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Abstract 

Let S be a group and a topolog~cal semigroup. It 1s proved that a continuous complex weak almost period~c 
function on Scan be represented uniquely as a sum of a continuous almost periodic function and a continuous 
weak almost periodic function such that the weak closure of its orb~t contains zero. The proof depends mainly 
on the weak almost periodic compact~fication. To obtain this compactification, we use topological concepts like 
Ruppert (Compact semitopological semrgroup: on intrinsic theory, 1984, Springer-Verlag) rather than the operator 
theoretic techniques of Deleeuw and Glicksberg (Aetn Math., 1961, 105, 63-97). 
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I. Introduction 

In order to describe the results obtained we shall first introduce the notation. Let S be a 
topological semigroup and [W(S)]  A(S), the space of continuous complex [weak] almost 
periodic functions on S. Let C(S) denote the space of bounded continuous scalar-valued 
functions on S endowed with the topology of uniform convergence on S. For f in C(S), let 
the orbit off, O,(f) = { f,: SES} ,  where f,, the right translate off is defined by f,(t) = f (ts), 
~ E S .  Denote by W(S) ,  the set of those f in W(S)  for which zero belongs to the weak closure 
of O,(f). Let SW be the weak operator closure of {R,:seS}, where R, is the right translation 
operator on W(S). Then according to Deleeuw and Glicksberg' S" is the weak almost 
periodic compactification of S. Let be the isometric isomorphism of C(SW) on to W(S)  
(theorem 5.3 of Deleeuw and Glicksberg') and K the kernel of Sw. If W(S)  has two-sided 
invariant mean and E is the identity of K let C(Sw), be the set of right E translates of 
functions in C(Sw), and W(S) ,  = R(C(S"),). Burckelz proved that if W(S)  bas two-sided 
invariant mean then W(S)  = W(S),  @ W(S), and, in fact, when S is a group and a topological 
semigroup, W(S) = W(S),@ A(S). The proofs of these theorems essentially depend on the 
structure of S". 

We construct Sw by using uniform spaces which leads to the simple proofs of the above 
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decomposition theorems. We also obtain alternative but simpier proofs of other related 
results from Burcke12. 

2. Preliminaries 

The following definitions arc from Burcke12. 

Dq'hition 2.1. A set S is called a topological semigroup if S is a semigroup with identity 
e and if S has a Hausdorff topology such that the multiplicalion on S is scparateiy continuous. 
That is, for each t in S ,  the maps s-sl and s-ts are continuous functions. 

De$nition 2.2. A Function f in C(S) is right weak almost periodic if O,(f), the right orbit 
off, is relatively compact in the weak topology on C(S). 

Left weak almsot periodic functions can be defined similarly. 

For any topological semigroup, the set of right weak almost periodic functions coincides 
with the set of left weak almost periodic functions (Corollary 1.12 of Burckeiy). We denote 
this common set by W(S) and call its functions weak almost periodic. For the proof of the 
following lemma, we refer to lemma 1.6 of Burcke12. 

Lemma 2.3. The space W(S) is translation invariant norm closed linear subspace of C(S). 

T o  obtain the results mentioned in the introduction we first construct thc weak almost 
periodic compactification of a topological sernigroup by using uniform spaces. 

Constr~rction qf S": Let S be a topological semigroup. Denote by S the quotient structure 
of S determined by the equivalence relation, 's is relatcd lo I if and only iff, = f, for all f 
in WIS). Then 5 is a semigroup with multiplication S.F= sz For E ~ O  and f E W(S) and 
~'EW(S)', thc dual space of W(S), define U(t. , f ,  f ' ) =  ( ($&SX 9:l fl(f,- tt)/ < & . s ~ ~ t t i ) .  
Then the family of sets of the form U(6, f,,f') forms a subbase for a uniformity, say 6, on 
S. The proof of the following proposition uses the arguments similar to  those of 
theorem 2.10 (Ch. JI1) of Ruppert3 and hence omitted. 

Proposition 2.4. The uniform space (5, fi) is a totally bounded Hausdorff topological 
semigroup and its completion S" is a compact topological semigroup. 

Rrrnnrk 1. The space S" obtained above coincides with the weak almost periodic 
compactification of S1.'. 

Theorem 2.5 Let S be a topological semigroup. The homomorphism $:s+($ 0) cS" 
defincd by_$js) =>, is continuous with @(S) dense in S". The induced map $:c(s") +C(S) 
given by $( f )=  f -6 is an isometric isomorphism of C(Sw) on to W(S). 

Proof. For each f in W(S), the map s +  f, is weak continuous from S into W(S) 
(theorem 1.7(iii), BurckclZ). Therefore, it follows that $iscontinuous. Also since $ ( S )  = (f, 0), 
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3 dcme sub-space of SX, 4 IS o n c  one and an isometry. Morcover, $ prescrvcs the ordinary 
mult~pllcation of functlonc, so W ( S )  is _an alg-bra and d; is an algebra isomorphism. 
Therefore, 11 remains lo prove thal <)maps C(S") on to M/(S). $[c(s")] c W(SI 
(tileorem 1.8 (i). Rurcl\ei2). L.ct /'E W(S). DefiIle T . ( $ , d l ) + ~  by Ti?) = /(A). It is then easy to 
scc that 7 is uniformly continuous. Hence ,f ytcjnds lo 7, a uniiormly continuou, function - -  - 
on S .  The extended function f satisfies d ( / ) ( s )  = f,,rb(s) = f(s) = f(.q = f is). T h s  is. 
$ ( j )  = /. Thls proves that $[c(s'")J = W(S). 

Drfin~tiotl 2.6. ( 1 )  Lct X be 3 topological spacc, A a norm closed subspace of C ( X ) .  A 
mean on A is any linear functional d, on A such that (I)$ f O  and $ ( I ) =  I ,  if I tA: ( i i ) , f~A,  
f > 0 lmplles q5(f j 3 0 .  (2) Let S be a topological semigroup, A, a norm clowd right (left) 
translation Invariant vector subspnce ofC(S) A right (left) invariant mean on A 1s a inem 
iL/ which satiaks M(,f ,)  = lCl(,f) ( M ( ,  f )  = M ( f ) ) ~ d ,  f d ,  wherc j; and ,f denote the 
right and left translates of f, respectively. 

If 4 is both left and right translation invariant and A4 IS borh a left and a right tirinslxtion 
invariant mean, we call it a two-sided invariant mean. 

For ddfinit~on of kernel of a semigroup, minimal ideals in a semigroup and other related 
concepts we refer to Burcke12 

3. Decomposition theorem for W(S) 

Let? be a_lopological semigroup. Let (3, JZ), S", 4 and 4 be as in Section 2. For f E W(S), 
let f and f be as in thc proof of theorem 2.5. 

DeJtiition 3.1. For a topological semigroup S let b,(S) denote the weak closure of the 
right orbit 0,i.f) off In C(S). Let W ( S ) ,  = j / ' G W ( S ) : O E G ( ~ ]  and C(SW), = $ ' [ W ( S ) , ]  
in Cis"). 

In this section we shall prove thal if G is a group and a toplogical scmigroup then every 
function in W(G) can be rcpresentcd uniquely as a sum of a function In A(G) and a function 
in IViG) such that the weak clowre of its orbit contains zero To ohtam this result we first 
need to prove a few lemmas. 

Lemma 3.2. For a topological semigroup S and f t W(S), O,(f) = $(0,(?)), where f is the 
continuous extension off  to S". 

Proof. OR(fj  = ( ja:scS} = $jfi:~ts) c ${fj:i%~'"j = $(0,(f)j. Therefore, 

Since $ is a linear isometry, by theorem V.3.15 of Dunford and Schwartza it is a 
homeomorphism with respect to the weak topologies on C(SW)  and W(S). Thercfore, -~ $ is 
a closed map. Now $(0,(,f)) is a weakly closed set containing &0,ji)). But, as $(o,( f ) )  
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is the smallest set containing &o,(?)), we have 
- -. - - . . 

d(0Rtf))  c i(OR("m. 

Also, as S'" is acompact Hausdorff topological semigroup (theorem 1.7 of BurckelZ), OR(?) is 
weakly compact in C(SW) and hence it is weakly closed. Therefore, from (I) and (2) we have 
O,Cf) c 6(0,(f)). T o  prove the reverse inclusion, let J<Eo,(~), where 9eSX. Then, there 
exists a net [s,} in S such that S, converges to S. $ce S" is a topological semigroup and 
f is continuous, S,+S impliesf(?~m)-~ f (?t). That is f (t?) = lim,f(&) = lim, J(&) = lim, f (ts,). 
~ e n c e f ~ ( 4 ( t ) )  = lim,fSz(t). This shows that $(fJ = 3 0 4  is a point-wise limit off,=. Since f 
is weak almost periodic, WfT is weak compact in C(S). Now, as the weak topology of 
C(S) is stronger than the point-wise topology and the latter is Hausdorff, the two topologies 
coincide on O,(f). Hence $(f$)~OnCf). Thus 4(0,(f)) cO,(f). 

Proof. Since 6 is an isometric isomorphism, the proof follows immediately from lemma 3.2. 

Definition 3.4. Let K be the kernel of S" and E(K) the set of idempotents in K. Foe & in 
E(K), define ker e^= { f f ~ ( ~ ) : f ~ = O } .  

Lemma 3.5. W(S) ,  = U fker&:&fE(K)] = {(Gw(s):~, = 0 for some &EE(K)}. 

Prooj: Suppose that JEW(S) is such that j! = 0 for somc &E(K). Then 0 = ?#Eo,(~). 
Therefore, by lemma 3.3 f EW(S),. Conversely, i f f  E W(S),, thcn, again from lemma 3.3, 
f, = 0 for some SeS". Hence, 

Now, S"S is a left ideal in S" and hence there exists a minimal left ideal I contained in SWS 
(theorem 2.1 of Burckc12). But by theorem 2.2 of Burcke12, I = SW&forsome &eE(K). Therefore, 
from (I), j(1) = T(s"&) =f&SW) = 0. That is, fa = 0. This proves the lemma. 

Corollary 3.6. If W(S) has a right invariant mean and 8, is the identity of thc kernel K of 
S", then W(S), = ker 8,. 

Proof. Since W(S) has a right invariant mean, from lemma 2.6 of BurckelZ and theorem 2.5 
of Section 2, it follows that C(Sn') has a right invariant mean. Then by lemma 2.4 of 
Burckel', S" has a unique minimal left ideal which coincides with kerncl K of S". Now, for 
any &tE(K), since S"& is a minimal left ideal in SW, wc have K = SWe  ̂= Yê ,. Hence, horn 
the abovc lemma, wc have f E W(S), if and only if 0 = T>(S") = ~(s"E)  = f (~"&,?  = J.*(sw). 
Equivalently f ekere,. 

Corollary 3.7 W(S),= {&~;):J(I)=o for some I fY(SW))  where Y(SW) denotes the set 
of minimal left ideals in SW. 
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Proof: By theorem 2.2 of Burckd2,ye have 9 ( S w )  = {S"e^:&E(K)].  Also for each f e  W ( S )  
there exists f GC(S")  such that $ ( f )  = f  (Thebrem 2.5). Hence the corollary follows from 
lemma 3.5. 

Corollary 3.8. If W ( S )  has a right invariant mean, then W ( S ) ,  = $ { ~ E c ( s " ' ) : ~ ( K )  = 0) 
where K is the kernel of S". 

Proof. From theorems 2.6 and 2.4 of Burcke12, if follows that S" has a unique minimal 
left ideal wh~ch must coincide with the kernel of S". Hence, corollary 3.7 proves the asscrtion. 

Corollary 3.9. If W(S)  has a right invariant mean then W ( S ) ,  is a right and lcft translation 
invariant closed ideal in W(S).  

Proof. From corollary 3.8, it can be easily seen that W ( S ) ,  is an ideal in W(S). We shall 
show that W(S) ,  is right translation invariant. The proof of left translation invariance of 
W(S) ,  is similar. 

Let f  E W(S) ,  and SES. Then, by corollary 3.8 , f (K)  = 0, where $(f^) = f .  Now for an_y;~S, 
fd t )  =.f( ts)  = i(.?)(ts) = fod( t4  = f ( b ( t ) b ( s ) )  =i$idid(l))= $(?#(o)(t). That is fs= d(f,(,J. 
Since K is two-sided  deal. K d ( s ) =  K S c  K. But as 7 vanishes on the whole of K, we 
have ( K )  = f ( K $ ( s ) ) =  0. Hence from corollary 3.8 again it follows that f,t W(S),. 
This completes the proof. 

Corollary 3.10. If W(S) has two-sided invariant mean M, then W(S),  = {,feW(S):M(l.fl) = 0 ) .  

ProoJ From theorem 2.7 of Rurckelz, M(l f )  = J",$-l(l f  l)dp, where @ is normalised Haar 

measure on the compact g r o y  K.  Since $~'(lfl)=~$~~(f)l,M(lf~)=~~l$~~(f)ld~. 
Hence from corollary 3.8, f  = d ( f ) ~ W ( S ) , c ; .  f  ( K )  = o - $ - ' ( ~ ) ( K )  = O o M ( l  f  1 )  = 0. 

Definition 3.1 1. Let S he a topological semigroup for which W ( S )  has two-sided invariant 
mean. Let 6 denote the ~ d e n t ~ t y  of kernel K of SW. Define C(SW),= { ~ , : ~ E c ( s " ) )  and 

WiS),  = $(c(s"),). 
Throughout the remaining part of this section the identity of the kernel of S" is denoted 

by 3. 

Proposition 3.12. Let S be a topological semigroup for whlch W ( S )  has two-sided invariant 
mean. Then W(S) ,  = ( f  E w(s):L = f  1. 

Proof. Let f . ~  W(S)  be such that f* = f .  Since & E C ( S ~ ) , ,  f = & f )  = d;(fe)~d;(c(~"),) - 
W(S),. Conversely, il f  E W(S),, f.= &,) for some BtC(Sw),. Then f= $ - l ( f )  = 0, and 
since & is the identity of the kernel, fa = J,, = Q, = f. This proves the proposition. 

We shall now obtain the main results of this section. 
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Theorem 3.13. Let S be a topological semigroup for which W(S) has two-sided invariant 
mean. Then W(S) = W(S),@ W(S),. 

Proof. For each f in W(S), we write f = f -  $(fa) + &j#). Since f p s C ( ~ ) , ,  we have 
6 ( J p ) € & ~ ( ~ " ) , ) =  W(S),. We shall show that the function h= f -$(~ , )Ew(s )~ .  By 
corollary 3.6, it is enough to show that heker &. Let &f,) = g. Then g = 6- '(g) = f, and 

~ ~ = f , ~ = f # .  Therefore, h,=[f-@l,=fa-O,=~, which proves that hcker*. Now if 
ge W(S),n W(S),, then g, = 0 and also by proposition 3.12 9, = 8, which implies = 0 
and hence g = 0. This proves that the above decomposition of W(S) is unique. 

We note that if G is a group and a topological semigroup, W(G) has a two-sided invariant 
mean (theorem 1.26, Burcke12). Hence every function in W(G) has a unique representation 
as in theorem 3.13. In fact, the following theorem shows that a stronger result is possible 
to obtain in this case. 

Theorem 3.14. If G is a group and a topological semigroup then W(G), = A(G) and 
W(G) = W(G), @ A(G). 

Proof. Define a map p: GW-.G"&= K by pit) = t&, where & is the identity of the 
kernel of GW. Then p is a homomorphism. For, p(t$ = t?& = s(&$ = (9&)(?&) = p(t)p($. 
Letp: C(K)+ C(GW) be the induced map. Then, for f &(K) an: t ~ ~ " , p ( f ) ( t )  = &p(Q = 
f(@) = f,(9). That is, ~ ( f )  = fd. Now define 4: GW+ C by g(t) = f ( S Q  Then jd(3) = f (M) = 
f(f&) = f,(Q Thus, Bi = j,. But since &C(Gw), f8 = 9 , 4 G w ) , .  Hence P(C(K)) c C(GW),. 
Using similar arguments one can easily see that C(Gw), c P(C(K)). Thus, P(C(K)) = C(Gw),. 
Since K is a compact group and p is a homomorphism, by theorems 1.7 and 1.8 of BurckelZ 
we have A ( K )  = C(K) and C(Gw), = P(C(K)) = P(A(K)) c A(Gw). Again by theorem 1.8 of 
Burcke12, W(G)G), &c(G'"),) c $(A(G")) c A(G). On  the other hand, given f aA(G), let 
f = f ,  +h where f , ~  W(G), and f , ~  W(G),. Then f, = f - f,eA(G), since we just showed 
that W(G), c A(G). Also as A(G) is closed under the operation of taking absolute value we 
have I f ,  ieA(G). By corollary 1.26 of Burcke12, W(G) has unique two-sided invariant mean 
which annihilates no  non-negative function in A(G) except zero. As f , ~ w ( G ) , ,  from 
corollary 3.9, M(l f J ) =  0. But I f,leA(G) and hence I f i t  =O. Therefore, j'= f,eW(G), 
and we have the other inclusion A(G) c W(G),. Thus W(G), = A(G) and from theorem 3.13, 
W(G) = W(G), @ A(G). 

Corollary 3.15. Let G be a group and a topological semigroup. Then Gw is a group 
(algebraically, and then by theorem 1.28 of Burcke12, topologically also) if and only if 
W(G) = A(G). 

Proof. Since kernel K of Gw is a group and a n  ideal in Gw, it is clear that Gw is a group 
if and only if K = GW. From corollary 3.8, if K = Gw then W(G), = 0. Conversely let 
W(G), = 0 and suppose that K # G". Then, by Urysohn lemma there exists a non-zero 
function ~ E C ( G ~ )  such that f ( ~ )  =O. But this means 0 # $ ( A s  W(G),, a contradiction. 
Thus K = Gw if and only if W(G), = 0. Hence, from the direct sum decomposition theorem 
W(G), = 0 if and only if W(G) = A(G). 
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Remark: The fo!lowing classcs of vector-valued Cunctions have been studied by Goldberg 
and Irwini. For a Lopologjcai semigroup S and X, a Banach space, 

(i) AP(S,X) = ( J E C ( S ,  X):  O,(j)  is rclativcPy norm compact in C(S,  X)]. 

(ii) W R C ( S , X )  - { j e C ( S ,  X):  O,(f) is weakly rcialivelg compact in C(S, X) and f  [St is 
relatively norm compact in XI. 

Goldberg and Irwin5 havc extended operator theoretic tcchniqucs of Deleeuw and 
~licksherg'  to obtain a compactification SCYR' of S through functions in WRC(S,  X). It is 
then observed6 that SWR" is isomorphic to the weak almost periodic compactification S" 
obtained through functions in W(S) ' .  The foliowing theorem is from Goldberg m d  Irwin5. 

Theorem: Let G be a group and a topological semigroup. Then WRC(G, X )  = WRCJG, X ) @  
AP(G, X )  whcre WRC,(G,X) = / f~ W R C ( G , X ) : O ~ Q & ) ,  the weak closurc of Ox(/)). 

We observe that the rcsults similar to those of Sections 2 and 3 can be proved Tor Lhe 
space WRC(S. X) and also the techniques used in thcsc scctions can be extendcd to obtain 
the decomposition thcorcm stated above. The proof of this is omitted as it can be ob:aiacd 
by adopting suitably the proof of theorem 3.14. 
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