J Indwan Inst. Ser, Sept.—Oct 1989, 69, 361-366.
@ Indian Institute of Science.

Propagation of elastic disturbance in a hollow cone of
nonhomogeneous material under a longitudinal impact

P. K. CHAUDHURI AND SWAPNA BHOWAL
Department of Applied Mathematics, Umiversity College of Science, 92, Acharya Prafulla Chandra Road, Calcutta
700009

Recerved on November 25, 1988; Revised on Apnl 2, 1989
Abstract

Solution for the problem of elastic disturbance in a nonhomogeneous holiow cone under a longitudinal impact
has been reduced to one of a Volterra integral equation of the first kind. A numencal method for the solution of
the mtegral equation has been given and the results :llustrated graphically.
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1. Introduction

Propagation of elastic disturbance in a semi-infinite hollow cone with slightly truncated
apex has been considered by a number of investigators*~>. In some of the papers, uniaxial
theory was followed and the solution was obtained in the form of an integral equation.

In this paper we shall discuss the propagation of elastic disturbance in a truncated hollow
cone due to the application of time-dependent normal force at one end. We have solved a
similar problem* on assuming that the Laplace transform parameter is large. The solution
of the problem obtained by this method is valid only for small values of time. This difficulty
is removed here by adopting entirely different technique by which the solution of the
problem is reduced to the solution of Volterra integral equation of the first kind. Following
Kromm?®, a numerical method for the solution of such equation has been suggested. In
deriving the solution, no asymptotic expansion has been required and hence stresses and
displacements may be computed for all values of time and for all positions. Numerical
evaluations of the strain component have been done for particular values of the
nonhomogeneity parameter and the results have been shown graphically.

2. Formalation of the problem

Choosing the x-axis along the axis of the hollow cone and the origin at the apex of the
outside surface of the cone, the one-dimensional equation of the elastic wave propagation,
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when the effects of lateral inertia and radial shear are neglected, becomes
do a 2u
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where the axial stress ¢ = 6 (x, 1) = E(x)(@u/@x)(x, 1) is measured at an axjal distance x and at
time t. In (1), k represents the wall thickness, §, the semi-vertical angle, p the material
density of the cone and E(x) the variable Young’s modulus of the material. Assuming the
material nonhomogeneity in the following form

E(€)=Eo&",  p(d)=pol™ 2
and inlroducing nondimensional variables & and 7, (1) can be written as
6’72
52(é,r)+(1 el ) @)

In (2), m and s, are any real numbers, and in (3),
=(x — hf2 cosec f,)/d,
T=Ccol/d,
o =(Eo/po)'?
n=s,—m, (4)

d being the distance between apex of the middle surface and truncated end of the cone.

and

The initial and the boundary conditions of the problem are

ue0 =" g o)
_du(gq) _ e sin’(mtfzy), O<t<T,
e(l,7) = 3 §=1— {0’ <t . 6)

) .l—llence th_e problem concerned reduces to find the solution of equation (3) subject to the
1r}1t1a1 conditions (5}, the boundary condition (6) and also the regularity condition that the
displacement u(£,7) and strain £(¢,7) should tend to zero as & — co.

3. Solution of the problem

Making use of the initial conditions (5), the Laplace transforms of equation (3) and the
boundary condition (6) yield

d?%i
2 e+ +m)§—-(€ P P28 (e p) =0, v

and
2 e

1,
ahp= p(p*F +42%)

[t —exp(~pr )] @
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For n# — 2, equation (7) may be transformed into a modified Bessel’s equation, whose
solution is known. Hence the general solution of (7), when n # — 2, may be written as

4(S, py= AT (pE/s) + BET K y(pes/s) ®
where
P=min+2),s=1+{n/2).
Equation (7) assumes simple form for n = — 2. We shall consider this special case later.

To get the appropriate solution for our problem for ns —2 we have to consider the
following two cases:

Case 1. n> — 2. In this case s > 0 and the argument of the Bessel functions in (9} is positive
for p> 0 and tends to infinity as &£ — co. Imposing the regularity condition #i(co, p) = 0, the
appropriate solution in this case will be

(€. p) = BE™™ K y(pe/s). (10)

Case 2. n< —2. In this case s< 0, consequently the argument of the modified Bessel
function {, and K, in (9) is negative for p >0, so neither I;(z) nor Ky(z) is real vaiued.
Moreover, the argument now tends to zero as & — co. Since both I4(z) and K(z) have linearly
independent singularities at z=20, the general solution (9) cannot satisfy the regularity
requirement. This means that u(Z, t) no longer tends to zero at all times as & — co. Thus, we
are forced to abandon the regularity condition, but then the single boundary condition (6)
will be insufficient to determine both A4 and B in (9). Under the circumstances, it has been
pointed out by Sternberg and Chakravorty® that for the possibility of a diverging wave in
the physical domain, the Bessel function of first kind I4(z) is inadmissible. Thus setting
A =0, we get the solution of (7) in this case as

(g, p) = BE" K y(plfs).
From (10) we find &, p), then using (8) we obtain

HE,p) = £ (1, p) E’EZ‘; ()
where

B = (5o + 2/ +2), d=2/(n +2), E=dE. (12)

Assuming\ @& p)= K“*(Ep)/p, the use of convolution theorem for the inverse Laplace
transform in the inversion of (11), yields

f (& No(d,t — Aydd = &= '””er e, D&t —Hdi (13)
o]
which gives '
o)=L [¢Ep]=HG~Ee, (1), (14)

where

o (&)= smh[u cosh™1(1/8)].
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With the help of (6) and (14), equation (13) becomes
-~ d

H(r —d) j &(¢, N (d, T —A)dA
o]

=poH(z - §Er " J sin?[n(c — € — e ]
]

 Hxy + E—tome, En+ Hdn. (1s)
Now, introducing the notations
1=f-d
and -
Ta=t1—d

(15) may be rewritten as

H(rz)f o& Doy (d—2ydd
=g E T2 H (1, — o) J sin®{n(t, — o — )/, }
0
x Hz, + -+ ) En+ Edy

Since the right-hand side of this equation contains H(f2 — ), it follows that there will be
no disturbance in the medium at the position ¢ before 1, <o and the disturbance
reaches the position at time dto= é

Also, for n# —2, 7y >a=-17, > 0. Thus, for n # —2, 7, > &, we have

J 26 A, d, 7 — 2)di

- 7
= gL mN2 j sin® {—(r2 —g- n)}
0

x Hie +n—7 + oy G+ Edy. (16)
The value of the strain when the disturbance arrives at ¢ may be computed as
& T3 ey ee = 0.

To evaluate the strain ¢(¢,1) for any ¢ > | and 7> ¢, numerical procedure has to be
foliowed. We may adopt the method of Kromm?® in which the integral is replaced by a
system of linear algebraic equations in the unknowns ¢, assuming that the strain ¢ is
sectionally constant over the range of integration. Thus we may write

Z 8 Do d,8+d~Nda

= -

fea—a
=gl J sin {m(r; — o~ n)/r JH () + 1 = 5+ 00, (& + Edy
¢
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Joy=1—d=1,.

where 5, = o, 8y = g + %, 8, =9¢ + 2%, ..
For n= ~ 2, the appropriate sclution is
l?(i:' 17) = BETn Fm? o ap)1eyz
Using (8), we may obtain
B(Ep) = &(1p)¢ i s vt e e,

Taking Laplace mversion we get
€
o7 = ”’H e(hi)g(r—é)df}
JO

where
g(0) = L [Fip? + m2/4ti2]
= f(t) — (m/2) ft S =Y 210 muf2) du,
o]

f@)=L""[F(p}]

=d(r—b),
b=In¢
and
F(p) = exp(— bp).
Q-3
e § 80
[ ,’( “ ———o= 00
/ v ———k =01
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Fias 1 and 2. Variation of strain with time.
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4. Numerical calculation

To study the effect of nonhomogeneity on the magnitude of strain, some numerical
computations have been done. In our computation, we have assumed 1, = 14.51. The
variations of the strain field with time for fixed position have been represented in figs 1-2.
The corresponding results of associated homogeneous case are shown by broken lines in

each figure.
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