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Abstract

The concepts of growth for plurisubharmonic functions were studied by Ronkin and of generalised growth by
Juneja and Sinha. The growth of plurisubharomine functions in a finite domain is presented in this paper
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1. Introduction

A non-constant entire function of several complex variables is demoted by,

f@= i Chsterrrien 2 255 oo Zh n

J&=0

Here we shall denote the complex n-tuple of vectors (~), and the real n-tuple (—).
That is to say ZeC'if Z= (Z1,22,.-.,2,) and FeR" if F=(ty,t5,...,1,). We shall also
denote by | A|| = (A; + A, + - + 4,). LetD {21,225 - Z,): |zl—zf°)| <R,~, i=12,..,n}
be a polydisc in C* with centre at Z© =(z",z{,...,z%) and polyradius equal to

=(Ry,R,,...,R,), where each R, is a fixed real number for i=1,2,3,...,n. Growth
parameters for plurisubharmonic functions were studied in great detail by Ronkin®, which
were later generalised by Juneja and Sinha® For definition and properties of plurisub-
harmonic functions see Lelong and Gruman?.

Ronkin considered the class U of plurisubharmonic functions as introduced by him. It
is known® that the functions @(R) in U satisfy the following inequality,
oltist Bk, i) S AB(ts. - ta) + (515, 80)} t2)

for any # and §eR" and A+ = 1. Here R”, denotes the positive hyperoctant of R". For
other relevant definitions and concepts see Ronkin!. Seremeta® generalised the definitions
of order and type with the help of two classes of functions viz.,, L° and A. Juneja and Sinha?
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42 AMRITASU SINHA

further generalised class U by using Seremeta’s class of slowly varying functions. The
definitions and examples of these classes can be found in Juneja and Sinha®.

Juneja and Kapoor?* studied the growth of analytic functions in a polydisc domain. They
found the coefficient characterisation of order, studied partial orders, hypersurface of
associated orders and its geometry. In this article the author has made an attempt to study
the growth of plurisubharmonic functions in a general setting. Thus the results of Juneja
and Kapoor? in this regard can be obtained as special cases.

2. Main results

First of all we define the class E(f), feL’.
Definition 2.1: Let E(f) be the class of functions ¢(R) satisfying the following:

@} @(R) in E(P) is upper semi-continuous on D.

(ii} @(R) is monotone non-decreasing in each of the variables R,,R,,...,R,.

(iii) @(R) is pluriconvex in — B(log(l — R,)), — Blog{l —R,)),..., — B(log(l — R,)),
meaning thereby for every £ = (¢(,¢,,...,t,) and §=(s,,5,,...,s,) in I, and for all j,
psuchthat A+ p=1

@[1-exp{f™ (ABlog(l — £,))+ pPlog(l —s1)}},.,
1 —exp{f~ (Af(log(l —t,)) + uplog(l —s,)}]
KA ta) + (515, 8,). 21

Here I"={(r|,rs,...,7,)eR"0<r, <1, i=1,2,...,n} and I", is the positive part of I It
is worthwhile to see that by substituting #(x) = x, the identity function in (2.1) class E(f)
reduces to the class of functions ¢(R} defined by Juneja and Kapoor®.

Definition 2.2: Let
Mp(t, ¢) = max o(R), O0<t<1
ReD

be the maximum modulus of the function @(R), and D the unit polydisc. The generalised
order of o(R) is defined as,

. (M (1, ¢))
=1 iuatlar ALk 27
PO)=Hmsup el — 1)
where aeA and fell.

22

Example: Consider the function,
®(Ry, Ry) =o' [— Bllog(1~ R,)) — Bllog(l — R,))].
Then it can be easily seen from (2.2) that (R, R,) has generalised order 2.

We now introduce the system of generalised associated orders and the hypersurface of
generalised associated orders.
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Definition 2.3: Let xeA and fel’, and let ¢ (R)eE{P) be a function of finite generalised
order p(¢) as defined above. Let

B,=B,(p)= {(auaz>~-~,an)ER"+5 as [ Rl —1,

o)< ¥ 4™ [~a,fllog(l —Ry)] } 3)

From the properties of the functions « and B, it is very easy to see the following:

(a) The set B,(¢) is octant like.

{b) The boundary points of the set B,(¢p) form a certain hypersurface S, = S,(¢), which
divides the hyperoctant R, into two parts, one in which the inequality (2.3) is true and
the other in which it is false. Thus we shall call it the hypersurface of generalised
associated orders of (R) in E(f), and any system of numbers p,, p,,...,p, such that

- (pl,ﬁz,...,p_,,)sS,,(tp) will be called a system of generalised associated orders of the

function ¢(R) in E{f).
Remark: Taking a(x) =logx, f(x) = x and ¢(R)=1log M(R, f) where

M(R, f)= ‘Y:T‘lilx IF(2). 24
=12

We get back equation (5.3.1) of Juneja and Kapoor *.

We now introduce the generalised order of the function ¢(R) in E(B), with respect to
one of the variables R, (keeping the other i # j fixed).

Definition 2.4: Let aeA and BeL®, then the generalised order of @(R) in E(f) with respect
to the variable R; (keeping the other variables i # j fixed) is defined as,
. a(p*(R))
*(p) = limsup————"— 2.5
PO =10 P g - R)) @)
Definitions (2.2) and (2.3) team up to prove

Theorem 2.1: The hypersurface of generalised associated order of the function o(R) in E(f)
determines its order p(¢).

From the definition of the generalised order with respect to one of the variables we first
prove,

Theorem 2.2: The generalised order p, with respect to one of the variables keeping the others
(i 1) fixed is independent of the values assigned to the fixed variables.

Thforem 2.3: Let p(o) be the generalised order of o(R) and p¥(p) th_e generalised order of
@(R) with respect to one of the variables i, 1 <i< n, then for any @(R) in E(B) we have

plo) < _; P¥{o) (2.6)

Also we have a relation between pf(¢) and the system of associated orders.
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Theorem 2.4: Let weA and el®, then if p(p)< o is the generalised order of (R) in E(B)
and p¥(¢) the generalised order with respect to one of the variables, then

()= inf pdo). 2.7
(P1,0230005 pn)eSp(w)

Finally a geometrical characterisation of the hypersurface of generalised associated orders is
given in the shape of the following theorem.

Theorem 2.5: Let @(R) be in E(B), for A, peL. Also let BS be the domain consisting of
the interior points of the set B,{¢). Then the domain B, that is the image of BY under the
transformation a; = 1/a;, i = 1,2,...,n is a complete convex domain.

3. Proofs

Proof of Theorem 2.1: Let (1,t,...,1)€S (). Then for I|Rfj—1 and any &> 0, we have

o(R) < .;Dfl[*(l*-e)l’(log(l — R 3.0
Therefore, for R* = (R, R,..., R) such that R is sufficiently close to 1,

@(R*) < no [ — (£ + £) fllog(1 — R)]. (32)
But, on the other hand, there exists a sequence {R*} such that for |R¥| =1 as n— oo

(RY)>a*[—(t—2)Bllog(1 — R,))] (33)

where

RY¥=(R,,R,,...,R,).
(3.3) implies that for R =(R,,R,,...,R,) with |R]| sufficiently close to 1
P(R)< p(R**)
<max{e™ ' [~ (t~e)Blog(! ~ R N ],....a [~ (t —e)fllog{l ~ R,)N]}
< ¥ ot -~ 9Blogit ~ )] (34

where
R**=(R R,...,R).

Inequality (3.4} contradicts the fact that (1,z,...,1)€S,(¢). But @(R,R,...,R) = Mp(t, 0),
where D is the unit polydisc. Therefore ¢ = p(¢). Thus geometrically the generalised order
()} can be obtained as the intersection of the hypersurface S (¢) with the ray

{aaeRy,, a,=1i=1,2,...,n0<1< o).
Proof of Theorem 2.2: Without the loss of generality, we can assume i = n. Set

+ Rk
pERY, .. RE,) = limsup— 2 R

—_— 35
P Fitog(t - 7)) G3)
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p¥ is monotone non-decreasing from the properties of o and f. From (3.5) we get,

@ (R)<a™ [~ (pF +5)Blog(t ~ R¥) + C,(RY,... . R¥_ )] (3:6)
where C,(R%,..., R¥_,)is some function less than infinity. Estimating @(R) by the inequality
(2.1) with

t;=Rf

S’=1*exp[ﬁ”[ﬁ(log(l—Rl))#—i/?(log(l*R.*))]] forl<ignal.

t—l—-exp|: {ﬂ(logl—R))}:l, 5,=0

and using (3.6) we obtain,

q’(RnRz,-“sRn)Sioc*l[ ("" )ﬂ(log(l— n>)+c,(Rr,...,R:_1)]

+ upls;,52,---,0]
applying o on both the sides and using the definition of the class A we get

. a(g*(Ry,...,R,) _pE+s

limsuyp———— 2o L ———

it —Blogl—R,) ~ %
or

+£
PR Ry Ryy) <20

Since ¢ and A are arbitrary, we have,

P¥R Ry, Ry ) S o (RY, . RE ). (37
We can similarly prove that,
PYRYRE,..LRE)S IR Ry, Ry ). (38)

Combining (3.7) and (3.8) we prove the assertion.

Proof of Theorem 2.3; From the inequality (2.1) we can easily see that ¢(R) satisfies the
following generalised inequality,

o[1—exp {B~ (A, Blog(l — 1)) + 22Qog(l —132)) + - + A, fllog(l — £y, )},
1—exp{B~1(4; Bliog(l - tx)) + -+ + A S(l0g(1 — 1) }]
S PIETI) (9)

Estimating the function ¢(R,...,R) by the above inequality (3.9) with the choice,

ty=1— exp[ﬂ' ! {%5003(1 - R))}]
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and
t;=0 fori#j
and by definition (2.4) we get
n S
R, RS T Aa"[{’%if) Bllog(1 — R))]

i ]

< ; ! [ - (‘O—*/i‘?> Bllog(l — R)):’.

Setting,
Lo ptte
S pF+me
51
o(R) < na“[—< Z oF 4 ns) B(log(1 — R)):!
i=1
or

o(lo)
— L *
~logi =Ry S BT

Taking limit and using the fact that zeA, we get,

rlo)< Z o¥

i=

1
Remark: By takinga(x) = log xand f(x) = x we can get theorem 5.4.2 of Juneja and Kapoor*
from our theorem.

Proof of Theorem 2.4: Without the loss of generality we assume that i =z#. Now from
definitions 2.2 and 2.4 we obtain,

@* (Ry<a [ —(p +2)B(log(l ~ R)] (3.10)
and

©*(0,0,....0, R¥) <a™ [ ~(o} + 9Blog(1 — R¥)]. (3.11)
Estimating the function ¢(R) by inequality (2.1) with
R=max[R;,R;,...,R,-1]

=1 —expl:ﬁ'l{%ﬁ(log(l “R))}]

5;=0 fori=L12..,n—1and¢,=0

=1 —cxP[ﬁ_‘ {%ﬁ(log(l - R:))H

PRy Ry, .. R < @R, R,...,RY)

to get,



PLURISUBHARMONIC FUNCTIONS 47

si-w(l —ew[ﬁ" %/ﬁﬂogu - R)‘;}],...,())
+uq7(0,0,0,.,., { —exp[ﬁ" {;—ﬁ(log(l . R,’}‘))}]).

Then using {3.10) and (3.11) we obtain,

@Ry, R5,.. LR i [ ( 5 ) log(l—R)}
vart[ (B pto - |

which, however, means that,

(p_tc ox n+ e)sz (@)

)
But this implics that there exists a point (p;, p3,---,Ps) 00 §,(9) such that p, < (o} + €)/4
But &> 0 and 2 are arbitrary. We, therefore, have,

inf {ony <p¥. (3.12)

(P1P2sens PW)ES‘,(Q’)
The reverse inequality

pr<  inf (3.13)

(GRS SR G

is obvious. Combining (3.12) and (3.13) we get our desired result.
Remark: The above result also generalises theorem 5.4.3 of Juneja and Kapoor®.

Proof of Theorem 2.5: It is easy to see that the domain B, ! is complete. We now prove
its convexity. Let 4, beB Estimating the function (R} by the inequality (2.1) with

tlslfexp[[i’”(} s Blog(t — R, )J

5=1 —exp[/ﬂ'l(m i —ﬁ(log(l—R-))ﬂ

fori=1,2,...,n we obtain,

N N & |

+ Iti:il a” ‘[ E*;Tﬂ(log(l R,.))]
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O(R, Ry, RY) <
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1

$a [ ~ ey R - RJ)}

which thus show that for any % and u with 2+ =1 the point

(b, + 5. b, + 1fa)eB;

proving the convexity of the domain.

Remark: The above result generalises theorem 5.3.3 of Juneja and Kapoor®.
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