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Abstract 

In the present paper we investigate the asymptotic formulae involving ~ ( x , y , l + n )  and ~(x ,y ,n)  as a tends to 
infinity, where~(x,y,1)stnndsfor DP(H(x,y, 2) - fl(x,y,A)), H(.),X(.) being theresolution matrices associated with 
two different second-order dinerential systems with the same boundary conditions a t  two arbitrary points o and 
b. Replacing fl(x,y, A) by the resolution matrix HF(x, y.2.) of the Fourier system and then making r -y we derive 
some special asymptotic formulae. A modified form of a Tauberian theorem due to Wiener plays a key role in 
the investigation that follows. 

Key words Spectral resolution, resolution matrix, rnajorizing a matrix, Wiener-Tauberian theorem. 

1. Introduction 

Consider the differential system 

M U = I U  

and L, an eigenvalue parameter, real or complex; 

is differentiable, the pth derivative QP(x)(p 3 1) being absolutely continuous over any finite 
interval (a, b) c (- m, m). 

Let +,, be the boundary condition vectors associated with the system (l.l), the boundary 
conditions at x = a and x = b being given by 

[U. +,lo = 0 = [U,  +jib. 1 = 1.2; j = 3,4 (1.2) 

with [+,,&I = O =  [+3, q5J, [.I. the bilinear concomitant' of the vectors U and 6. 
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Let &(x, 7.) = ( u " , ~ , ) ~ ,  r  = 1,2, be the solutions of (1.1) satisfying the initial conditions 
(u,,",, u;, u;)=s,, j = 1,2, where eJ is the jth unit vector which E R4. If &(x, I.) = ( x r ,  yJT,  
r =  1,2 are two other solutions of (1.1) connected with d, by means of the relations 
[& 8,] = 6,,; [R,, R 2 ]  = 0, r, k = 1,2, ark, the Kronecker delta, then d , ,  *,, a , ,  8 ,  are linearly 
independent. We had introducedZ the resolution matrix H ( x ,  y,A), i. real, as the matrix 

where G( . )  is the Green's matrix for the system (1.1). 
involving matrices 

For an explicit form of H ( x ,  y, 1) 

and the matrices 5,  q,i see Chakravarty and Roy Paladhi2. The resolution matrix H ( x ,  y, A) 
generates the resolution of the identity E of the differential operator T generated by the 
differential operation M ;  T and E are connectedz by the relation T = J'O, AdE(A). 

A number of properties of H ( x ,  y, I.) and its derivatives were investigated in the previous 
papers'-3. These are theorems like the spectral representation theorem, the generalized 
Parseval relation, equiconvergence theorem, the Riesz summability theorems and certain 
asymptotic relations involving H ( x ,  y , i )  and its derivatives. 

Let M, be the differential operation corresponding to M in (1.1) with p,q,r replaced by 
p l , q l 3 r 1 :  

M ,  U = I.U. (1.3) 

(1.3) w~th boundary conditions (1.2) gives rise to a self-adjoint eigenvalue problem similar 
to that of (1.1) with (1.2). Let #(x,y ,  I.), I. reai, be the resolution matrix for this system. Put 
~ ( x ,  y , 4  = Dp(H(x ,  y , lJ  - X(x,l..i.)), DP = ds+'/2xsdy', p  = s + t, s, t = 0,1,2,.  . . . 

Our object in the present paper is to study the asymptotic relations which exist between 
~ ( x ,  y,i.+a) and ~ ( x ,  y, a), as a tends to infinity, when i. is fixed and x, y vary in a bounded 
domain. We shall confine our discussion to the cases s = 0, t = 0; s = 1, t = 1 and s = 0, 
t = 1; s = 1, t = 0 only. Extensions to higher derivatives follow readily. 

Put 2. = p< H(x ,  y,iJ = H ,  ( x ,  y, p), ~ ( x ,  y, I.) = X, ( x ,  y, p) and for fixed x ,  y, H , ,  1, are 
continued to negative p as matrices whose elements are odd functions of p. 

The Fourier system corresponding to (1.1) is the system (1.1) with p =  q  = r = O  and 
similarly for (1.3). Thus the Fourier systems corresponding to (1.1) and (1.3) are the same. 
Therefore. for the Fourier systems corresponding to  (1.1) and (1.3) we obtain the same 
resolution matrix H F ( x ,  y, 2) = H F ( x ,  y, 2). 
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Spectral theory of differential operators rorms an important subject of study in the present- 
day mathematics and intensive work on the self-adjoint/non-self-adjoint differential 
operators is being carried out. Levitan and Sargsjan4 have presented a volume dealing 
with certain basic topics in the modern spectral theory of ordinary self-adjoint differential 
operators of Sturm-Liouville type and of Dirac-type first-order differential systems. They 
havefurther given an introduction to the spectral theory of the nth order ordinary differential 
equations. Among other workers dealing with the spectral theory of differential operators, 
Coddington, E. A,, Bennewitz, C., Dijksma, A., Pleijel, A. K., Ldnger, H., Textorlous, B. 
and Naimark, M. A. are prominent. However, spectral problems associated with the system 
LY = AMY, a system consisting of m equations each of order n, are yet to be fully investigated. 
The system (1.1), a special case of this system with m = n = 2, finds application in the theory 
of deuterons. A comprehensive study for the spectral properties of the system (1.1) is 
therefore called for. 

The ideas involved in the present investigation are similar to those of Levitan* used for 
the discussion of an asymptotic problem involving the spectral functions for a Sturm- 
Liouville operator. However, there are certain differences. The basic formula of Levitan 
stems from the solutions of the scalar Cauchy problem 

aZu/dx2 - ~ ( x ) u  = a%ulat2, ,I,=, 0, auiat I,=, = 0. 

He uses the Fourier cosine transform theory in the sequel, the formulation of the problem 
being such that the Fourier sine transform theory cannot be used. We utilise the Cauchy 
problem for vector-valued functions, viz., 

a 2 u i a x 2  - Q(X)U = a z u / a t 2 ,  U I , . ~  # 0, a ~ / a t l ~ = ~  # 0. ( A )  

U = ( u , u ) ~ ,  Q(x)  is the matrix which occurs in the system (1.1), and the Fourier sine 
transforms, the Fourier cosine transform theory being inapplicable in our case. More over, 
Levitan did not consider similar problems for the derivatives of the spectral functions. We 
shall therefore emphasise those parts of our theory where we considerably differ. It may 
be noted that in a recent paper6, the senior author (N.K.C.) has developed a theory 
giving the asymptotic formulae for the spectral matrix p ( l )  associated with the system (1.1) 
over the interval [O, m). The method adopted there is however the method of integral 
equations, entirely different from that adopted in the present analysis. 

2. Certain auxiliary lemmas 

It is well known7 that if T(x, t, s) is one of the Riemann matrices which occurs in the solution 
of the system (A), then T ( x ,  t , s )  satisfies the inequalities 
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Then, as detailed in ref. 3, it easily follows by mathematical induction that 

Let Q(x, t, s) be the indefinite integral pT(x, t, y)dy and K(x, t, s)=R(x, t, s) - An(x, t, x +  t) 
-BR(x, t,x- t), where the constants A, B are defined as follows. 

A = 1, if se(0,x +&) and B = 1, if se(0,x - E )  

=0, otherwise = 0, otherwise. 

Then, we have 

Lemma 2.1. For all I tl 2 0, there existsa monotonically increasing function d(t)>O for which 

IK(X, t,s)l, lalax K(X, ~ , s ) I ,  ia2/ax ~ s K ( x , ~ , s ) I  < +( t )  (2.3) 

where XE(X~.X,), a given finite interval. The function d(t) has an exponential growth i.e. 
as t tends to infinity, @(t) z exp (altl) for some constant a > 0. 

From the definition of R(x, t, s) and the inequality (2.1) it follows that 

I K ~ X , ~ , S ) ~ ~ ~ ~ ~ ~ ' ~ T ( X , ~ , ~ ) ~ ~ ~ ~ ~ ( X ~  + t ) ( ~ ~ ~ ~ ~ l ~ ( a ) l d a  

Similarly, using the inequality (2.2), we obtain, in view of 0 < x - t < s < x  + t, 

The lemma follows by choosing 4(t) = max (right-hand expressions in (2.4)-(2.6)). 

Let w(t) which does not vanish for any real value of t, be defined by 

I/w(t) = (1 + ltl)(2 + d(t))' for all t. 
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Then since d(t) > exp(altl), where a is a positive constant, it follows that 

and 
(ii) w(t)~L(- m, a); 

w(t) tends to zero as t tends to infinity. 

Put w(t,a) = w(t)cosat, where a is an arbitrary real number. Also put 

h ( P ,  a) = sin i+tw(t)cos at dt (2.8) 

the existence of which is obvious when A > 0. When 1. is negative, the existence of (2.8) is 
ensured by choosing, for example, d,,(t) = exp(at2) > &t) > exp(a/ tl) where &(t) evidently 
satisfies the conditions of lemma 2.1. 

Define the matrix 

P(x,s,a) = (P,j(x.s. a)) = 1- ( I  + X(x,t,s))w(r,a)dt 
v-$1 

(2.9) 

and 

Q(x,s ,~)  = ~ ( x , L ~ w l t , a ) d t .  (2.10) 

Then from the inequality IK(x, t,s)l< Ct'", a > 0 and C, constant (ref. 1, p. 136) and the 
inequality (2.7) it follows that P(x, s, a) and Q(x, s, a) are finite. 

The following lemma is obtained next. 

Lemma 2.2. For fixed x and u, 

(i) w(x - s,a)~L,(- m, co); 

(ii) P(x, s, a); Q(x, s, a)sL,(- 03, co). 

The first part of thelemma followsfrom the definition of w(x - s, a) and the inequality (2.7). 
To prove the second part we introduce the notation that for any n x n matrix A = (aij), 
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where we have utilised the inequality w(t)(2 + # ( t ) )  < 1/6 exp (- at), t > 6 > 0, which easily 
follows from the definition of w(t) and q5(t). Thus P(x, t , s )~L, ( -  m,m). Similarly for 
Q(x, s. a) and the lemma follows. 

3. The basic formula and certain consequences 

It is easy to deduce from (A) that 

(see ref. 1, p. 131). 

Multiplying both sides of (3.1) by w(t,a), we integrate over (0, T), T arbitrary. Then 
adopting the usual mean-convergence analysis, we obtain, in view of (2.Q on changing the 
order of integration 

>"-*h(I.*,a)q5,(x,i)=$lm P(x,s,a)~,(s,i))dr 
- = 

where P(x,s,a) is given by (2.9). Similarly, 

Using (3.2) and (3.3) and the results obtained from them by changing x to y, we obtain 
from the generalised Parseval relation (see ref. 2, p. 151) applied to different row vectors 
of P(x,s,a), P(y, s,a) that 

j:m l/iih2(i.+, a) di H(x, y, I.) =$Ii P(x, s, a)PT(y, i a) ds 
-m2 

the right-hand side being finite by lemma 2.2 (ii). 

For the Fourier system (for which p = q = r = 0) the corresponding formula is 

1 ~ . ~ . + , a ; . ~ ~ x , y , . =  PI(x,y,qP:(y,s,alds 

where 
1.1 

P F ( x , s , a ) = i i m  w(t,a)dr 
T - 5 ,  

the P-matrix for the Fourier case. It follows from (2.9), (2.10) and (3.6) that 
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Then, from (3 4) and (3 5) 

wherc the existence of the right-hand integral follows from lemma 2.2 (ii). Differentiating (3.1) 
with respect to x. multlply both sides of the result so obtaincd by w(t,u) and proceed as 
bcfore so as to obtain finally 

The convergence of the integrals on the right of (3.8) and (3.9) follows from lemma 2.2. 
Similar rcsults bold when H(.) is replaced by X(.). Results (3.7)-(3.9) are basic in the 
investigations that follow. 

Lemma 3.1. For fixed x, y (or, if x, y vary uniformly in a bounded domain), 

iim /' i/~h'(>.*, a)di Y (x, y i )  = 0, 
a-l 

where Y(x, y, i.) is equal to either H(x,y, l)  or a/&x H(x,y, 1)  or a2/axay H(x,y,L). The 
lemma is also true when H(.) is replaced by %(.). 

We establish the case when Y(x, y, i) = H(x, y, i.). The other cases follow similarly 

Let to be an arbitrary positive numbcr. Then it follows from (3.1) that 
X + ( O  

/.-*sinA*t,~,(x,y,'),=~ R(x,s,r,)@,(s,i)ds h-.. (3.10) 

with a similar expression for 1-hinl.%,,0,(x, A), where 

R(x, s, t )  = I + K(x, s, t). 

Similar results also hold when one replaces x by y. 
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Hence by the generalised Parseval relation2 (p. 151) 

Put I = p2 SO that H(x, y, I )  = H,(x, y,p); H,(x.y,p) is continued to negative values of p 
as a matrix whose elements are odd functions of p. Then from (3.12) and the relations 
/ I  R(x, s, to) 11. 11 R(Y, s , t d  ll < 2 + $(to), it follows that 

where the symbol <<means that the matrix on the right-hand side majorises that on the 
lefts (p. 328). Now 

by an easily verifiable change in the order of integration, where 

Then making use of the formula IIjC(u)duII 5 jl!C(u)Ij du, for a continuous n x n matrix8 
(p. 343), and the Schwarz inequality, we obtaln, In vtew of (3.13), 

The analysis now proceeds as in Levitan5 (pp. 236-237) and the lemma is proved for 
Y(x, y, 1) = H(x, y, A). The other parts of the lemma involving the derivatives of H(x, y, A) 
and the lemma with H() replaced by if(.) follow similarly. 

The following lemma involves limits as a tends to infinity of expressions containing 
P(x,s,a) and Q(x,s,a) defined in (2.8) and (2.9), respectively. 

Lemma 3.2. 
r m  

(i) lim 11 P(x, s, a) jl ds = 0; 
o^m J - m  
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( i i )  I":/: 1 Q1x.s. u) \ I 2  ds = 0, 

ulliformly for x in a bounded interval. 

We prove result ii); result (1i)follows similarly. Let N be anarbitrary positive number. Then 

if n is l a ~ g c  enough. Having so chosen N, we have 

For fixed N, X, J, tends to zero as a tends to infinity, by the Riemann-Lebesgue lemma. 
Also by arguments as before, 

as X tends to infinity. Similarly, for 
Cm 

The lemma therefore follows. 

4. The theorem 

The theorem as proposed in section 1, connecting ,y,(x, y,p + a) and x , (x ,  y,a) as a tends 
lo infinity, is stated as follows. 
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Theorem 4.1. Let x, y , ~ ,  z 0, be fixed or let p, > 0 be fixed and x ,  y lie in a bounded 
domain D. Then uniformly in D, 

Then, since ~ , ( x ,  y,p) = @,(x, y,p) - Q2(x, y,p), the theorem follows by showing that 

We shall prove (4.1) for the cases s = 0, t = 0; s = 1, t = 0; s = 0, t = 1 and s = 1, t = 1. 
Extension to higher order derivatives follows easily. The proof of (4.1) and therefore that 
of the theorem depends upon the following lemmas. 

Lemma 4.1. If k(p)= J,"sinptw(t)dt, where w(t) is defined as in section 2, then x ,  y lying 
in any fixed interval, 

where Y(x ,  y,p) is either H,(x,  y,p) or a/axH,  (x, y,p) or a2pxay  H,(x ,  y ,p)  or similar 
expressions with H, replaced by Z,. 

We prove the result for Y(x ,  y,p) = H1(x,  y,p); the other cases follow similarly. Obviously 
k(p) is an odd function of so that k(p + a)k(p - a) is even. Put 

Now 

by the Schwarz inequality. By integration by parts 
k(p) = 0(1/p) and sup-,,,,, V;+'H,(x,y,p)<< C,  where the constant C depnds on 

x,, x , ;  x, < x, y i x, ,  the interval (x, ,  x , )  is arbitrary but fixed' (p. 135). 
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as u lends to i n h t y .  Therefarc, by a well-known theorem on Stieltjes integraly (p 437), 

k2(i[+ 4lv' d.H,(-. .v, pi 

exists and is equal to (?(I), as a lends to infinity uniformly for x, y lying in a fixed interval. 
Along with this we observe that 

for all p > 6 > 0; a is large enough. Hence it follows that 

is finite. 'Chercforc, from cons~derations madc before, J, tends to Lero as (1 lends to infinity 
uniformly for x, y in finitc interval. Similarly for .I,. The lemma thus follows. 

The following lemma is now established. 

Lemma 4.2. In any fixed interval x, < x, y c x, ,  

where (I),(.), j = 1,2, are those which occur 111 (4.1) and O,(x, y, p) arc cor~tinucd to thc 
negative values or p as matrices whose elerncnts are odd functions of p. Thc result holds 
uniformly for x,y  in the given interval. 

We establish the case when cD,(x,y,pj = H,(x,y, f~)-Hf(x,y,p). The other cases follow 
similarly. 

It easily follows that 

p.-Zh2(fi, a) 2 lliCZ(k(p + ( I )  + lk(p a))2 (4.34 
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In (3.7) put 

Substituting for h(6a) by the relation (4.3a), then applying the Schwarz inequality and 
lemma 3.2 followed by lemmas 3.1 and 4.1, it follows that 

Ilm ) p-'(k2(p + a )  + k2(p - a)) d.m,(x. * p) = o 
a-ra 0 

uniformly for x,y in the given finite interval. Since 

We have the followmg Tauberian theorem due to Wiener as modified by Levitan5 (p. 241). 

Tauberian theorem 

Let (i) f( /~),  g(h) be two bounded and measurable functions which satisfy j ( ~ ) ,  g(h)= 0(1/p2); 
(~i)  O(p) be a function wh~ch satisfies sup- ,, ,,, , VCi ' O(p) < co; 
(iii) the Fourier transform of f  does never vanish. Then 

lim J w  / ( p - - a ) d ~ ~ ~  = O  
a - m  - m  

implies 

i, jY$P - 4 d m  =+ 0. 

To prove theorem4.l we choose, in theTauberian theorem quoted a b o v e  p = p-2  k2(p): 
so that f (p) = 0(l/p4) = O(l/pZ) and O(p) elements of @Ax, y, p). Then closely following 
LevitanS (p. 241) we obtain from lemma 4.2, 

where g(p) = I for 0 < p < p,, but g(p) = 0 otherwise. This proves (4.1) and hence the 
theorem 4.1 follows. 

5. Some special asymptotic formulae 

The Following asymptotic formulae are dcrived from theorem 4.1 

(i) lim H,(x, x, l ) / d  = Ifn, 
*-lo 
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I 1s the 2 x 2 unit matrix. 

Since lirn NT(x, y, p) = I/n lim sin p(x - y)/(x -- y) = I & T ,  
x-Y x-Y 

for a fixed p (see ref. 3 for the explicit expression for H:(x,y,p)), it follows from theorem 4.1 
that 

lim (HI(& x, po + a) - H ,  (x, x, a)) = I[t,/n 
0-rn 

Changing a to a - 1, pa to 2 so that po + a changes to a + L, we have 

lirn (HI (x, x, a + E.) - H I  (x,x, a -1)) = 21/x. 
0 - m  

(5.1) 

P u t n + L = N + 2 k - t I , a - L = N + 2 k - -  I sothati .=l ,wherek20.IfNisafixcdposit ive 
integer as large as we please, then from (5.1) it follows that for an arbitrary c>0,  there 
exists an integer N such that 

where Ic,l < c for all k > 0. Putting k = O,1,2,. . . , n and then summing, we have 

if n 3 dl ,  where 6 ,  is large enough. Hence the result 

In particular, putting x =O and noting that H1(O,O,l) is the matrix p(l)' (p. 144), we 
obtain 

lirn p(A)/I= I/n. 
2 - m  

which tallies with the result obtained in ref. 1, p. 144 by a different consideration 

(ii) lirn ~ - ~ ( h , ( x , x , p ~  + a)- h,(x,x,a)) =I/npo 
0 - m  

where 
h l ( y , ~ , p ) = l i m ( x - y ) - ' a i a x H , ( x , y , ~ ) .  

r-y 
Since 

lim(x - y)-I a/axsinp(x - y)/(x - y) = - 1/3 p3 
y+" - ,  

therefore 
lirn ~ - ~ l i r n ( x  - y)-la/ax(HC(x,y,p, +a) - H:(x,y,a)) = Ijnp, 

a -  x-y 

Hence the result follows from theorem 4.1 
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The result therefore follows from theorem 4.1 

It is to be noted that (5.1)-(5.3) are valid uniformly for all x lymg in a fixed interval. 

Acknowledgements 

The authors express their grateful thanks to the referees and especially to Professor 
C. Vandermee of the University of Delaware (USA) for extremely valuable comments 
which went a long way towards improvement of the paper. 

References 

On the spectral resolution of a differentla1 operator (IT), J .  Indmn Insr. 
Sci., 1986, 66, 127-153. 

On the spectral resolution of u diffcrcntial operator (I), J .  Indim Inst 
Set., 1984, 65(B), 143-162. 

On the spectral resolution of a differentla1 oopert?or (111). J .  Indian Inst. 
Sci., 1987, 67, 163-194. 

Inrroduction to speetrni theory, 1975, Transl. Math. Monographs, Am. 
Math. Soc.. Providence, R. I. 

On the spectral functmn of the functlan g" + (I - q(x))y = 0, Am. Math. 
Soe. Transi. (Z), 1973, 102, 231-243. 

On the asymptotic formulae for thc spectral matrn of a driferential 
operator. J Indian Insr. Sci., 1988, 68, 167-184 

A Cauchy type problem for a second order matrix differential operator. 
J Pure Murh,  Calcutta University, 1984,4. 17-31 

A n  introduction zo linear dyebra, 1972, Clarendon Press 

Mati~cmor~cul anulyst~. 1963, Add~son-Wesley. 


