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Abstract

Let X be a Banach space and AP(R, X) the space of continuous almost periodic functions on R into X with
supremum norm. We obtain characterisations of compact operators on 4P(R, X) (Theorem 3.1) This theorem 15
then used to prove the following' Let AP(R) be the space AP(R,C). For a compact operator K on AP(R), the
aggregate of Fourier exponents of functions m the range of K 1s countable even though the range of K is
uncountable. We also obtain sufficient conditions on K so that the Fourner series of all the functions m the range of
K converges at the same point.
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1. Introduction

It is well known that a bounded linear operator on AP(R), the space of continuous
complex-valued almost periodic functions on R, is compact if and only if it can be
approximated by a trigonometric polynomial on AP(R)'. This appears to be the only
known characterisation of compact operators on 4P(R). This result vitally depends on the
fact that AP(R) is a Banach algebra with pointwise product and supremum norm. In fact,
the proof uses the Gelfand theory. If AP(R, X) denote the set of continuous almost periodic
functions on R into a Banach space X, then AP(R, X) is a Banach space with supremum
norm. Since AP(R, X) is not a Banach algebra, in general, the techniques of Schaeffer! are
not applicable to the operators on 4P(R, X). However, we show that, it is possible to obtain
a similar characterisation of compact operators on AP(R, X), by using elementary properties
of almost periodic functions. We prove that an operator K on AP(R, X) is compact if and
only if it is approximated by an operator-valued trigonometric polynomial on AP(R, X).
In Theorem 3.1 some more characterisations are obtained.

For Banach spaces X and Y, let BL(X, Y) denote the space of bounded linear operators
on X into Y with uniform operator topology. We denote by KL(X, Y), the subspace of
BL(X, Y) consisting of compact operators. When X = Y we write BL(X) and KL(X) for
BL(X, Y) and KL(X,Y), respectively. Let A = AP(R,X). For K in BL(4) and teR, define
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K,;:A— A by K, f=(Kf),, where feA and (Kf), is the translate of Kf by r. It is proved that
(Theorem 3.1) an operator K on A4 is compact if and only if the map F:R— KL(4, X)
defined by F(t)(f) = Kf (1), teR, feA, is continuous almost periodic. We further show that
this is equivalent to the fact that the function 8%:¢— K, from R into KL(4, X) is continuous
almost periodic. In Corollary 3.2, it is proved that a compact operator K on AP(R, X) can
be represented by an operator-valued almost periodic function up to an isometric
isomorphism.

When X = C, we write AP{R) for the space AP(R, X). Let B be the unit ball in AP(R),
If K is a compact operator on AP(R), we obtain in Section 4, sufficient conditions on the
map 6%:t —» K, from R into KL{AP(R)), so that the Fourier series of Kf, for all f in AP(R),
converge at the same point. Also, for a compact operator K on AP(R), we use the results
of Section 3 to prove the following: The union of sets of Fourier exponents of functions
in the range of K is countable, even though the range of K contains uncountably many
functions. In fact, we show that this set is contained in the set of Fourier exponents of 6%,

2. Preliminaries
The following definitions are from Corduneanu? and Burckel®;

Definition 2.1. Let X be a Banach space. A continuous function f:R— X is called almost
periodic, if for any number &> 0, one can find a number {g) >0 such that any interval of
the real line of length Kg) contains at least one point of abscissa = with the property that
| f&+0—f@®f <s for all zeR.

Definition 2.2. A set § is called a topological semigroup if § is a semigroup with identity e
and if S has 2 Hausdorff topology such that the multiplication on § is separately continuous.
That is, for each ¢ in §, the maps s— st and s— ts are continuous functions.

Let S be a topological semigroup, X, a Banach space and C(S, X) the Banach space of
bounded continuous functions from § to X with supremum norm. For f in C(S, X) and s
in S, let f,, the right translate of f by s, be defined by f(t) =f(ts), teS. Let the right orbit
of f, Ox(f)={f,:s€S}.

Definition 2.3. A function f in C(S, X) is called almost periodic if O f is relatively compact
in C(S, X).

We shall denote by 4P(S, X), the set of all aimost periodic functions on S to X. When
X =C, we write AP(S) for AP(S,C). It is easy to see that AP(S, X) is a Banach space with
the norm defined by ||/ =sup.s ] f)|. The space AP(S,X) has been studied by
Goldberg and Irwin®. When § = R, the equivalence of definition 2.1 and definition 2.3 is
proved in by Corduneanu? (Theorem 6.6).

Definition 2.4. A function T:R— X defined by

T = i ce™, teR,

k=1
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where, for | <k<n, 2 are real numbers and ¢, are in X, is called a trigonometric
polynomial with values in X.

Definition 2.5. (Approximation property). A function f:R— X is called a function with the
approximation property, if for any & >0, one can determine a trigonometric polynomial
T, with values in X, such that || f(t)~ T,{t)|| <& teR.

Remark 1. It is proved® [Theorem 2.1] that f:R— X is almost periodic if and only if it
has the approximation property.

Definition 2.6. A family & in AP(R, X) is said to be equialmost periodic, if to any ¢> 0,
there corresponds a number I(g) > 0, such that any interval of length Xe) contains at least
one number 7 for which || (¢t + 1) —f ()| < ¢ for all feF and for all teR.

The following theorem is from Corduneanu? [Theorem 6.9].

Theorem 2.7. A finite family of functions in AP(R, X} is equialmost periodic.

For general theory of almost periodic functions on R with values in a Banach space X,
we refer to Corduneanu? and Levitan & Zhikov”. It may be recalled that, for Banach space
X, Y, an operator K in BL(X, Y) is defined to be compact if the set {Kx:| x|} <1} is
relatively compact in Y.

3. Characterisations of compact linear operators on AP(R, X}

Throughout this section, X is a Banach space and A stands for the space AP(R, X). We
shall obtain here some characterisations of compact linear operators on A in terms of
operator-valued trigonometric polynomials and translates of operators defined in introdue-
tion. The proof of the following uses only the elementary properties of almost periedic
functions in 4.

Theorem 3.1. Let KeBL(A). Then the following are equivalent:

(i) K is compact

(i) The map F:R-»KIL{A, X) defined by F(t)(f) = Kf{t), feA, teR, is continuous almost
periodic.
(ili) For each ¢> 0, there exists a trigonometric polynomial T, in KI(4) such that
IK=T.| <e.
(iv) The map #%:R— KL(A) defined by 6%(t) = K,, teR is continuous almost periodic.

Proof. (i)=(il). Assume that K is compact. Let B be the closed unit ball in 4 and ¢> 0.
Since KB is relatively compact in 4, we can choose a finite set {fV,....f™} in B so that
{Kf®:1<i<n}is an ¢/3-net for KB. Given feB, choose i€ {1,...,n} so that | Kf— Kf® | <
&/3. Since the family {Kf®:1 <i<n} is uniformly equicontinuous, there exists 6 > 0 such
that, whenever |s-t| <8, | Kf®(s)— Kf®@)| <¢/3 for all i=1,...,n. Hence, whenever
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|s —t] < d, we have
I F($)(f) = FOWI = 11 Kf(s) - Kf ()]
< IKF () — KOG + | KfFO(s) — Kf O(e
+ 1 Kf ) - Kf ()
SIKf=Kf O + | KfOs) — KO + 1K~ Kf |
<e3+e3+53=¢

Therefore, || F(s)— F(t)l| =supyp; §FE(S) = FE)( ) <& whenever |s—1f <. This
proves the uniform continuity of F. Now to prove the almost periodicity of F, note that
as above

IFs+D(f)—FN < IK = Kf Ol + [ KfOfs + ) = KfO@) | + | Kf D~ Kf .

It is then clear that the equialmost periodicity of {Kf®:1<i<n} implies F is almost
periodic.

(il)=(ifi). If F is continuous almost periodic, then F has the approximation property (Sect-
ion 2, Remark 1). Therefore, for each &> 0, there exists a trigonometric polynomial P, in
AP(R.KI(A, X)) such that [ F—P,J| <¢, where P()=Yr.; ae” "™, aeKL(4,X), LeR,
1<k <n Now, define T,:A— A by T,f(t) = P(t)(f). We first prove that T, is compact. Let
B be the unit ball in 4. Since P, is almost perlodlc [Theorem 6.5], the set {P(t)}teR} is
relatively compact in KL(4, X). Let {P(t"):1 < i< m} be a finite ¢/3-net for {P(t):teR).
Also since a,s are compact operators, the terms a,e*™* are compact. As P,(t) is a finite sum
of such terms, it is compact. In particular P,(t®) is compact for each i=1,...,m. Now if
H:A-X™ is defined by Hf=(Pt")(f).-...P(t™(f)), then it is easy to see that HB is
relatively compact in X™ Let Hf‘” Hf“” be a finite /3 - net for HB. Then for any f in
B, there exists £ such that [ Hf— Hf"" [lx= < &/3. But

I Hf — Hf O || gm = Z I PLE)(f) = PLe®)(FP)
Hence
1))~ PAONS M) | <ef3 for all i=1,....n ]

Let teR and feB. Choose ie{l,...,n} such that || P(f) — P,(t")| < ¢/3 and then je{1,...,n}
so that (I) holds. Then

| T.f () ~ TSP D1 = | PS) — P2} (f9)
PO = PN
+IPLDY () = PLOSD)
+IPLDY D) =P
<P = PN+ IPLONN = PLHFD)
+ PO ~ P )]
<ef3+e3+¢3=c
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Therefore,
1T,/ = TS =sup | TS — TfP (0] <e

teR
This shows that { T, f":1 € j < n} is a finite e-nct for T,5. Hence T, is compact. Finally, since

1K =Tl = sup | Kf— T,f 1l = sup sup | Kf ()~ T.f (9

ifn=t 1=t ek
=sup sup [ FO)(f) — PN} ]| =sup | FO)— POl = F — P,
R |flis! reRt

assertion (iii) follows.
(iii) = (i) If (iii) holds then K is compact, since it is a uniform limit of compact operators T,.

(i) = (iv). Suppose that F is continuous almost periodic and let & > 0. Since F is uniformly
continuous on R? [Theorem 6.2], there exists & >0 such that, whenever |s —t| <38,
| F(x +s)— Flx + )] <e for ali xeR. But as

sup || Flx +s)~ F(x + ) | = sup sup | F(x +)(f) ~ Flx +}(f}]

&l xeR || fIl<1

= sup sup | Kf(x +5)— K/ (x + 0]
ffl<t xeR

= sup [|(K/); ~ (KNl
Iflst

= sup [K(f) =Kl
[FAE31

=K, — K.

=[16%s) - 60},
it follows that 6% is continuous. Also, from the above equalities we have, for any ¢,
I16%(t + ) — 0%(t) | =sup | Fx + t + 1) — F(x + £)
xeR

= sup ||F(x'+17)—~ F(x)].

Y=x+1eR

Hence, the almost periodicity of 6% follows from that of F. (iv)=-(ii). From the equalities
in (ii)=>(iv), it is clear that the continuity and almost periodicity of F follow from that of 6%,

Remark 1. The proof of the above theorem vitally depends on the fact that the functions
in AP(R, X) have approximation property. If G is a locally compact abelian topological
group then the algebra of trigonometric polynomials in G, that is, the algebra of finite
linear combinations of the continuous characters on G, is norm dense in AP(G) [Larsen’,
Theorem 10.7.4]. More generally, if S is a topological semigroup and algebraically an
abelian group then by Burckel®, Corollary 5.6, the space of finite linear combinations of
semicharacters of S is norm dense in AP(S). Hence in the above theorem, when X = C, we
can replace R by either a locally compact abelian group or a locally compact topological
semigroup which is algebraically an abelian group. The exponential functions are then
replaced by continuous characters or semicharacters.
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Corollary 3.2. K1{4), the Banach space of compact operators is isometrically isomorphic
to a subspace of AP(R, KL{4)}).

Proof. From the above theorem, if K 15 compact then the map 0¥ defined by #*(f) = K, is
continuous aimost periodic. This defines a map :K — 6* from KL{4) into AP(R, KL(4)).
It is casy to sce that ¥ is a linear homomorphism. Also as |(Kf),[| = || Kf |, for any seR
we have
(K = 1) 0% || = sup [ 6%(s) | = sup | K,
scR R

=sup sup || Kf || =sup sup [|(Kf)|

seR 1/Es1 =R fl<1
= sup sup [ Kf || = | K,
IfI<1 sek

which shows that ¥ is an isometry. This completes the proof.

Remark 2. When X = C, Theorem 3.1 can be generalised to obtain characterisations of
collectively compact sets of operators on A= AP(R). It may be recalled that for Banach
spaces X, Y aset # < BL(X, Y} is collectively compact if {Kx:||x || < 1, Ke#"} is relatively
compact in Y% Let A* denote the topological dual of AP(R). For each KeBL(A) define
FX:R — A* by t — FX(1), where FX(1)(f) = Kf(8), fe 4, and 0%:R— BL(A4) by 6X(t) = K,, teR.
Theorem 2.1 then can be generalised as follows:

Theorem 3.3. For a set of operators 5 in BL(A), the following are equivalent:
(i) A is collectively compact.
(ii) The family {F¥:Kex'} is uniformly equicontinuous and equialmost periodic.

{iii) The family {6*:Ke.#"} is uniformly equicontinuous and equialmost periodic.

4. Fourier series

Let K be a compact operator on AP(R) and 6%, as in Theorem 3.1. In this section, we
apply the resuits of Section 3 to obtain sufficient conditions on the map 6% so that the
Fourter series of Kf, for all f in A4, converge at the same point. We also investigate the
relation between the Fourier exponents of functions in the range of K with those of 6%,
We show that even though the range of K is uncountable the union of sets of Fourier
exponents of functions in the range of K is countable and in fact this set is contained in
the set of Fourier exponents of 0X.

Throughout this section, 4 denotes the space AP(R). To obtain the desired results, we
first defined vector-valued functions of bounded variation in a way suggested by scalar
functions of bounded variation.

Definition 4.1. Let f be a function defined on the interval [, k] in R with values in Banach
space X. If P is the partition of [a,b] given by a=t,<t,---<t,., <t,=b, put V(P,f}=
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“_, | f(t) —f (.- )|l. Then the function f is said to be of bounded variation on [g,b] if
and only if supp V(P, f)< .
The following theorem is from Corduneanu® [Theorem 1.21].
Theorem 4.2. Assume that the almost periodic function f(x) is such that 4, — 4, =« >0,
n=1,2,..., so that the unique limit point of its Fourier exponents is the point at infinity.

If x, is a point in the neighbourhood of which f{x) has bounded variation, then the Fourier
series at x, converges to f(x,).

Theorem 4.3. Let KeKL{4) and B the closed unit ball in A. If 6% is as in Theorem 3.1 and
satisfies
(i) 6% has bounded variation in the neighbourhood of a point (say) ¢, in R.

(ii} The Fourier exponents of 0% are such that A,,, —~ A, 2o >0, n=1,2,... (That is, the
unique limit point of the Fourier exponents of 8% is the point at infinity).

Then, (a) The Fourier exponents of Kf, for all fe 4, belong to the set of Fourier exponents
of 6.
(b) For all fe 4, the Fourier series of Kf converges at the point 2¢,.
Proof. Since 6% is of bounded variation in the neighbourhood, say [a, 5], of t,,
sup 3 16%(c,) — 8%(t,- 1) | < 0,
P =1
where supremum is taken over all partition P of [4,b]. But
11652 — 8%(t,- ) = 1 K, — K, ) = sup Kef— Ko Sl
= supsup [Kf(t + £} — Kf (t + ;)]
JeB R
= |Kf(tg + 1)~ Kf (to + ;- 1),
for all feB. Now, if 0 % fed is arbitrary then (f/] fl)eB and we have
1
6%(z:) — 6%(¢,- Il = m!l Kf(to +1)~ Kf(to + - 1)
Therefore, if u,=t,+1¢, 1<i<n,

sup ¥ Kf () — K f (1) < (sgp 3 100) = 05 n) 11 <o

This shows that for all f'in 4, Kf is of bounded variationin [a + t,, b + t,], 2 neighbourhood
of 2ty. Now let ¥, A,e"< be the Fourier series associated with 6%, where

1 n
A= a2, 6% = lim " J B5(r)e ™ ds.
n— o
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Then
lla(2, 6% = [];}]121 oA, 85) (N1

= sup sup|a(d,0%)}(f)(x)|

IAIS1 zer

lim - J-OK(t)(f)e“’l’"dt

n-roafl

= sup sup
IFESL xR

= sup sup
WiSL xer

lim - J K. f(x)e™ " de

nwll

= sup sup
I7FS L xer

n-w

limlj‘ Kf(x+ e dt
nJo

2| lim %f Kf(x+t)e” " d¢| for all feB, xeR.
0

no@

Changing 7 to t — x, we have

RHS =

ool

1 x+n .
lim - j Kf(e™ =0 d;

by Corduneanu?; Theorem 1.12 and

=|lim ~ J Kf(t)e ™" dt

nrao

since le "% =1.

Hence, RHS = |a(4, Kf)|, where a(l, Kf) is the Fourier coefficient of Kf. Thus | a{4,6%)| >
la(4, K1) for all feB. Now, if 03 fed be any element then (f/]f|)eB and we have
lfa(d, 851 = (1/1 £ 1) |a(4, Kf)|. Therefore, for any fe 4, if a(A, Kf) # 0 then a(4, 6%) #0. This
shows that, for all feA4 if 1 is a Fourier exponent of Kf, then it is a Fourier exponent of
6%, In other words, the union of sets of Fourier exponents of functions in the range of K
is contained in the set of Fourier exponents of #%. This proves (a). Therefore, if 6 satisfies
(ii) so does Kf, for all fe A. The assertion (b) then follows from Theorem 4.2,

‘We now give an example of a compact operator K on A and estimate the set of Fourier
exponents of 6%,

Example. For feA define K:4A— A by
L[
Kg(s) = lim - J f(s—Hg(r)de.
n=+w 1]
Since f is almost periodic, from Theorem 3.1 it can be easily proved that K is compact.

Let 6 be as in Theorem 3.1. We shall show that the set of Fourier exponents of ¥ is
precisely the set of Fourier exponents of f. Let

a(2, %) = lim L f 0X(s)e =4 ds.
mJjo

m-co
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Then
la(a, 6% = ”S'l’ig1 Il (2, 85 ()

= sup sup |a(4, 0 (g)(x)|

lgll<1 xelR

il

sup sup
Jgl €1 xeR

lim 1 Jm FK(s)(g)(x)e ™™ ds

m-r oo 0

1 {m R
hm AJ (K,g)xe "*ds
m

m—+w 0

= sup sup
loll <1 xem

= sup sup
ligl St xem

(™ ¢
lim HJ Kg(x +s)e™*ds

m= o0 o

Therefore,

RHS = sup sup

gl €1 e

m—w no
e

lim - lim ¢,(s)ds

m—ow M jo \n»o

4=~ f i+ 5 tglte ™ dr
njo

lim iJMI: lim 1J"f(x 48~ t)g(t)dtJe’“sds
0 0

= sup sup
gl <1 xer

@

where

We shall show that ¢,(s} converges uniformly in s. It is enough to prove that ¢,(s) is Cauchy
uniformly in 5. Since f is almost periodic, there exists s,,...,s, in R such that for any seR
there is 5;, 1 < i<k with

>

&
”f;"fs.ﬂ <m-

Let xeR. For each i=1,...,k define g,(t) = f{x + 5, — )g(t). Then g;, 1 <i<<igk, is almost
periodic function. Therefore

lim L (r)dt

g gi

exists for each i. Hence there exists N(i) such that

1ng>dz—1,f 40t
nJ, n ),

for all n, n' = N(i). Let N = max {N(i):1 <i<k}. Then, for n, n = N we have

<e
3

1

'1 f "ot s— gty de— - f n/f(x +5—Dgde] < £
nJo n Jo 3
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for all i < k. Now, for n,n’ 2 N and seR,
1
n

[:(s) — P8} =

jnf(s +x— Dg(t)e " * dt

[

L J fls+ x — gl dr
n Jo

S}%Jn[f(S+x—l)—f(s,-+x—t)]g(t)dt

+ ‘1 J"f (s, + x — t)glt)dt — LJ"’f (s: +x—t)gr)dt
nJo o

+H~,J\n' [f(s;i+x—1t)—f(s+x—t)]g(t) dt

<Ufi~fullgl+5+ 17 ~L 1 1gl

<g3+¢/3+g3=e

Thus
148} — dw(s)] <& for all n, v’ = N and for all seR. (I1)

Hence, lim, ., ¢.(s) exists uniformly for all seR. But then from (I) we have

la(4,0) | = sup sup (I11)

o<1 xer

lim lim {f d(s)ds
&)

Mmoo n—w M

Let
Ll l "
@= | s
Write a™ = lim,,., , 4 and a, = lim,,, , af. We shall prove that ™ converges to a™ uniformiy

in m. But again, it is enough to show that 4] is uniformly cauchy in m. From (If) if n,
n' 2 N, we have

e -apl=[1 " pwras= 2 [ 6,00

<L f " 164 — ()l ds <.
mjo

This shows that lim,_, ,, 4} exists uniformly in m. Therefore, the sequence {a,} converges
and lim,, ., , a” =lim,, , a,. Equivalently,

lim lim g = lim lim aJ.

Mmoo p o oo m-rco

Hence, from (If1),

la(d. 6% = sup sup

B xen |nr oo m— oo 12

fim fim - r $uls)ds
0
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lim lim ijm [lrf(x +s—£)g(t)e““dtj|ds
o PJo

= sup sup
g €1 xer [n—> o m—o M
1l )
= sup sup |lim lim*f [j f(x+5—t)e"’“ds]g(t)dz
IghS1 xep [1—rom—w MR Jo | Jo

() = (1/m) [ f(x + s — )g{t)e ~** ds, then it can be shown that y,(f) converges uniformly
in t. Therefore, taking limit inside the integral and changing s to s+t we have

lim - f[hm J~ f(x+se"‘5ds]g(t)e""dt
0 m-

nsoo M

1" i o .
lim -J [lim —J‘ flx+ s)e“”’ds]g(t)e"’“dt
rewol Jo Lm2oM |o

11rn ! j g(tle M dt
0

RHS = sup sup

ol S xem

= sup sup
sl €1 ver

= sup sup|a(4, f;)]

lgll€1 xem

=la(%A) Sup, la(4: g)l, since |a(Z, f)] = la(, F)|
gll

=1a(A,f)], since sup la(Z,g)= 1.
ol <1

Thus, [ a(4,6%)| = [a(4, f)|, which shows that 4 is a Fourier exponent of 6% if and ouly if
it is a Fourier exponent of f.

References

1. SCHAEFER, H. H. Banach lattices and positive operators, Springer-Verlag, 1974,

2. CoRDUNEANU, C. Almost periodic functions, Wiley Interscience, 1968.

3. BURCKEL, R. B. Weakly almost periodic functions on semigroups, Gordon and Breach,
1970.

4. GOLDBERG, S. AND IRWIN, P, Weakly almost periodic vector-valued functions, Diss. Math., 1979, 157,
1~42.

5. AMERI0, L. AND PROUSE, G. Almost periodic functions and functional equations, Van Nostrand, 1971.

6. LEVITAN, B. M. AND Almost  periodic functions and differential equations, Cambridge

Zuixov, V. V. University Press, 1982.
7. LARSEN, R. Banach algebras, an introduction, Marcel-Dekker, 1973.
8. ANSELONE, P. M. Collectively compact operator appr ion theory and appli to

wmtegral equations, 1971, Prentice-Hall.



