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Abstract

In the present paper we investigate the asymptotic formulae involving x{x,y, A + @) and x(x,y,a) as a tends to
infinity, where x(x, y, 1) stands for D?(H(x, y, ) — 3 (x, y, 1)), H("), % () being the resolution matrices associated with
two different second-order differential systems with the same boundary conditions at two arbitrary points a and
b. Replacing #(x, y, 1) by the resolution matrix H(x, y, A} of the Fourier system and then making x —y we derive
some special asymptotic formulae. A modified form of a Tauberian theorem due to Wiener plays a key role in
the investigation that follows.
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1. Introduction

Consider the differential system
MU= iU

where

_(—D*+p(x) r(x) N ~
M=< (9 —D2+q(x)>’ D=dfdx, U=Gv)7 (L.1)

and 4, an eigenvalue parameter, real or complex;
p(x) r{x)
"l e

is differentiable, the pth derivative QP(x)(p = 1) being absolutely continuous over any finite
interval (a, b) < (— o0, o0).

Let ¢, ¢; be the boundary condition vectors associated with the system (1.1), the boundary
conditions at x = a and x = b being given by

[UV.¢1,=0=[U,¢;]5, =12 j=3,4 (1.2)
with [¢,,¢,]=0=[¢;, ¢,], [-]. the bilinear concomitant® of the vectors U and ¢.
347
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Let ¢,(x, 2) = (4,,7,)%, r = 1,2, be the solutions of (1.1} satisfying the initial conditions
(u,,0,, ), v)=¢,, j=1,2, where ¢, is the jth unit vector which ¢ R* H 6/(x, &) = (x,,y,)%,
r=1,2 are two other solutions of (1.1) connected with ¢, by means of the relations
[$.6,]= 6,5 [01.60,1=0,r,k = 1,2, 8, the Kronecker delta, then ¢, , ,, 8;, 0, are linearly
independent. We had introduced? the resolution matrix H{x,y, 4), 4 real, as the matrix

A
H(x,y,/l)=limJ‘ im G{x, y,0 + iv)do, A >0
v=0 Jo

y+0 Ja

[
=limj imG(x,y,0+ iv)do,A<0

=0, A=0

where G(-) is the Green’s matrix for the system (1.1). For an explicit form of H(x,y, 1)
involving matrices

Uy Uy Xy X3
- . 6=
¢ (UI "2) (.Vl .V2>

and the matrices &7, { see Chakravarty and Roy Paladhi®. The resolution matrix H(x, y, A)
generates the resolution of the identity E of the differential operator T generated by the
differential operation M; T and E are connected® by the relation T = |2 AdE(4).

A number of properties of H(x,y, 4) and its derivatives were investigated in the previous
papers! 3. These are theorems like the spectral representation theorem, the generalized
Parseval relation, equiconvergence theorem, the Riesz summability theorems and certain
asymptotic relations involving H(x, y, 4) and its derivatives.

Let M, be the differential operation corresponding to M in (1.1) with p, g, r replaced by
[2TL4TIST

M, U=iU. 1.3)

(1.3) with boundary conditions (1.2) gives rise to a self-adjoint eigenvalue problem similar
to that of (1.1) with (1.2). Let s#(x, y, 4), 4 reai, be the resolution matrix for this system. Put
20, 3, A) = DP(H(x, y, A) — #(x, 3, ), DF=0"/ox*8y, p=s+tst=01,2,...

Our object in the present paper is to study the asymptotic relations which exist between
xx, v, A+a) and x(x, y, a), as a tends to infinity, when A is fixed and x, y vary in a bounded
domain. We shall confine our discussion to the cases s=0, t=0;s=1,¢t=1 and s=0,
t=1;s=1, t=0 only. Extensions to higher derivatives follow readily.

Put =y H(x,y,A=H(x Y1), 1(x,34)=11(x ) and for fixed x,y,H,, , are
continued to negative u as matrices whose elements are odd functions of p.

The Fourier system corresponding to (1.1) is the system (1.1) with p=g=r=0 and
similarly for (1.3). Thus the Fourier systems corresponding to {1.1) and (1.3) are the same.
Therefore, for the Fourier systems corresponding to (1.1) and (1.3) we obtain the same
resolution matrix H¥(x,y, 2) = #7(x, y, ).
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Spectral theory of differential operators forms an important subject of study in the present-
day mathematics and intensive work on the self-adjoint/non-self-adjoint differential
operators is being carried out. Levitan and Sargsjan* have presented a volume dealing
with certain basic topics in the modern spectral theory of ordinary self-adjoint differential
operators of Sturm-Liouville type and of Dirac-type first-order differential systems. They
have further given an introduction to the spectral theory of the nth order ordinary differential
equations. Among other workers dealing with the spectral theory of differential operators,
Coddington, E. A, Bennewitz, C., Dijksma, A., Pleijel, A. K., Langer, H., Textorious, B.
and Naimark, M. A. are prominent. However, spectral problems associated with the system
LY = AMY, a system consisting of m equations each of order », are yet to be fully investigated.
The system (1.1), a special case of this system with m = n = 2, finds application in the theory
of deuterons. A comprehensive study for the spectral properties of the system (1.1) is
therefore called for.

The ideas involved in the present investigation are similar to those of Levitan® used for
the discussion of an asymptotic problem involving the spectral functions for a Sturm-
Liouville operator. However, there are certain differences. The basic formula of Levitan
stems from the solutions of the scalar Cauchy problem

32ufox? — g(x)u = 0*uw/tt, ul=p#0, Ou/dt)=e=0.
He uses the Fourier cosine transform theory in the sequel, the formulation of the problem

being such that the Fourier sine transform theory cannot be used. We utilise the Cauchy
problem for vector-valued functions, viz.,

B2U/ax% — QU = B*UJ3t2, Ul #0, 8U/8t],mq 0. (A)

U =(u,v)7, O(x) is the matrix which occurs in the system (1.1), and the Fourier sine
transforms, the Fourier cosine transform theory being inapplicable in our case. More over,
Levitan did not consider similar problems for the derivatives of the spectral functions. We
shall therefore emphasise those parts of our theory where we considerably differ. Tt may
be noted that in a recent paperS, the senior author (N.K.C.) has developed a theory
giving the asymptotic formulae for the spectral matrix p(1) associated with the system (1.1)
over the interval [0, c0). The method adopted there is however the method of integral
equations, entirely different from that adopted in the present analysis.

2. Certain auxiliary lemmas

Ttis well known” that if T(x, ¢, s) is one of the Riemann matrices which occurs in the solution
of the system (A), then T'(x,¢t, s) satisfies the inequalities

12(a)] daexp(%tj IQ(G)ldU)- @

x—r

x+e x+

[T (x . 9)i sj

x-1

Also
T(x,1,5= Y (=) Tix,t5),
r=1
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where

T X+Fi—tT
T(x,t,5) = %J J Q) T- 1y, 7, 8) drdy
O Jx—t+1

A(x+r+5) A(x~t+s)
Tl(x,t,s)=%(f +J )Q(o‘)do-.

s s

and

Then, as detailed in ref. 3, it easily follows by mathematical induction that

18/6x T(x,1,8)| < r_ (2 +1Q(e)) de exp(%t‘[

x

x+1r
(1Q' (o)) + IQ(G)!)dG-

x=t
(2.2)
Let Q(x, , 5) be the indefinite integral {*T(x, £, y)dy and K(x, t,5)=Q(x,1, s) — AQ(x, t,x+1)

~ BQ(x,t,x — t), where the constants 4, B are defined as follows.

A=1, ifse(0,x+¢ and B=1, ifse,x—¢)
=0, otherwise =), otherwise.

Then, we have

Lemma 2.1. Forall|t] =0, there exists a monotonically increasing function ¢(t)> 0 for which
IK(x,t,5)], 10/6x K(x,t,8)), 18%/0x 8sK(x,t,s)] < (1) (2.3)
where xe(x,,x,), a given finite interval. The function ¢(r) has an exponential growth i.e.
as ¢ tends to infinity, ¢(z) > exp («|t|) for some constant ¢ > 0.
From the definition of (x,z, s} and the inequality (2.1) it follows that

X+ xg e

lT(x,t,y)ldy<3(x1+t)(J [@(e){do

xg =t

X exp (%z f e yQ(a)|da)>. 2.4
ot

Similarly, using the inequality (2.2), we obtain, in view of 0 < x~t<s<x+1,

lK(x,:,s)lSBf

o

"Xyt

_(1@1+1g)daexp (%lj

*o

18/8% K (x, 1, )] < 3(x, +1) J

XL+t
*0 ~t

(12 + IQ!)da) 25
102/ 85 K (x,,5)] < 18/2x T(x, 1, 5)]
< L“:X(JQ’! + Q) doexp <%z£ﬁ:(\Qf| + le)da>, 26)
The lemma follow;by choosing ¢(r) = max (ri;ht-hand expressions in (24)2.6)).

Let w(r) which does not vanish for any real value of r, be defined by
1w(®) = (1 +t)2+ ¢(1))* forall 1.
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Then since ¢(t) > exp (x|t]), where a is a positive constant, it follows that

() w) <1/ltlexp(—2alt]), [11>0, «>Q, @.7)
and

(ii) w(t)eL(— oo, c0);
wit) tends to zero as t tends to infinity.

Put w(t,a) = w(t) cos at, where a is an arbitrary real number. Also put

h(it,a)= J sin A¥rw(r)cos ar dt (2.8)
0

the existence of which is obvious when 4> 0. When 4 is negative, the existence of (2.8) is
ensured by choosing, for example, ¢,(i) = exp («t?) > ¢(z) > exp(«|¢|) where ¢,(t) evidently
satisfies the conditions of lemma 2.1.

Define the matrix

P(x,s,a)=(PAj(x,S,a))=J

T Kot 8w, @) de (2.9)
sl

.

Qfx,s,a)= jw Kix, t,s)w(t, a)dt. (2.10)

fx—d
Then from the inequality |K(x,,5)| < Ct**!, a >0 and C, constant (ref. 1, p. 136) and the
inequality (2.7) it follows that P(x, s, a) and Q(x,s,a) are finite.

The following lemma is obtained next.

Lemma 2.2. For fixed x and q,
(1) w(x—s,a)eLy(~— o0, 00);
@ii) P(x,s, af Q(x,s, a)eL,(— 00, o0).
The first part of the lemma follows from the definition of w(x — s, 4) and the inequality (2.7).

To prove the second part we introduce the notation that for any n x n matrix 4 =(a;;),

jAll= max . .
L1<njgnla,|

Then since ||] -+ K(x,t,5)[| €2+ ¢(t), by lemma 2.1, it follows that

fm |1 P(x, 1, 8) ] zagfm ds(fm HI—}~K(x,a:,s){]{w(t,a)!dt)2
@ i

—w x—s]

< fm ds(fw 2+ d)w(D)|cos a):’dt)2
Ix—sl

-

o ®© 2
< 1/62J ds(J- exp(—-at)dt)
-0 Tes|

=1/¢Sloz’Jm exp(—2ajx — s[)ds,
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where we have utilised the inequality w(z)(2 + ¢(#)) < 1/8 exp(~— ar), £ = § > 0, which easily
follows from the definition of w(t) and (). Thus P(x,t,s)eL,(— o, o). Similarly for
Q(x,s,a) and the lemma follows.

3. The basic formula and certain consequences

It is easy to deduce from (A) that

ATtsin e (x, A) = %J‘XH(IﬂLQ(x,t,s))zﬁj(s,/l]ds

x=1

—3(Q(x,1.5)

x+t
J ¢,(r,A)dy — Qlx,1,9)
s=x+1J0

N L oAy ()

(see ref. 1, p. 131).

Multiplying both sides of (3.1) by w(t,a), we integrate over (0, T), T arbitrary. Then
adopting the usual mean-convergence analysis, we obtain, in view of (2.8), on changing the
order of integration

ATER(A a)i(x, A) =%j P(x,s,a8)¢,(s, 2)ds {3.2)
where P(x, s,a) is given by (2.9). Similarly,
ATER(AE,a)6,(x, A) =§—j P(x,s,a)0;(s, 2} ds. ’ (3.3)
-

Using (3.2) and (3.3) and the results obtained from them by changing x to y, we obtain
{from the generalised Parseval relation (see ref. 2, p. 151) applied to different row vectors
of P(x,s,a), P(,s,a) that

-

J 1/AR* (A%, a)d H(x, y, A) =%f P(x,s,a)PT(y,s,a)ds (3.4)
the right-hand side being finite by lemma 2.2 (ii).
For the Fourier system (for which p = ¢ = r =0) the corresponding formula is
j VAR (2% a)d, H (x, y, ) = % j Pr(x,y,Q)Pi(y,s,a)ds (3.9)

where

o

Pr(x,5,8)= If w(t,a)dt (3.6)

Ix—s|
the P-matrix for the Fourier case. It follows from (2.9), (2.10) and (3.6) that
P(x,5,a)P"(y,s,a) — P¢(y,s,a) PE(y,s,q)
=Pslx,50)Q7(3,5,4) + Q(x. 5, )PT(.5, ).
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Then, from (3.4) and (3.5)

froo
J /AR (AL, aydp(H (x, 3, 2) — H (x, 9, 1))

= ifx (Pr(x,5,8)Q7 (1,5, a) + O(x,5,0) PT(y, s, a))ds, (3.7)

where the existence of the right-hand integral follows from lemma 2.2 (ii). Differentiating (3.1)
with respect to x, multiply both sides of the result so obtained by w(t,a) and proceed as
before so as to obtain finally

f 1R, ) 4@ 0x Oy (H (e, M) — HE (x5 2))
= %Ifn (wix —5,0)07(5,5,0) + w(y — 5,0)Q(x, 5,0)) ds

+%jm Q(x,s.aQ7(n,s5,a)ds (3.8)

and
j /AR (AY, ) d(0/0x(H(x, y, 1) — H (x, y, 4))

o —a

=%Ijm w(xfs,a)QT(y,s,a)ds-f—%jw Q(x, 5, ) PT(y,s,a)ds. 3.9

The convergence of the integrals on the right of (3.8) and (3.9) follows from lemma 2.2.
Similar results hold when H() is replaced by /(). Results (3.7)~(3.9) are basic in the
investigations that follow.

Lemma 3.1. For fixed x, y (or, if x, y vary uniformly in a bounded domain),

0
lim J YA (A%, a)d, Y (x, 1, 4) =0,

a~w

where Y(x,y,4) is equal to either H{x,y,1) or /6xH(x,y, ) or 8*/0xdy H(x,y,2). The
lemma is also true when H (") is replaced by #().

We establish the case when Y(x,y, i) = H{(x,y, 4). The other cases follow similarly.
Let t, be an arbitrary positive number. Then it follows from (3.1) that
x+to
AT¥sin Ao g(x, y, /'.);%f R(x,s,14)@,(s, A)ds (3.10)
x~10
with a similar expression for 7% sin A¥t,0,(x, 1), where
R(x,s,0)=1I+ K(x,5,1). (3.11)

Similar results also hold when one replaces x by y.
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Hence by the generalised Parseval relation? (p. 151)

©

J 1/Asin® A¥20d, H(x, y,A) = %J R(x,5t)RT(3,5,t5)ds (3.12
-~ Axy

where

A= ~to,x + 1)y — Lo, y + o).
Put A = u? so that H(x,y, 1) = H,(x,y, u); H,(x,y,4) is continued to negative values of u
as a matrix whose elements are odd functions of . Then from (3.12) and the relations
HR(x, 8, t0) 1> | R, 5, £ ) || £ 2 + (2), it follows that

0
J u”2sin® pto d,H, (%, y, 1) <3 1w(to)] (3.13)

where the symbol «means that the matrix on the right-hand side majorises that on the
left® (p. 328). Now

0
11=J V2 R, a)d, H o 6, y, 1)

Q © 2
= .[ (J. sin pt/pw(tycos at dt) d,H,(x, y,p4)
]

0 @ ©
= j J. sin pt/p w(t) cos at dt f sin us/pwisycos asdsd H,(x, y, 4)
0 JO 0

« =
= j w(t)w(sycos atcosasdtdsF(x, y,5,1),
0 Jo

by an easily verifiable change in the order of integration, where

0
F(x,y,51)= J sin pt/usin ps/pd H,(x, y, ).
Then making use of the formula | {C(w) du| < j | C(w)|} du, for a continuous n x n matrix®
(p. 343), and the Schwarz inequality, we obtain, in view of (3.13),
1FGLy, s 0] < {wt)wis) ™ (3.14)

The analysis now proceeds as in Levitan® (pp. 236-237) and the lemma is proved for
Y(x,y, 4) = H{x,, ). The other parts of the lemma involving the derivatives of H(x,y, 1)
and the lemma with H() replaced by 5 () follow similarly.

The following lemma involves limits as a tends to infinity of expressions containing
P(x,s,a} and Q(x,s,a) defined in (2.8) and (2.9), respectively.
Lemma 3.2.

(i) lim J.m 1 P(x,5,a)[2ds=0;

asw )~
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@) tim r 10 (x5, a)]% ds =0,

am
uniformiy for x in a bounded interval.

We prove result (i); result (i) follows similarly. Let N be an arbitrary positive number. Then
2

Jw (I + K(x,t, s))w(t,a)dt
|

ol

-® blsN

1=in HP(x,S,a)HZdS<ZJ ds

+2f dsf H(+ K, o)wit,a)de|®> =1, +1,,, say.
Pl N Bl

3 2
Iugzj ds(f H!+K(x,t,s)le(t)ilcosat\dt)
PEY [

szf ds(F (2+¢(r))w(r)dz>2
s>~ ool

SZ/VJ exp (—2afx — s) ds = o(1),
[NEY

if n is large enough. Having so chosen N, we have

x @
I, = ZJ ds (f +J‘ )(1 + K(x,t,5))w(t) cos at dt
sisN lx—sl X
2
§4J ds
IsI<N

+4J‘ ds
<N

For fixed N, X,J, tends to zero as a tends to infinity, by the Riemann-Lebesgue lemma.
Also by arguments as before,

J, <4/52f
1<

2

x
j (I + K(x,t,5))w(t) cos atdt
x5l

2
=J; +J,, say.

j-w (I + K(x, t, ))w(t) cos atdt!
x

exp(—2aX)ds =o(1),
N

st

as X tends to infinity. Similarly, for
Y
lim J- 1Q(x, s, a}[|* ds.
a0 ) - o

The lemma therefore follows.

4. The theorem

The theorem as proposed in section 1, connecting x;{x, y, 4 + a) and y,(x, y,a) as a tends
to infinity, is stated as follows.
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Theorem 4.1. Let x,y, 1o >0, be fixed or let po>0 be fixed and x,y lie in a bounded
domain D. Then uniformly in D,

lina (x, (x, p, o + @) — 1 (. 3, @)} = 0.
Put

@, =DP(H (%, y, 1) ~ Hi(x, 3, 1)) and @, =D"( 1 (x,y,1) — #F(x, , 1))
where

DP = Ds+t — as+l/ax: ayt.

Then, since ¥, (x, y, g} = ©,(x, y, ) — D5(x, y, ), the theorem follows by showing that

im (®,(x, y, go + @) — D,(x,5,0)) =0, j=12 4.1
We shall prove (4.1) for the cases s=0, t=0; s=1,t=0; s=0,t=1and s=1, t=1
Extension to higher order derivatives follows easily. The proof of (4.1) and therefore that
of the theorem depends upon the following lemmas.

Lemma 4.1. X k(u)= j';f sin ptw(r) ¢, where w(t) is defined as in section 2, then x,y lying
in any fixed interval,

lim J k(u+ a)k(u —a)/u* d, Y (x, y, 1) = O,
a~o Jo
where Y(x,y,p) is either H,(x,y,u) or 8/xH,(x,y, 1) or 8%/8xdyH (x,y,u) or similar
expressions with H, replaced by #,.
We prove the result for Y(x, y, #) = H (x, y, it); the other cases follow similarly. Obvicusly
k(u) is an odd function of g; so that k(u + a)k(i — a) is even. Put

J= j_ Vi k(n + aye(u — a) d, H, (x, y, 1)

0 ES
=<f +J >1/H2k(ﬂ+ﬂ)k(ﬂAa)duH1(x,y,,u)=J1+J2,say.
- Jo

1,0 < J k(e + a)k(u— a) d H, (%, y, ) |
0
< ( L itk + ) duﬂl(x,y,u)uy

® 3
x (L i~ a)| d,Hy (x, y#)l\) “42)

by the Schwarz inequality. By integration by parts
k(u) =0(1/u) and sup_ < <o VAT H, (x, 3, 4} « C, where the constant C depnds on
Xg, X135 Xg < X, ¥ < X;, the interval (xq,x, ) is arbitrary but fixed* (p. 135).
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The notation V(-) means variation of (-} on the interval (%, §). Hence for all ©n=o>0,

g> Uk g+ ayd H o (x, y. 1) = (f (1 +6)7 7 d,H (%, y,u>
Js

e N
= (Z;L+a) > (Zy+(z +Zﬂ Z): ),
B 0
as o lends to infinity. Therefore, by a well-known theorem on Stieltjes integral® (p. 437),
J k(g + a)/p* d,H o (x, v, 1)
s}

exists and is equal to (1), as a tends to infinity uniformly for x, y lying in a fixed interval.
Along with this we observe that

J " — )/ dH ) = 0<J K @), H ) u)
] [

-1 1
= 0<ﬁ 1T () + j_l (u—a)" 2| d Hy(x., )|

o0

+ f mu"zwfd,AHl(ny,mn)
:O( Zl nr 4 i;t'“):O(l),

for all 2 &> 0; a is large enough. Hence it follows that

F WK — @) d (x5, ) (43)

o
is finite. Thercfore, from considerations made before, J, tends to zero as @ tends to infinity
uniformly for x, y in a finite interval. Similarly for J,. The lemma thus follows.

The following lemma is now established.

Lemma 4.2. In any fixed interval x, < x, y < x,,
w
lim J wHE (- @) d, Dy, p, ) =

where ®;(), j=1,2, are those which occur in {(4.1) and @, (x,y, ) arc continued to the
negative values ol p as matrices whose elements are odd functions of . The result holds
uniformly for x, y in the given interval.

We establish the case when ®,(x, y, g) = H,(x, y, 1)~ Hi(x, y, 11). The other cases follow
similarly.

It easily follows that
WER (g, a) = A (ke (p o+ @) + k(e a))? {(4.3a)
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in (3.7) put

A=p* and H(x,p,A)=H,(x,y, 8 H (x,y,2) = H{(x, , ).

. e
|7 worwosecnn 4| omsaneTssal

+ 06,5, A PT(y,s,a)})ds.

Substituting for h(y, a) by the relation (4.3a), then applying the Schwarz inequality and
lemma 3.2 followed by lemmas 3.1 and 4.1, it follows that

lim J‘m WAk (4 a) + kP (u - @) d, @, (0, p, 1) =0 (4.4)

a=w Jo
uniformly for x, y in the given finite interval. Since

oo o
J R (et a)dﬂl(x,y,u)zj 1R (- a)d, @ (x, p, 1)
0

the lemma follows from (4.4).

We have the following Tauberian theorem due to Wiener as modified by Levitan® (p. 241).
Tauberian theorem

Let (i) f{x2), g() be two bounded and measurable functions which satisfy f (1), g(x)=O(1 12,
(ii) 6(x2) be a function which satisfies SUP_ ., < <o V4™ B{1) < 00;
(iif) the Fourier transform of f does never vanish. Then

lim r fi~a)dd(y) =0

implies
©
lim j gu—a)dé(u) = 0.
NS S
To prove theorem 4.1 we choose, in the Tauberian theorem quoted above, f () = g~ 2 k2 ()
so that f() = O(1/u*) = O(1/u*)} and 8(u) elements of ®x,y,u). Then closely following
Levitan® (p. 241) we obtain from lemma 4.2,

w0 wo+a
limj glu— a)d, @ix, y, 1) = lim f d,®(x,y, 1) =0,

where g(p)=1 for 0 << ug, but g{u) =0 otherwise. This proves (4.1) and hence the
theorem 4.1 follows.

5. Some special asymptotic formulae

The following asymptotic formulae are derived from theorem 4.1.

(i) }Lm H ((x,x,A)/A=1/x,
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where I is the 2 x 2 unit matrix.
Since lim Hi(x, y, ) = I/r lim sin g(x — y)/(x — y) = Ip/m,
Xy x—y
for a fixed p (see ref. 3 for the explicit expression for HE(x, y, p)), it follows from theorem 4.1
that
lim (H (x, x, g + a) ~ H, (x, x, a)) = Ty /7.

Changing a to a— 4, g, to 2 50 that s + a changes to a + 4, we have
lim (H{x,x,a+ 1) — H(x,x,a — 1)) = 2I/m. (5.1)
Puta+A=N+2k+1,a—A=N+2k—lsothat A=1,where k= 0.1 N isafixcdpositivé

integer as large as we please, then from (5.1) it follows that for an arbitrary ¢ >0, there
exists an integer N such that

H(x,x, N+2k+1)—H;(x,x, N+ 2k—1)=2/n-1 + ¢,
where |g,| < ¢ for all k> 0. Putting k=0,1,2,..., n and then summing, we have

H (e, x, N+2n+1)—H (x,x, N—-1}=2n+ 1)/n+n,(n+1),
where

[l = (g0 + 21 + -+ &)/ (n+1)| <z
Thus

[Hy(x, %, N +2n+ DAN +2n+ 1) — I/n] <5,

if n>0d,, where &, is large enough. Hence the result.

In particular, putting x =0 and noting that H,(0,0,4) is the matrix p(2)" (p. 144), we
obtain

lim p(A)/4=I/m,
A0

which tallies with the result obtained in ref. 1, p. 144 by a different consideration.

(i) ¥im a=2(h, (5, x, g + @) — by (%, %, 0) = I/t 5.2
where ” ,

hy(y, y, ) = tim (x — y) ™1 9/0x H, (x, y, p).
Since ’

lim (x — y)" ' 8/0x sin p(x — Y (x — )= ~1/3 w
therefore

lim ™2 lim(x — y) ™ 8/8x(H (x, y, o + @) — H(x, y, @)y = I/mpsg.
Xy

Hence the result follows from theorem 4.1.
(it} lim a™2(hy(x,x, po + @) — hy(x, x,@)) = I/mpg (5.3)
where o
hy (v, y, ) = lim &% /0x 8y H , (x, y, 1).
x=—y
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Since

tim 82/8x 0y sin p(x — yy(x ~ yy = 1/34>,

x=y

therefore

lima~2 hm 0%0x By(HE (x, y, g + ay — HE(x, y,a)) = I/mpsg.

a=x

The result therefore follows from theorem 4.1

It is to be noted that (5.1)~(5.3) are valid uniformly for all x lying in a fixed interval
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