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Abstract 

Solution ior the problcm ofclastic disturhancc in a nonhomogeneous hollow cone under a iongltudinal impact 
has been reduced to one of a Voitcrra integral equation of the first kind. A numerml method ior the solution of 
the integral equation has been given and the results illustrated graphically. 
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1. Introduction 

Propagation of elastic disturbance in a semi-infinite hollow cone with slightly truncated 
apex has been considered by a number of investigatorsi-3. In some of the papers, uniaxial 
theory was followed and the solution was obtained in the form of an integral equation. 

In this paper we shall discuss the propagation of elastic disturbance in a truncated hollow 
cone due to the application of time-dependent normal force at  one end. We have solved a 
similar problem4 on  assuming that the Laplace transform parameter is large. The solution 
of the problem obtained by this method is valid only for small values of time. This dificulty 
is removed here by adopting entirely different technique by which the solution of the 
problem is reduced to the solution of Volterra integral equation of the first kind. Following 
Kromm5, a numerical method for the solution of such equation has been suggested. In 
deriving the solution, no asymptotic expansion has been required and hence stresses and 
displacements may be computed for all values of time and for all positions. Numerical 
evaluations of the strain component have been done for particular values of the 
nonhomogeneity parameter and the results have been shown graphically. 

2. Formulation of the problem 

Choosing the x-axis along the axis of the hollow cone and the origin at  the apex of the 
outside surface of the cone, the one-dimensional equation of the elastic wave propagation, 
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when the effects of lateral inertia and radial shear are neglected, becomes 

where the axial stress u = u(x ,  1) = E(x)(iiujax)(x, t )  is measured at an axial distance x and at 
tlme t .  In (I ) ,  k represents the wall thickness, Do the semi-vertical angle, p the material 
density of the cone and E(x)  the variable Young's modulus of the material. Assuming the 
material nonhomogeneity in the following form 

E(C)=EoCm, p ( l )=poe 'o  (2) 
and ~nlroducing nondimensionzl variables t and T, (1)  can be written as 

In (2), m and so are any real numbcrs, and in (3), 

5 = (X - h/2 cosec /?,)Id, 

d being the distance between apex of the middle surface and truncated end of the cone. 

The initial and the boundary conditions of the problem are 

Hence the problem concerned reduces to find the solution of equation (3) subject to the 
initial conditions (9, the boundary condition (6)  and also the regularity condition that the 
displacement u ( t , r )  and strain i . ( t , r )  should tend to zero as 5 -+ m. 

3. Solution of the problem 

Making use of the initial conditions (5). the Laplace transforms of equation (3) and the 
boundary condition (6) yield 
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For # - 2, equation (7) may be transformed into a mod~fied Bessel's equation, whose 
solution is known. Hence the general solution of (7), when n # - 2, may be written as 

$6, P )  = AS-"'21p(pY/s) + B5- ' " '2K , (p~ / s )  
where 

= m/(n + 2), s = 1 i- ( 4 2 ) .  

Equation (7 )  assumes slmple form lorn  = 2 .  We shall consider this special case later. 

To get the appropriate solution for our problem for n # - 2 we have to consider the 
following two cases: 

Casr I .  n > - 2 .  In this case s > 0 and the argument of the Bessel functions in (9)  is positive 
for p > 0 and tends to infinity as 5 - t  oo. Imposing the regularity condition ti(m,p) = 0 ,  the 
appropriate solution in this case will be 

u([ ,  p) = B<- K&<~/s) .  (10) 

Case 2. n i -2. 111 this case s < O ,  consequently the argument of the modified Ressel 
function I,, and K,, in (9) is negative for p>O, so neither I&) nor K p ( z )  is real valued. 
Moreover, the argument now tends to zero as 5- m. Since both I&) and Kg@) have linearly 
independent singularities at z = 0 ,  the general solution (9)  cannot satisfy the regular~ty 
requirement. This means that u(5, T )  no longer tends to zero at all times as 5 -r m. Thus, we 
are forced to abandon the regularity condition, but then the single boundary condition (6) 
will be insufficient to determine both A and B in (9). Under the circumstances, it has been 
pointed out by Sternberg and Chakravorty6 that for the possibility of a diverging wave in 
the physical domain, the Bessel function of first kind ID(') is inadmissible. Thus setting 
A = 0,  we get the solution of (7) in this case as 

u(5.p) = B4-"" K,(pF/s). 

From (10) we find E(t,p), then using (8) we obtain 

where 
p* =(so + 2)/(n + 2), 2 = 2/(n + 2), 5 = 2t1'". (12) 

~ssurn ingj  @ ( f , p )  = K,.(fP)lp, the use of convolution theorem for the inverse Laplace 
transform in the inversion of ( 1  I ) ,  yields 

wh~ch gives 
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With the help of (6) and (14), equation (13) becomes 

Now, introducing thc notations 
A - r = - d  

and 
r 2 = r - ~ d  

(15) may be rewritten as 

Since the right-hand slde of this equation contains H ( r ,  - a), it follows that there will be 
no disturbance in the mediyn at the  position C before r ,  < a  and the dlsturbancc 
rsacl~es the position at time d + a  = i. 

Also, for 11 # - 2, r, > a-r2  > 0. Thus, for 11 # - 2, T, > n. we have 

The value of the slrain when the disturbance arrives a t  < may he computed as 

To  evaluate the strain ~ ( 5 ,  T) for any t > I and r  > t, numerical procedure has to  be 
followed. We may adopt the method of Kromm5 In which the integral is replaccd by a 
system of linear algebraic equations in the unknowns E, assuming that the strain E is 
sectionally constant over the range of integrat~on. Thus we may write 
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where 6 ,  = x, 8, = d o  + h*, 6 ,  = 6, + lh ' , .  . ., h,  = r - d^= 7, .  

For n = - 2, the approprlale solution is 

ii(g, = 8 6  l m  I im' ~ J p 2 ) " ' 1 / L  

Using (8). we may obtain 
F((,p) = c(l,i,)( I {n  + W2+4p'l'''; 2 4  11, 

Taking Eaplace Inversion we gct 

where 
( I (? )  = L-' [F@' + m2/4)1'2] 

= d(7 - b), 

b = I n (  
and 

F(p) = exp(- bp). 

FIG 1. FK; 2. 

FlGs I and 2. Vanation of slrain with tune. 
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4. Sumerical calculation 

To study the effect of nonhomogeneity on the magnitude of strain, some numerical 
computations have been done. In our computation, we have assumed T, = 14.51. The 
variations of the strain field with time for fixed position have been represented in figs 1-2. 
The corresponding results of associated homogeneous case are shown by broken lines in 
each figure. 
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