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Abstract 

The concepts of growth for plurisubharmonic functions were studied by Ronkin and of generalised growth by 
Juneja and Sinha. The grawlh of plurisubharaminc functions in a finite domain is presented in this paper 
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1. Introduction 

A non-constant entire function of several complex variables is denoted by, 

Here we shall denote the complex n-tuple of vectors (-), and the real n-tuple (-). 
That is to say TEC" if 2 = (zl,zZ,. . . , zn )  and FEW if F= (t,, t,,. . . , t.). We shall also 
denote by 1IxII = (A, + A2 + ... + A , ) .  Let D = {(z , ,~ , , .  . . ,z,): lzi - zjo'I i Ri,  i =  1,2,. . . ,n} 
b_e a polydisc in C b i t h  centre at @ =  (z?',z$O',. . .,zLO') and polyradius equal to 
R = (R,, R,,. . .,R,), where each Ri is a fixed real number for i = 1,2,3,. . . ,n. Growth 
parameters for plurisubharmonic functions were studied in great detail by Ronkin', which 
were later generalised by Juneja and Sinhaz. For definition and properties of plurisub- 
harrnon~c functions see Lelong and Gruman3. 

Ronkin considered the class U of plurisubharmonic functions as introduced by him. It 
is known1 that the functions p(R) in U satisfy the following inequality, 

for any rand  S'~k!"+nd i + j~ = 1. Here k!: denotes the positive hyperoctant of R". For 
other relevant definitions and concepts see Ronkin'. Seremeta"enera1ised the definitions 
of order and type with the help of two classes of functions viz., Lo and A. Juneja and Sinha2 
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further generalised class U by using Seremeta's class of slowly varying functions. The 
definitions and examples of these classes can be found in Juneja and Sinha'. 

Juneja and Kapoor4 studicd the growth ofanaiyt~c functions in a polydisc domain. They 
found the coefficient characterisat~on of order, studicd partial orders, hypersurface of 
associated orders and its geometry. In this arliclc the author has made an attempt to study 
the growth of plurisubharmonic funct~ons in a general setting. Thus the results of Juneja 
and Kapoor4 in this regard can be obtamed as special cases. 

2. Main results 

First of all we define the class E(P), PEL'. 

Definzlion 2.1: Let E(P) be the class of functions p(R) satisfying the following: 

(i) IP(F?) in E(P) is upper semi-continuous on D. 
(ii) ip(E) is monotone non-decreasing in each of the variables R, , R,, . . . , R,,. 
(iii) p(R) is pluriconvex in - j(log(1 - R,)), - P(log(l - Rz)). . . . , - P(log(1 - R,)), 

meaning thereby for every t= (t,, t,,. . . , t,) and S =  ( s , ,~ , , .  . . ,s,,) in I: and for all I, 
11 such that J. + g = 1 

1 - expiK1QP(log(l - t,)) + ~ P ( l o g ( l  - s J ) l l  
<j.(o(l I , . . . ,  t , )  + P c ? ( ~ , , - . .  ,S"). (2.1) 

Here I' = { ( r , , r , ,  .. . , r , , )~R":0 < ri < 1, I = I, 2.. . . , nj and I: is the positive part of I". It 
is worthwhile to see that by substituting P(x) = x, the identity function in (2.1) class E(P) 
reduces to the class of functions q(R) defined by Juneja and Kapoor4. 

Definition 2.2: Let 

be the maximum modulus of the function p(R), and D the unit polydisc. The generalised 
order of q(R) is defincd as, 

where a t A  and PEL'. 

Example: Consider the function, 

~ ( R I ,  Kz)=a-'C- P ( l W  - R,))  - P ( W l  - R2))I. 

Then it can be easily seen from (2.2) that q(R,,R2) has generalised order 2. 

We now introduce the system of generalised associated orders and the hypersurface of 
generalised associated orders. 
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Definition 2.3: Let a d  and PEL', and let $(l?)eE(P) be a function of finite generalised 
order p(q) as defined above. Lei 

From the properties of the functions a  and P, it is very easy to see the following: 

(a) The set B,(q) is octant like. 
(b) The boundary points of the set B,(ip) form a certain hypersurface S, = S,(q), which 

divides the hyperoctant R: into two parts, one in which the inequality (2.3) is true and 
the other in which it i s  false. Thus we shall call it the hypersurface of generalised 
associated orders of q(R) in E(j) ,  and any system of numbers p,,p,, . . . ,pa such that 

- (pl,dz,.. .,p.)~S,(q) will be called a system of generalised associated orders of the 
function q(R) in E(P). 

Remark: Taking ~ ( x )  = logx, P(x) = x and q(R) = log M(R, f )  where 

M(R, f )  = max I f(Z)l. 
:,I = 1, 

(2.4) 
1=1,2 ,  ." 

We get back equation (5.3.1) of Juneja and Kapoor 4. 

We now introduce the generalised order of the function q(l?) in E(P), with respect to 
one of the variables R, (keeping the other i # j fixed). 

Definition 2.4: Let a a A  and PEL', then the generalised order of q(R) in E(P) with respect 
to the variable Ri (keeping the other variables i # j fixed) is defined as, 

Definitions (2.2) and (2.3) team up to prove 

Theorem 2.1: The hypersurface ojgeneralised associated order of the function cp@) in E(j) 
determines its order p(cp). 

From the definition of the generalised order with respect to one of the variables we first 
prove, 

Theorem 2.2: The generalised order pi with respect to  one of the variables keeping the others 
(i # 1 )  fixed is independent of the values assigned to thefixed uariables. 

Theorem 2.3: Let p(q) be the generalised order of cp(i?) and p:(q) the generalised order of 
q(R) with respect to one of the variables i, 1 < i 6 n, thenfor any q(fl  in E(j) we have 

Also we have a relation between pl(q) and the system of associated orders 
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Theorem 2.4: Let a e A  and PeLO, then ij p(q)< m is the generalised order of v(l?) in E(p) 
and p:(q) the generalised order with respect to one of the variables, then 

Finally a geometrical characterisation o f  the hypersurface o f  generalised associated orders is 
given in the shape o f  the following theorem. 

Theorem 2.5: Let q(R) be in E(/l), for at-A, jitLO. Also let B,O be the domain consisting of 
the interior points of the set B,(rp). Then the domain B;' that is the image of B; under the 
transformation n; = l /a, ,  i = 1,2,. . . ,n is a complete convex domain. 

3. Proofs 

Proof of Theorem 2.1: Let ( t ,  t,. . ., t)eSp(rp). Then for /1Rll-+l and any E > 0, we have 

Therefore, for R* = (R ,  R, .  .. , R) such that R is sufficiently close to 1, 

q(i?*) < na I [ -  ( t  +~)b( log( l  - R))] .  (3.2) 

But, on the other hand, there exists a sequence {R:} such that for llR: 11 -1 as n+ m 

q(l?.*) a ' [ - ( t  - ~)P(log(I - R,))] 
where - 

R: = (R", R", . . . , R"). 

(3.3) implies that for 8 = (R,,  K,, . . . , R,) with //l?j/ sufficiently close to  I 

< 1 a - ' [ - ( t -  e)fl(log(l - R.))] 
i = 1  

where 
R**=(R,R ,..., R). 

Inequality (3.4) contradicts the fact that (t, t,. .. , t ) e S p ( ~ ) .  Hut q ( R ,  R, .. . ,K) = MD(i ,  (D), 

where D is the unit polydisc. Therefore t = p(9). Thus geometrically the generalised order 
p ( q )  can he obtained as the intersection o f  the hypersurface S,(rp) with the ray 

Proof nf Theorem 2.2: Without the loss of  generality, we can assume 1 = n. Set 
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p; is monotone non-decreasing fro,m the properties of a and P. From (3.5) we get, 

where C,(RT,. . . ,R:_ ,) is some function less than infinity Estimating v(R) by the inequaiity 
(2.1) with 

t ,  = RT 

and using (3.6) we obtain, 

+llvC~,,s*,...,OI 

applying a on both the sides and using the definition of the class A we get 

Since e and E. are arbitrary, we have, 

pn*(Rl,R*. .... Rn-l)<pn*(Rf....,Rn*-l). (3.7) 

We can similarly prove that, 

p,*(RT,Rf, .... R,*-1)<pn*(R,,R,,...,Rn-l). (3.8) 

Combining (3.7) and (3.8) we prove the assertion. 

Proof of Theorem 2.3: From the inequality (2.1) we can easily see that v(R) satisfies the 
following generalised inequality, 

vCl-exp{P-'(1,P(log(l- tIl))+~2PUog(l - tl2H + -.+d.P(log(l- t,.))},..., 

1 - exp(D-'(l,P(log(l - t.,)) + ... +Z,P(log(l - tm,,))] 

Estimating the function q(R, . . . , R) by the above inequality (3.9) with the choice, 
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and 
t,=O for i # j  

and by definition (2.4) we get 

< i =  s I %-I [ - ( y ) 8 ( l o g ( l  R ) ) ]  

Setting, 
p:+& 1. = ------- 

' i p : + n s  
i=1 

- P(log(1 - R)) i = i  

Taking limit and using the fact that aeA, we get, 

P ( d  < C Pf 
, = I  

Remark: By taking a(x) =log x and p(x) = x we can get theorem 5.4.2 of Juneja and Kapoor4 
from our theorem. 

Proof of Theorem 2.4: Without the loss of generality we assume that i = n. Now from 
definitions 2.2 and 2.4 we obtain, 

v'(E)< u ~ ' [ - ( P  + &)p(log(l - R))1 (3.10) 
and 

~ ' ( 4 0 , .  ..,O, R,i) < a-'[-(p,* + &),B(log(l- R,*))]. (3.1 1) 

Estimating the function &) by inequality (2.1) with 

R=max[R,,R, ,..., R,_,] 

= 1 -ex~[p-~{:~( iog( l  R ) ) ] ]  

si=O f o r i = 1 , 2  ,..., n-1  and t,=O 



0 0 0 . .  1 -exp[fl-'{:611ogll -R:*j]) 

Then using (3.10) and (3.1 1) we obtain, 

which, however, means that, 

But this implies that there exists a paint { p , ,  y,,  . . . , p,) on Sp(p) such that p, <(p: +&)/A. 
But E > 0 and ;. are arbitrary. We, therefore, have, 

The reverse inequality 

is obvious. Combining (3.12) and (3.13) we get our desired result. 

Remark. The above result also generalises theorem 5.4.3 of Juneja and Kapoor4 

Proof of Theorem 2.5: It is easy to see that the domain B; ' is complete. We now prove 
its convexity. Let a, k ~ ~ .  Estimating the function &j by the inequality (2.1) with 

for i = 1,2, .. . , n we obtain, 



or 

which thus show that for any I and p with I + P =  1 the point 

(Lib, + ~ / a  ,,..., L/b, t & , ) E B ; '  

proving the convexity of the domam. 

Remark: The above result generalises theorem 5.3.3 of Juneja and Kapoor" 
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