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Abstract

A class of exact solutions is obtained for the unsteady flow of a micropolar {luid confined between two non-
coaxially rotating parallel disks which are subjected to elliptic harmonic oscillations, These infinite one-parameter
family of solutions reduce to a single unique solution when one prescribes the pressure gradient similar to a
Poiseuille flow. The expressions for the component of forces and couples acting on the plate are obtained.
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1. Introduction

The axisymmetric flows above an infinite single rotating disk and between two infinite
coaxial rotating parallel disks have become the subject matter of many research workers,
after the pioneering work of Von Kéarman®. Recently, Berker? has established the existence
of asymmetric solutions for a flow confined between two coaxially or non-coaxially rotating
disks which are very much different from the axisymmetric solutions discussed earlier. The
flow between two non-coaxially rotating disks is directly useful in elucidating the principles
behind an instrument orthogonal rheometer which is used to determine the complex
viscosity of viscoelastic fluids. The literature concerning these flows and other viscoelastic
fluid flows has been reviewed excellently in a recent article by Huilgol and Phan-Thien?.

Theories including couple stresses in the fluid medium have been developed to model the
behaviour of fluids such as blood, liquid crystals and polymeric suspensions. Eringen* has
proposed the theory of micropolar fluids in which the motion is described by a local
microrotation vector in addition to the velocity vector. A class of exact solutions for the
steady flow of a micropolar fluid between two non-coaxially rotating disks has been
presented by Ramachandra Rao and Kasiviswanathan®. Smith® has obtained cxact
unsteady solutions of the Navier-Stokes equations due to eccentrically rotating disks.
However, Ramachandra Rao and Kasiviswanathan?™® have presented the exact solutions
of the unsteady flows in a variety of situations with the same geometrical configuration.
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The unsteady flow of a micropolar fluid confined between two non-coaxially rotating
disks in which each point of the disk is subjected to non-tossional elliptic harmonic
oscillations is investigated in this paper. A class of exact solutions depending upon the
arbitrary pressure gradient similar to Poiseuille flow is obtained. These solutions reduce to
a upique symmetric solution different from the usual axisymmetric solution or an
asymmetric solution according as the modified pressure gradient in the planes parallel to
the disks is zero or different from zero. The expression for the components of the forces and
couples acting on the plates is also obtained.

2. Formulation

Consider the unsteady flow of an incompressible micropolar fluid confined between two
infinite parallel disks performing elliptic harmonic oscillations in their own planes and
rotating with the same angular velocity Q about two distinct axes perpendicular to the
disks. In Cartesian coordinate system, let the upper and lower disks z = 4 h rotate about
the axes parallel to z-axis passing through the points Py(x,,y,.h} and Py(—x,, — y,, — h),
respectively. where the midpoint of P P, is taken as origin. The equations governing the
flow of a micropolar fluid in the absence of body forces and body couples are given by

pi= —Vp+(u+ 1)V +kVxi, Voi=0, (1)
pji=(a + f+ VY- 5) — p(IxVxi) + kVx5 — 267, 2)

where 0= (u,v,w) is the velocity vector, v={{,»,{) the microrotation vector, p the
thermodynamic pressure, p the density, j the microinertia, g, «, o, f and 7 the material
constants and the dot signifies the material differentiation. Further, the material constants
have to satisfy the following inequalities:

2u+k=0, k=0, 3e4f+320, 1f <y (3)

The unsteady motion in the above geometrical configuration (orthogonal rheometer)
depends only on z and ¢ in addition to rigid rotation. Following Ramachandra Rao and
Kasiviswanathan®, it can be shown that the velocity and microrotation for this flow are
given by

u=—Q[y-g(z,t)), u=Q[x—f(z1)], w=0, @
{=¢@0), n=nlz1), [(=Q (5)

The boundary conditions are the no-slip for the velocity and no relative spin for the
microrotation and they are given by

f=xi+@e”+cc) g=y, +be+cc) E=5=0 on z=h, (6)
f==x;+l@e®+cc), g=—y, +(be +cc), E=n=0 on z=—h, (7)

where o is the frequency of non-torsional oscillations of the plates, a,, by, a,, b, are real
constants giving the amplitude of oscillations and c.c. denotes the coroplex conjugate. For
circular harmonic motions one has a, =b, and a, =b,.
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The equations governing the flow (1) and (2} in view of (4) and (5) reduce to

(1 + K}y, — pQg, ~ pC¥f = pP. + 10, @)
(b + Qe — p&U, + pQ%g = — pP, + K, ®
P.=0, {10)
pJé = 18+ KQS — 28, (11)
P = M+ kg, — 2ucn, (12)

where P = — P/p + Q2(x* + y?)/2 and subscripts denote the partial differential with respect
to that variable. Eliminating P from (8) and (9) by differentiating with respect to z (in view of
(10)), introducing F = [ + ig, G = £ + in, the equations (8)-(12) are rewritten as

W+ )F oo — pFsy — IOPF. = (| Q)G (13

YG., - pjG, — 2KkG = — kQF . (14)
The corresponding boundary conditions are

Fe=x,+iy, + {(ay +ib)e +cc}, G=0 on z=h, (15)

Fa —(xg+iy)+ {(azs +ibs)e +cc}, G=0 on z=—h (16)

As the governing differential equation for F given in (13) is of the third order and as there
are only two boundary conditions, (15) and (16), we need one more on F to solve the
problem and it is prescribed arbitrarily by

F=x,+iy,+ {{a+ihe“ +cc} on z=0. 17

The condition (17) implies that the space curve I' given by x= f(z,1), y=g(z1)
passes through the arbitrary point (x,,y,) in the middle plane (for more details see
Ramachandra Rao and Kasiviswanathan’) and it is also subjected to elliptic harmonic
oscillations through the arbitrary amplitudes, a and b.

3. Exact solution
The coupled equations in (13) and (14) are solved subjected to the boundary conditions
(15)-(17) for an oscillatory flow with non-vanishing mean, by taking
(F,G)=(Fq, Go) + [(F1, G )& +c.c.]. (18)
The solutions are obtained by a straight forward but lengthy procedure and are given by
Fo=(x; +1,)¢, (29 () +{x, + iy,)[2(2) — 2(0]/[¢2(0) - $2(m)], (19
Go=(x, +ip) @32/ (h) + (x, +13,)04(2)/[62(0) — ¢2 (M) ], (20)
Fy=1{(a, ~ay)+ilby —b) 1 (), (h)
+30(a; +a; —2a) + iy + by — 2b)1[¥5(2) — YO )/ [Y (W) — ¢, (0}, 21)
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Gy =4$[(a; —ay) + ilby, — b2)]¥: (W3 ()

+3[{a, + a; —2a)+i(b, + b, —2b)] Yo @YD () —¥,(0)], (22}
where )
¢1(2) =1, coshm,hsinhm,z — I, coshm, hsinhm,z,

&,(2) =1, sinhmyhcoshm,z — I, sinhm; hcoshm,z,

¢3(2) = cosh myh coshm,z — coshm,hcoshm,z,

4(2) = sinh myhsinhm,z — sinhm, hsinh m,z, (23)
¥, (z) = q, coshr,hsinhr;z — g, coshr hsinhr,z,

Y, (z) = g, sinhryhcoshryz — g, sinh r hcoshr,z,

W3(2) = cosh ryhcoshryz — coshrihcoshr,z,

Y4(2) = sinhr;hsinhryz — sinhr hsinh r,z, 24)
1, = (21, —m3)Qrymy, 1y = (2, — m3)/Quc,m,,
gy = (21c; — r3YQuc,my (1 + iky), gy = (21cy — 13)/Que,my (1 + iky), 25)
Qp K i+ 21 piw
B e e T
mi=kg+ k2 —4Kk, 15, mi=rg—[K2—dx,]4, 26)

- - 2 2
r}=rg +[KF ~ A1t 1] =15 — G ~ 4K 1%,
Ks=0fQ, K¢=Kyk3+IiKy, Kp=ikikK,,

Kg=Kg +i(Koky + Kqic5) and ko= k(1 +rsH1 +ix,).

These results reduce to those for an incompressible viscous liquid” in the limit that the
material constants for the micropolar fluid given by k, «, §, y go to zero. The solutions for a
steady flow discussed® correspond to F,, and G, given in (19) and (20). Equations (19)-(22)
contain the arbitrary constants x,,, y,, @ and b and corresponding to each of these constants
one will have one parameter family of solutions.

4. Discussions
From (8) and (9), the modified pressure gradient in the plane parallel to the disks is
expressed in terms of F and G, and is given by
iVP=i[P,+iP,]=QF, +iQ*F ~ KG,/p—(u +1)QF , /p. 27)
Substituting the expressions for F and G given by (19)-(22) in (27) and writing
iVP=VP, + (VP +cc), (28)
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the expressions for VP, and VP, are obtained as
VP = (xp + 19026 (YL, () ~ ,(0)], 9
VP, = QO+ w)[{a, +ap — 2a) +ilh; + by ~ 26) I, (0)/2[¥, (1) — ,(0)]. (30)
A solution is defined as a symmetric solution with respect to the origin 0, if the velocity
field satisfies the condition #(~ X, — y, — z) = — &{x, y, z), which is different from the usual
axisymmetric solution. In our problem this condition reduces to F{~—z)= — F(2) and
therefore symmetric solution contains only odd functions of z. From (19) and (21), for a
symmetric solution, one must satisfy:

Xp =y, =0, (31)
ay +a,=2a, by +b,=2b, (32)
or a +a,=0=bh +bh,=a=h. (33)

Condition (31) implies that the space curve I” passes through origin whereas (32) gives that
the amplitude of osciflation of the middle plane is equal to the average of the amplitude of
oscillations of the upper and lower disks. Condition (33) states that if the amplitudes of
oscillations of the upper and lower disks are of the opposite sign then the amplitude of
oscillations of the middle plane is zero.

When the conditions (31)~(33) are satisfied we can easily see that the pressure gradient
given in (29) and (30} vanishes and vice verse. Thus we can state, the necessary and sufficient
condition for the solution to be symmetric is that the pressure gradient should vanish. When
the pressure gradient in the planes parallel to disks is different from zero, there is a
possibility of the existence of infinite number of solutions (because of the presence of
arbitrary constants x,, y,, a and b) similar to Poiseuille flow in a channel or pipe. On the
other hand, if we prescribe the pressure gradient then a unique asymmetric solution is
possible. Interestingly similar results hold good for steady, unsteady viscous fluid fows,
steady micropolar fluid flow or for any other fluid flow in this geometric configuration.

From the expressions of F and G given in (19)-(22), one can obtain f, g, £ and n using the
following relations:

f=%F+cc), g= %,(F —c.c), (34)

E=HG+cec), n= %(G —cc) (35)

The x and y components of the traction £ on the top plate are given by
Fo= ~ (b 0O+ wm(h), £ =+ KIQLL() — kE(R). (36)
The components of couple-stress tensor m;; are given by
Mme=PE, my= P, mo =90 My =, 37

as the other components are zero.
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