C in endocytosis. Kinesin, on
the other hand, was observed to operate in the opposite direction, anterograde, ie.,
movement from the cell centre to the cell periphery. Thus kinesin appears to be candidate
for exocytosis. Future work should reveal if similar ‘motor’ systems could be characterised
in endocrine glands.
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