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A class of exact solutions is ohtained far the unsteady flow of a micropolar nuid confined between two non- 
coaxrally rotating parallcl dlsks which are subjected to elliptic hamonlc oscillations. These ~nfinite one-paramctcr 
family of solutmrls reduce la a single unique solution when one prescnbes the pressure gradient sim~lar to a 
Poseuillc flow. The expressions for the component of forces and couples actmg on the plate are obtamed. 
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1. Introduction 

The axisymmetric flows above an  infinite single rotating disk and between two infinite 
coaxial rotating parallel disks have become the subject matter of many research workers, 
after the pioneering work of Von KbrmPnl. Recently, Berker2 has established the existence 
ofasymmetric solutions for a flow confined between two coaxially or non-coaxially rotating 
disks which are very much different from the axisymmetric solutions discussed earlier. The 
now between two non-coaxially rotating disks is directly useful in elucidating the principles 
behind an instrument orthogonal rheometer which is used to determine the complex 
viscosity of viscoelastic fluids. The literature concerning these flows and other viscoelastic 
fluid flows has been reviewed excellently in a recent artlcle by Huilgol and Phan-Thien3. 

Theories including couple stresses in the fluid medium have been developed to model the 
behaviour of fluids such as blood, liquid crystals and polymeric suspensions. Eringen4 has 
proposed the theory of micropolar nuids in which the motion is described by a local 
microrotation vector in addition to  the velocity vector. A class of exact solutions for the 
steady flow of a micropolar fluid between two non-coaxially rotating disks has been 
presented by Ramachandra Rao and Kasiviswanathan5. Smith6 has obtained exact 
unsteady solutions of the Navier-Stokes equations due to  eccentrically rotating disks. 
However, Ramachandra Rao and Ka~iv iswanathan~-~ have presented the exact solutions 
of the unsteady flows in a variety of situations with the same geometrical configuration. 
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The unsteady flow of a micropolar nuid contined between two non-corxially rotai~ng 
disks in which each point of the disk is subjected to non-torsional ellipiic I~arrnonic 
oscillations is investigated in this paper. A class of exact soiutions depending upon the 
arbitrary pressure gradient similar to Poisenille flow is obiaincd. These solutions rcducc to 
a unique syn~n~etric solution difrerent from the usual aw~synnnctric solution or an 
asymmetric solution accordmg as the nlodified pressure gradient in the planes parallel to 
the disks is zero or different from zero. The expression for :he components of the forces and 
couples acting on the plares is also oh:ained. 

2. Formulation 

Consider the unstcady flow of an inco~n~rerslblc micropolar fluid confined betwcen two 
lntinlte parailel disks performing elliptic harmonic oscllla!ions in their own planes and 
rotating with thc same angular velocity 0 about two distinct axes perpendicular to ihi: 
disks. In Cartesian coord~nate system, let the upper and lower disks z = f h rolate about 
:he axes parallel to z-axis passing through the points P , (x l ,  y,,h) and P,(- r , ,  - y1, - h), 
respectively. where the midpoint of P , P 2  1s taken as origin. The equatrons governing 111c 
flow of a micropolar fluid i n  the absence of body forces and body couples arc give11 by 

pB= - Vp + (9 + ti)V21?+ EVXV, VO< = 0, (1)  

pj?=(n + f i  +.;)v(v.?~) - ~ ( v x v x ~ ~ +  ~ V X O -  2x17 (2) 

where 6 = (11, c. w) is the velocity vectol. V = (i;. q, [) the microrotation vcctor, p the 
thermodynamic prcssurc, p the density, j the micron~ertia. p, ri, a, and y the material 
constants and the dot signifies the material differentiation. Further, the material constants 
have to satisfy the following inequalities: 

2 p + k > 0 ,  n-30, 3 a i - B + y > 0 ,  I/il<y. (3 )  

The unsteady motion In the above geometrical configuration (orthogonal rheometer) 
depends only on  z and t in addition to rigid rotation. Following Ramachandra Rao and 
Kasiviswanathans, it can be shown that the velocity and microrotation for this flow are 
given by 

U = - Q [ ~ - * ( Z , ~ ) ] ,  ~ = n [ ~ - f ( ~ , t ) ] ,  W = O ,  (4) 

5 = a z , t ) ,  ~ = v ( z , t ) ,  i=n. ( 5 )  

The boundary conditions are the no-slip for the velocity and no relative spin for the 
mi~rorot~ition and they are given by 

/=xl+(a,e'""+c.c.), y=y,+(b,ei"'+c.c.), <=q=O on z = h ,  (6 )  

f = -  x l  + (nze'*' + c.c.), 8 = - y + (b@" + c.c.), < = 7 = 0 on 3 = - h, (7) 

where o) is the frequency of non-torsional oscillations of the plates, a , ,  b,, a,, h, arc real 
constants giving the amplitude of oscillations and C.C. denotes the complex conjugate. For 
circular harmonic motions oue has a ,  = b, and a ,  = b, 
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The equations governing the now ( I )  and (2)  in view of(4) and (5) reduce to 

(hi + ktQy;: - PRB, - pQZ.f = pP,: + w;. (8) 

( p  + k j e l l i  - p a l ;  + pR2g = - p ~ ,  + tit:, (9) 
P: = 0 ,  (10) 

~ . j i ,  = 75:: + KQ.L - 2ti5, ( 1 1 )  

p jq, = y?lz, + kRg, - 2x1, (12) 

where P = - P/p + Q 2 ( . x 2  + y2)/2 and subscripts denote the partial differential with respect 
to that variable. Eliminating P from (8) and (9)  by differentiating with respect to z (in view of 
( lo)) ,  introducing F = J'+ ig, G = 5 + iq. the equations (8)-(12) are rewritten as 

( p + x ) ~ ; ~ : - p F , , - i Q p ~ ~ = ( ~ 1 ~ ) ~ , , ,  (13) 

yG,,- pjC,- 2tiG = - &FZ. (14) 

The corresponding boundary conditions are 

F = - ( x ,  + i p , )  + ( ( a ,  + ih2)e'w'f c.c.), G = 0 on r = - h. (16) 

As the governing differential equation for F given in (13) is of the third order and as there 
are only two boundary conditions, (15) and (16), we need one more on F to solve the 
problem and it is prescribed arbitrarily by 

The condition (1 7) implies that the space curve r given by x = f(z, t), y = g(z, t) 
passes through the arbitrary point (x,,y,j in the middle plane (for more details see 
Ramachandra Rao and Kasiviswanathan7) and it is also subjected to elliptic harmonic 
oscillations through the arbitrary amplitudes, a and b. 

3. Exact solution 

The coupled equations in (13) and (14) are solved subjected to the boundary conditions 
(15)-(17) for an oscillatory flow with non-vanishing mean, by taking 

(F ,  G) = (F,, Go) + [(F, ,  G,)e'"' + c.c.1. (18) 

The solutions are obtained by a straight forward but lengthy procedure and are given by 

FO = (*, + i ~ , ) 4 , ( z ) l 4 , ( h )  + ( x ,  + ~ Y ~ ) C ~ ~ ( Z )  - $ ~ ( h ) l l C 4 ~ ( 0 )  - 4 ~ ( h ) l ,  (19) 

GO = ( x ,  + iy,)$,(z)l4& + ( x ,  + i ~ , ) 4 ~ ( 4 I C 4 ~ ( o ) -  42 (h ) l ,  (20) 
F -1 - 2 [ ( a ,  - a 2 ) +  i(bl - b 2 ) l $ l ( 4 / $ 1 ( k )  

++[(al  + a 2  - 2 4 +  i (b ,  + b2 -2b)l[$,(z)  - $,(O)llC$~(h) - *,(0)1, (21) 
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G, =+[(al - a 2 ) +  i(b, --b2)1$&)lh(h) 

+ f [(a, + a2  - 2 4  + i(bl + b2 - 2b)l$4@)l[((/2(h) - i2(0)1, (22) 
where 

Ql(z) = 1, coshm,hsinhm,z - I, coshmlhsinhm2z, 

Q,(z) = 1, sinhm2hcoshm,z -12sinhmlhcoshm2z, 

q53(z) = c o ~ h m ~ h c o s h r n ~ z  - cash mlhcosh m2z, 

Q,(z) = sinh m2hsinh m,z - sinh mlh sinh m,z, (23) 

KS = K6 + i(KZK4 4- K1K3) and Kg = K7(1 + ~ ~ ) ( l +  i~,) .  

These results reduce to those for an incompressible viscous liquid7 in the limit that the 
material constants for the micropolar fluid given by K, a, P, y go to zero. The solutions for a 
steady flow discussed5 correspond to F, and Go given in (19) and (20). Equations (19)-(22) 
contain the arbitrary constants x,, y,, a and b and corresponding to  each of these constants 
one will have one parameter family of solutions. 

4. Discussions 

From (8) and (9), the modified pressure gradient in the plane parallel to the disks is 
expressed in terms of F and G, and is given by 

' 
iVP = i[P, + iP,] = RF, + iR2F - KG,/p - (p + K)RF,/p. (27) 

Substituting the expressions for F and G given by (19)-(22) in (27) and writing 

iVP = VP, + (VP1eim' + c.c.), (28) 
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V P ,  = Q(Q + ( N u 1  + a, -- 2 4 +  i(b, + b, - 2b)l$,(h)/2[$2(h)- $,(0)]. (30) 

A solution is defined as a symmetric solution with respcct to the origin 0, if the velocity 
field satisfies thc condition 6(- x, - p, - z) = - Cjx, y,z), which is different from the usual 
axisymmetrlc solution. In our problem this condition reduces to F(- z) = - F(z) and 
therefore symmetric solution conlains only odd functions of z. From (19) and (21), for a 
symmetric solut~on, one ninst satisfy: 

Condition (31) implies that the space curve r passes through origin whereas (32) gives that 
the amplitude of oscillation of the middle plane is equal to the average of the amplitude of 
oscillations of the upper and lower disks. Condition (33) states thar if the amplitudes of 
oscillations or the upper and lower disks are of the opposite sign then the amplitude of 
oscillations of the middle plane is zero. 

When the conditions (31)-(33) are satisfied we can easily see that the pressure gradient 
given in (29) and (30) vanishes and vice versa. Thus we can state, the necessary and suficient 
condition for the solution to be symmetric is that the pressure gradient should vanish. When 
the pressure gradient in the planes parallel to disks is different from zero, there is a 
poss~bility of the existence of infinitc number of solutions (because of the presence of 
arbitrary constants x,, y,, a and b) similar to Poiseuille flow in a channel or pipe. On the 
other hand, if we prescribe the pressure gradient then a unique asymmetric solution is 
possible. Interestingly similar results hold good for steady, unsteady viscous fluid flows, 
steady micropolar fluid flow or for any other fluid flow in this geometric configuration. 

From the expressions of F and G given in (19)-(22), one can obtain f, g, 5 and q using the 
following relations: 

The x and y components or the traction i o n  the top plate are given by 

ix = - (p  + ~)ag;(h) + q(h),  iy =(I + ti)~f,(h) - ti<(h). (36) 

The components of couple-stress tensor mij are given by 

as the other components are zero 
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