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Abstract

Let S be a group and a topological semigroup. It 1s proved that a continuous complex weak almost periodic
function on § can be represented uniquely as a sum of a continuous almost periodic function and a continuous
weak almost periodic function such that the weak closure of its orbit contains zero. The proof depends mainly
on the weak almost periodic compactification. To obtain this compactification, we use topological concepts like
Ruppert (Compact semitopological serugroup: an intrinsic theory, 1984, Springer-Verlag) rather than the operator
theoretic techniques of Delecuw and Glicksberg (Acta Math., 1961, 105, 63-97).
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1. Introduction

In order to describe the results obtained we shall first introduce the notation. Let § be a
topological semigroup and [W(5)1 A(S), the space of continuous complex [weak] almost
periodic functions on S. Let C(S) denote the space of bounded continuous scalar-valued
functions on S endowed with the topology of uniform convergence on §. For f in C(S), let
the orbit of f, Ox(f) = { f;:seS}, where f,, the right translate of f is defined by f(t) = f (ts),
teS. Denote by W(S), the set of those f in W(S) for which zero belongs to the weak closure
of Ogx(f)- Let S* be the weak operator closure of {R,:seS}, where R, is the right translation
operator on W(S). Then according to Deleeuw and Glicksberg! S* is the weak almost
periodic compactification of S. Let R be the isometric isomorphism of C(S$*) on to W(S)
(theorem 5.3 of Deleeuw and Glicksberg') and K the kernel of S*. If W(S) has two-sided
invariant mean and E is the identity of K let C(S*), be the set of right E translates of
functions in C(S*), and W(S), = E(C(S”),). Burckel? proved that if W(S) has two-sided
invariant mean then W(8) = W(S), ® W(S), and, in fact, when §is a group and a topological
semigroup, W(S) = W(S), @ A(S). The proofs of these theorems essentially depend on the
structure of §*. ’

‘We construct ¥ by using uniform spaces which leads to the simple proofs of the above
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decomposition theorems. We also obtain alternative but simpler proofs of other related
results from Burckel®.

2. Preliminaries
The following definitions arc from Burckel?.

Definition 2.1. A set S is called a topological semigroup if § is a semigroup with identity
e and if S has a Hausdoxfftopology such that the multiplication on § is separately continuous.
That is, for each ¢ in S, the maps s— st and s—ts are continuous functions.

Definition 2.2. A fanction f in C{S) is right weak almost periodic if Or(f), the right orbit
of f, is relatively compact in the weak topology on C(S).

Left weak almsot periodic functions can be defined similarly.

For any topological semigroup, the set of right weak almost periodic functions coincides
with the set of left weak almost periodic functions (Corollary 1.12 of Burckei?). We denote
this common set by W (S) and cail its functions weak almost periodic. For the proof of the
following lemma, we refer to lemma 1.6 of Burckel®.

Lemma 2.3. The space W(S) is translation invariant norm closed linear subspace of C(S).

To obtain the results mentioned in the introduction we first construct the weak almost
periodic compactification of a topological semigroup by using uniform spaces.

Construction of $*: Let § be a topological semigroup. Denote by S the quotient structure
of S determined by the equivalence relation, s is related to ¢ if and only if f, = f, for all f
in W(S). Then § is a semigroup with multiplication 7= s7. For €>0 and fe W(S) and
FeW(SY, the dual space of W(S), define U, £, /)= {(5. D28 x 8: | /{f, — t.)] < &, se§, tet}.
Then the family of sets of the form U(e, f, f7) forms 2 subbase for a uniformity, say U, on
S. The proof of the following proposition uses the arguments similar to those of
theorern 2.10 (Ch. TIT) of Ruppert® and hence omitted.

Proposition 2.4. The uniform space (5,0} is a totally bounded Hausdorff topological
semigroup and its completion S* is a compact topological semigroup.

Remark 1. The space S¥ obtained above coincides with the weak almost periodic
compactification of §*-3.

Theorem 2.5. Let S be a topological semigroup. The homomorphism ¢:$. (&, 0) =5v
defined by ¢(s) =3, is continuous with ¢(S) dense in $*. The induced map ¢:C($*)—C(S)
given by ¢(f) = f~¢ is an isometric isomorphism of C($”) on to W(S).

Proof. For each f in W(S), the map s—f, is weak continuous from S into wi(s)
(theorem 1.7 (iii), Burckel?), Therefore, it follows that ¢ is continuous. Also since ¢(S) = (5, T),
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a dense sub-space of ¥, ¢ is one-one and an isometry. Morcover, ¢ preserves the ordmnary
multiplication of functions, so W(S) is an algebra and d) is an algebra isomorphism.
Therefore, 1t remains to prove that (/)mqps ((S“} on to W(S). $[CIS*)] = W(S)
(theorem | 1.8 (i), Burckei?). Let fe W(S). Define f (S, JZ/)—»C by /\3 S{s). Tt is then easy to
sce that f 1s uniformly continuous. Hence Jextendsto 7, a umfoAmly continuous function
on S§*. The extended function [ satisfies ¢(f)(s)= Fop(s) = 75 = f(®) = f(s). That is,
& f)_/ This proves that FLC(S™)] = W(S).

Defimtion 2.6. (1) Let X be a topelogical space, 4 a norm closed subspace of C(X). A
mean on A is any linear functional ¢ on A such that (i}¢ # 0 and ¢{1)=1,if teA:(ii) fe A4,
{ =0 implies ¢(f}=0. (2} Let S be a topological semigroup, A4, a norm closed right (left)
translation invariant vector subspace of C(S). A right (left) invariant mean on 4 15 a mean
M which satisfies M(/,)=M(f) (M(,[)=M())eS, fcA, where f, and ,f denote the
right and left translates of f, respectively.

If A is both left and right translation invariant and M is both a left and a right translation
invariant mean, we call it 4 two-sided mvariant mean.

For definition of kernel of a semigroup, minimal ideals in a semigroup and other related
concepts we refer to Burckel?.

3. Decomposition theorem for W(S)

Lel S be aﬁlopological semigroup. Let (S, 4), S, ¢ and & be as in Section 2. For f'e W(S).
let f and f be as in the proof of theorem 2.5.

Definition 3.1. For a topological semigroup S let O;(—]T) denote the weak closure of the
right orbit O4(f) of f in C(S). Let W(S), = { /eW(Sy:0€0,(f) } and C(S)o =& ' [W(S)]
in C{($™).

In this section we shall prove that if G is a group and a toplogical semigroup then every
function in W({G) can be represented uniquely as a sum of a function in 4(G) and a function
in W(G) such that the weak closure of its orbit contains zero. To obtain this result we first
need to prove a few lemmas.

Lemma 3.2. For a topological semigroup S and feW(S), Ox(f) = ¢(Ox(])), where [ is the
continuous extension of f to S*.

Proof. Op(f)=1f;s5eS}=§{fi:5e8} = p{f:3e8"} = F(Or(F)). Therefore,
04(1) < HOR(TN. n

Since ¢ is a linear isometry, by theorem V.3.15 of Dunford and Schwartz® it is a
homeomorphism withi respect to the weak topologies on C(5”) and W(S). Thercfore, &i is

a closed map. Now ¢(0x(])) is a weakly closed set containing ${0g(7)). But, as ${0x(/))
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is the smallest set containing qb(OR(f) we have

F0x(D) = 301 @
Also, as §” is a compact Hausdorff topological semigroup (theorem 1.7 of Burckel?), O g( 7)is
weakly compact in C(S¥) and hence it is weakly closed. Therefore, from (1) and (2) we have
0x(f) = $(0x()). To prove the reverse inclusion, let f;e0,(f), where $eS*. Then, there
exists a net {s,} in S such that 3, converges to §. Since S™ is a topological semigroup and
F is continuous, §,— & implies f(£5,)— f(£8). That is f| (ts =lim, £ (§5,) = lim, f (£5,) = lim, £ (ts,)
Hence f,(¢(t)) = lim, f, (z) This shows that ¢(f;) = 7.0¢ is a point-wise limit olfs Smcef
is weak almost perlodlc Okl f } is weak compact in C(S). Now, as the weak topology of
C(8) is stronger than the point-wise topology and the latter is Hausdorff, the two topologies
coincide on Og(f). Hence ¢{7)c0x(f). Thus (0x(F)) = Ox(f).

Lemma 3.3. W(S), = { feW(S):00,(f)}.
Proof. Since & is an isometric isomorphism, the proof follows immediately from lemma 3.2.

Definition 3.4. Let K be the kernel of $* and E(K) the set of idempotents in K. Foe ¢ in
E(K), define ker é={feW(S). f,=

Lemma 3.5. W(S)o = Ulkeré:cE(K)} ={feW(S) f,=0 for some ¢cE(K)}.

Proof. Suppose that feW(S) is such that f,=0 for some éeE(K). Then 0= f.0x(/).
Therefore, by lemma 3.3 feW(S),. Conversely, if feW(S),, then, again from lemma 3.3,
f¢="0 for some §eS™. Hence, -

fismy=7(§"g=0. (65
Now, S¥8is a left ideal in S* and hence there exists a minimal left ideal I contained in $¥3

(theorem 2.1 of Burckclz) But by theorem 2.2 of Burckel?, I = §*éfor some éeE(K). Therefore,
from (1), 7(I)= 7 (5”& = f,(S”) =0. That is, f,=0. This proves the lemma.

Corollary 3.6. If W(S) has a right invariant mean and &, is the identity of the kernel K of
S¥, then W(S), = keré,.

Progf. Since W(S) has a right invariant meau, from lemma 2.6 of Burckel? and theorem 2.5
of Section 2, it follows that C(S™) has a right invariant mean. Then by lemma 2.4 of
Burckel?, $* has a unique minimal left ideal which coincides with kernel K of $*. Now, for
any éeE(K), since $*¢ is a minimal left ideal in S¥, we have K = S¥é = S‘” &o- Hence, [rom
the above lemma, we have feW(S), if and only if 0 = f,($*) = /(§*&) = [l S &) Af( S™).

Equivalently fekeré,.

Corollary 3.7. W(S)y={F(/):f (1) =0 for some IeL(S*)} where ¥(S*) denotes the set
of minimal left ideals in $*.
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Proof. By theotem 2.2 of Burckel?, we have £(S*) = {$"é:2e E(K)}. Also for each fcW(S)
there exists feC(8) such that ¢ j )= f (Theorem 2.5). Hence the corollary follows from
lemma 3.5.

Corollary 38. If W(S) has a right invariant mean, then W (S}, =& {feC($"):F(K) =0}
where K is the kernel of 8",

Proof. From theorems 2.6 and 2.4 of Burckel?, if follows that S has a unique minimal
left ideal which must coincide with the kernel of $*. Hence, corollary 3.7 proves the assertion.

Corollary 3.9. If W(S) has a right invariant mean then W(S), is a right and left translation
invariant closed ideal in W(S).

Proof. From corollary 3.8, it can be easily seen that W(S), is an ideal in W(S). We shall
show that W(S), is right translation invariant. The proof of left translation invariance of
W(S), is similar.

Let f e W(S)g and seS. Then, by corollary 3.8, f (K)= 0, where $(J) = /. Now for any teS,
S8y =1 ts)= @(N)tsy= fo d(ts) = [ (d()$(8)) = [ o (@(1)) = S ([ (). That is fo= p(f)-
Since K is two-sided ideal, K¢(s) = K§ < K. But as f vanishes on the whole of K, we
have fm (K) = (K ¢(s)) = 0. Hence from corollary 3.8 again it follows that f,e W(S),.
This completes the proof.

Corollary 3.10. If W(S) has two-sided invariant mean M, then W(S), = {feW(S}:M(|f])=0}.

~-1

Proof. From theorem 2.7 of Burckel?, M([f])= fK asn d/,z where p is normalised Haar

measure on the compact group. K. Since ¢ (|f[)—~|¢ f)l M jqub ]d,u.
Hence from corollary 3.8, f = @(/)eW(S)y<f(K) =0<¢ (j) K)=0<=M(f|)=

Definition 3.11. Let § be a topological semigroup for which W(S) has two-sided invariant
mean. Let & denote the identity of kernel K of S*. Define C(8"),= {fz feC(SW)J and
W(S),= $(C(S™),)-
Throughout the remaining part of this section the identity of the kernel of $* is denoted
by é.

Proposition 3.12. Let § be a topological semigroup for which W(S) has two-sided invariant
mean. Then W(S), = {fe W(S): f, = f}.

Proof. Let feW(S) be such that f,= . Since f,eC($*),, /= &(f)= ¢(f )€¢(C(Sw )=
W(S)Ij Conversely, if feW(S),, f= (b (g,) for some geC(8"),. Then f=¢ (f Gs and
since ¢ is the identity of the kernel, f, = g, = §, = /. This proves the proposition.

We shall now obtain the main results of this section.
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Theorem 3.13. Let S be a topological semigroup for which W(S) has two-sided invariant
mean. Then W(8) = W(S),® W(S),.

Proof. For each f in W(S), we write f=f~ (fs) + $(f.). Since feeC(S“’),,, we have
¢(fé)e¢(C(S“’),,)— W(S},. We shall show that the function A= f - ) EW(S)Q By
corollary 3.6, it is enough to show that hekeré. Let &(7)) f)=g. Then §= $ g =f, and
ds=Fu=F, Therefore, hé=[f—m]é-fé—gé-0, which proves that hekeré. Now if
ge W(S),,ﬂ W(S),, then g,=0 and also by proposition 3.12 ¢,= g, which implies §=0
and hence ¢ = 0. This proves that the above decomposition of W(S) is unique.

We note that if G is a group and a topological semigroup, W(G) has a two-sided invariant
mean (theorem 1.26, Burckel?). Hence every function in W(G) has a unique representation
as in theorem 3.13. In fact, the following theorem shows that a stronger result is possible
to obtain in this case.

Theorem 3.14. If G is a group and a topological semigroup then W(G), = A(G) and
W(G) = W(G),® 4(G).

Proof. Define a map p:G*—G*é=K by p(§) =8¢ where ¢ is the 1denmy of the
kernel of G*. Then p is a homomorphism. For, pf (87) = sié = s(¢fe) = (s)(Fe) = ().
Letj: C(K)— C(G") be the induced map. Then, for FeC(K) and §eG"‘,ﬁ(f)( ) fop( )=
f( 2) = fé . That is, p(f .. Now define §: G* — C by 4(§) = f($¢). Then 4 gé f(ﬁeé
Flee)= fl,(s) Thus, ¢, = f,. But since §eC(G*), f,= 9:6C(G"),. Hence p(C( )CC(G“’)
Using similar arguments one can easily see that C(G"), < §(C(K)). Thus, 5{(C(K)) = C(G¥),.
Since K is a compact groupand pisa hcmomorphism, by theorems 1.7 and 1.8 of Burckel?
we have A(K)= C(K) and C(Gw) = p(C(K}) = p(A(K)) = A(G"). Again by theorem 1.8 of
Burckel?, W{(G), = $(C(G™),) q§( (G* )cA( ). On the other hand, given f=A(G), let
f=fi+f where fleW(G)o and f,eW(G),. Then f, = f — f,€ A(G), since we just showed
that W(G), < A(G). Also as A(G) is closed undér the operation of taking absolute value we
have |f,1€A(G). By corollary 1.26 of Burckel?, W{G) has unique two-sided invariant mean
which annihilates no non-negative function in A(G) except zero. As f,eW(G),, from
corollary 3.9, M(If1])=0. But |f]€A(G) and hence |f,|=0. Therefore, /= f,eW(G),
and we have the other inclusion 4(G) = W(G),. Thus W(G), = A(G) and from theorem 3.13,
W(G)= W(G), ® A(G).

Corollary 3.15. Let G be a group and a topological semigroup. Then G* is a group
(algebraically, and then by theorem 1.28 of Burckel?, topologically also) if and only if
W(G) = A(G).

Proof. Since kernel K of G* is a group and an ideal in G, it is clear that G¥ is a group
if and ouly if K =G". From corollary 3.8, if K =G" then W(G),=0. Conversely let
W(G) =0 and suppose that K s G*. Then, by Urysohn lemma there exists a non-zero
function feC(G*) such that F(K)=0. But this means 0 # §(f)e W(G),, a contradiction.
Thus K = G” if and only if W(G), = 0. Hence, from the direct sum decomposition theorem
W(G)o =0 if and only if W(G) = A(G).
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Remark: The following classes of vector-valued functions have been studied by Goldberg
and Irwin®. For a topologjcal semigroup § and X, 2 Banach space,

i) AP(S, X)= {fEC(S,X)_: Ox(f) is relatively norm compact in C(S, X)}.

(ii) WRC(S, X)={feC{8, Xy Ok(f) is weakly rclatively compact in C(S,X) and f(S) is
relatively norm compact in X}.

Goldberg and Irwin® have cxtended operator theoretic techniques of Deleeuw and
Glicksberg! to obtain a compactification %% of S through functions in WRC(S, X). It is
then observed® that §%%¢ is isomorphic to the weak almost periodic compactification $*
obtained through functions in W(S)'. The following theorem is from Goldberg and Irwin®.

Theorem: Let G be a group and a topological semigroup. Then WRC(G, X) = WRCy(G, X)&

AP(G, X) where WRC (G, X) = { fe WRC(G, X): 0 0g(f), the weak closure of Og{/)}.

We observe that the resuits similar to those of Sections 2 and 3 can be proved for the
space WRC(S, X} and also the techniques used in these sections can be extended to obtain
the decomposition thecorem stated above. The proof of this is omitted as it can be obtained
by adopting suitably the proof of theorem 3.14.
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