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SUMMARY

The theory for the intensities of Doppler components in birefringent
crystals developed in Part IV (Chandrasekharan, 1952) has been applied
to the case of cubic crystals and general expressions for the intensities for
11 specific orientations of crystals belonging to T,, O, and O classes and
6 crystal orientations of T and T, crystal classes have been derived.
The formulze have been used to calculate the intensities in the case of
diamond and other cubic crystals and the results compared with the
experimental data in the former case. There is not much agreement
between theory and experiment.

1. INTRODUCTION

In a series of papers on the thermal scattering of light in crystals which
appeared in the Proceedings of the Indian Academy of Sciences, the author
(Chandrasekharan. 1951, 1952) has given the theory of light scattering in
birefringent crystals and the expressions for calculating the intensities of the
12 pairs of Doppler components that can arise, in general, in these crystals.
The theory is based mainly on Mueller’s theory of scattering for isotropic
solids. In this paper the case of cubic crystals is considered and general
expressions for the intensities of the components for 11 specific crystal
orientations are derived.

Cubic crystals belonging to T,, T, and Oy classes are singly refracting,
those belonging to the other two classes T and O which can exhibit optical
activity, are strictly double refracting since the refractive indices of these
crystals for two circularly polarised waves with opposite senses of rotation
are different. As this difference is negligibly small for most crystals even
in the ultraviolet, for, e.g., in the case of sodium chlorate it is only 0-00002
at A 2537, it can be ignored in calculating the Doppler shifts and all cubic
crystals may be regarded as singly refracting. Therefore, as already secen
in Part ITI, there could, in genéral, be only three distinct pairs of Doppler
components each of which has strictly a degeneracy of four. For calculating
the intensities of these in equations (10) of Part 1V, we can take arbitrarily
any two orthogonmal vectors normal to the propagation direction of the

B . -> g - - -
incident wave as the vectors A and B and similarly any two arbtt;ary ortho-
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. b4 >

gonal vectors in the scattered wave front as the vectors P and Q. For cop-
-> ->

venience, we choose A and B to be parallel (4) and perpendicular (v) to the

plane of scattering T. Similar components of the scattered light are ﬁ and ?f
However, even this definition becomes arbitrary when backward scattering
is considered and in these cases, the chosen directions for the various vectors
are specified in the calculations. Cubic crystals have only three independent
elastic constants ¢y, ¢4, and ¢,,. Now when a medium is elastically isotropic,
as for example a glass, a relation

e — Cip— 2049 =0 1)
subsists between the three constants. In cubic crystals, therefore, the
quantity

Y = Cy3 — €1z — 2Cas @
may be defined as the elastic anisotropy factor since it determines the
variation in the elastic behaviour of the crystal for different directions. For

example, for constant scattering angle ¢, the Doppler shifts should depend
on the crystal orientation if y is finite.

In the case of crystal classes T,;, O and Qj, there are only three independent
elasto-optic constants py;, pys and py,.  As in the case of elastic constants
a relation

Pu— P1z— =0 (3
exists for amorphous solids. In the case of cubic crystals (T, O and Oy
a quantity K given by

Pu~ p— 2pu=K @
may be designated as the elasto-optic anisotropy factor. The values of
K and y determine the variations in the intensity of the Doppler components
with crystal orientation, for consiant 6. In the case of crystal classes T,
and T, there are four elasto-optic constants p,y, pys, pis and pg,. where
P12 5= p1s (Bhagavantam, 1942),

In cubic crystals of all classes, one of the three types of elastic waves
is strictly longitudinal and the other two transverse if the direction of propa-
gation coincides with a cubic, dodecahedral or octahedral direction in the
crystal. Tables I-IV contain the expressions for the stiffness coefficient and
the intensity of scattering for the various Doppler components in backward
and transverse scattering in a number of particular cases. Only those cases
have been chosen where the elastic wave is propagated along a cubic,
dodecabedral, or ociahedral direction, the plane of scattering being different.
The method of evaluation is based on equations (10), Part IV. It is best to
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proceed  step by step in any specific case rather than get a formidable
expression for intensities containing the direction cosines of the incident

- -

and observation directions and the vectors #, j H and \7 for an arbitrary
crystal orientation.
2. EXPLANATION OF TABLES

The expressions for the intensities in the various cases have only
relative significance and for obtaining the absolute values of I, they must
be multiplied by constant factor of (w?kT/2)) n®, where 5, the refractive
index, is the same for all crystal orientations. Tables I and II give the
results for crystal classes T,, O and O, for which py,= py; and Tables
1II and IV give the results for crystal classes T and T, for which pys == pys
and a term & = (p1o— py3)/2 which is finite is used. Tables I and III give
the results for backward scattering and Tables II and IV for transverse
scattering. We shall first discuss the results for the case p, = piy.

3. COMPARISON OF THE PRESENT THEORY WITH THE
EINSTEIN-SMOLUCHOWSKI THEORY

In these cases, a perusal of Tables I and I shows that when K =0
and v =0, as happens for amorphous substances, the intensity of the
scattered light is the same for all orientations provided the scattering angle
#is fixed. This affords a check on the calculations. When @ is 90°, the sum
of the intensities of all the components is given by

— ; _ 7%kT (P12t Paa® Pis® ;
Py Iy o L= T e LD Pas) o Py )
This result is identical with that of Mueller (1938). To analyse this
expression let us consider a solid which cannot be made optically aniso-
tropic, f.e., p,y =0 (for most cubic crystals and amorphous substances
2. € p., and this assumption is thereby justified in actual cases also).
Then only the density fluctuations can produce correspouding local fluctua-
tions in the refractive index. Hence the first term (p,.%/cyy) inside the double
brackets of equation (5) arises essentially from density scattering and the
other terms are due only to anisotropy or orientation scattering. This ana-
lysis was made by Mueller (/oc. cit.). But we can go a step further and
compare the results thus obtained with the well known expression of
Einstein and Smoluchowski, which was first used by Sir C. V. Raman (1922)
in the study of the thermal scattering of light in quartz. According to the
Einstein-Smoluchowski expression, the intensity of light scattered in a
transverse direction by a unit volume per unit solid angle is given by

1Tk g (!1.2_:_1).‘?’_9(”.2?%7 2 ()
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TaBLE 1

B{Jckward Scattering in Crystal Classes T4, O and O,

Effective Elastic

Direction i i |
No. of Wave I Constant g, and 'S H, H,=Y, | 1
Normal ]i)g ' Vibrn. Direction 1 1
| 3
1 {100] Ley [100] P’ 1 P1s? L 0 l 2p1stien
1
P=V=[010] | Tey [o10],
j 0 0 0 0
Ty [001]
2 {111} Loy — 23 UL | (pabR/3P T {pp+K/3)? 0 2 (proHR 3P (e —2v/3)
-> — -
=V=[13] | Te,+ ¥3[113) KY/18 K 0
- ‘ 1 2K (eau 0/
Ten + ¢3[110] 0 0 ! Ky18J
3 [110] Loy — 92 [110] Pt (P K /2P '] 0 (P2 H KD (e —v/D
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P=V=[00l] | Te,, [001] 0 0 g 0 0
Teg + /2 1110} 0 0 0 0
|
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Traumerse Sattering n Crystal Clsses T, 0 and 0
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TasLE 11T

Backward Scattering in Crystal Classes T and T),
P12 = (Pra + P1a)f2; 8 = (P — pi)/2; K = P11 P — 2y

i
Direction Blastic Constant ¢,
No. of Wave and Vibration v, H; H,=V, I
Normal f(: Direction }
1 [100] (5% [100} P1s? Pt Y (P1o?+p1aDfen
=V —1010] Can [010]
} 0 0 0 0
Caq [001}
2 {111 e — 293 [111] (PR3P | (P tK32 0 2 (et R 3P ey —2y/3)
=V =[t13] s+ 31117 R2jig Ry18 56 <
B 2 F21359/9 (00 493
¢aa + p{3[110] 5246 5%6 K18
3 {110} e — /2 [110] Pt (Pra+K/22 0 ; P+ (P2 R I2RY e —7/2)
=Y —=[001] Cu [001] 0 0 0 0
o o2 0

cu + ¥/2 [110]
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TabLe 1V
Transverse Scattering in Crystal Classes T and T,
: Direction | Blastic Constant q. Piane of § : |
No,i of Wave and Vibration Scattering | V. | H,=V, H, i i
i Normal ﬁ: Direction T , | ‘
e S S ]
! [100] e [100] [011] Lopg ! a Copape)2 {P1? Hpa—Pw)Hen
! : ;
Cas (910} 0, P2 0 - ? y
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i ; |
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where B is the compressibility of the medium. In the derivation of (6) it is
assumed that the Lorentz-Lorenz eXpression
n?

1
By T Y]

I
is valid, a being a constant and p the density of the substance. Differentiating
the expression (7) we get

dn
Pde = (n*— 1) (a*+ 2)/6n (®)
For hydrostatic pressure the principal strains are equal and are given by
AV
M= EET gy T gy O

But from Part IV Equation (20)
Ae=12nAn=n(pyx. + p Yy + puzy)

o Pyt 2010 Bp
= pt M Alhsp L (10)
But
Pu= Py, Since py— prp=2py==0 an
an L (put 29 _ 1y
Pa =" T T 12
Comparing equations (12) and (8) we have
(n® — 1) (n*+ 2)3 = rpy, (13)
or
2. 2 (02 2
(FH_AI)?(”‘*ZZ)_ = nipy,? (14)

Substituting (14) in (6) we have

1=AT g2 )
This expression is the same as the first term of expression (3) excevt for the
fact that in the latter 1/c;; replaces B. But these do not differ very much in
order of magnitude and therefore the resuits of the present theory agree with
those derived from the Einstein-Smoluchowski expression. But in crystals,
the Lorentz-Lorenz relation is not necessarily valid (Ramachandran, 1947).
Further the scattered intensity in a given direction is dus only to a few
elastic waves traversing the close neighbourhood of a specified direction
and it is more appropriate to consider the photoelastic effects produced by
them rather than consider the density fluctuations arising from all possible
elastic waves in the crystal,
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4. DiscussioN oF THE RESULTS IN TaBLEs T anDp 1T

Coming to particular cases, if the directions of incidence and of observa-
tion are paratlel to any two cubic directions (case 5 of Table II), the sum of
the intensities of the three pairs of compenents, in the light scattered by unit
volume of the scatiering substance per unit solid angle is

7KL g 2 {pr®+Pas”) Pad®
1= Ly e (16)
This expression was first derived by Leontowitsch and Mandelstam (1932)
and is thus seen to be valid only in the particular case stated. In this case
the cffective clastic wave coincides with a dodecahedral direction and the
plane of scaltering is a cubic plane. However, a perusal of Table I, cases 5
to 8, shows that whereas the velocities of the elastic waves and consequently,
the shifts of the Doppler components depend only on the direction of the

elastic wave normal ﬁu, the intensity of light scattered depends also on the
plane of scattering. Thus, if the wave normal is along a dodecahedral
direction, the transverse wave with g = ¢4,+ /2 is ineffective in scattering
when the plane of scattering T coincides with the cubic plane (case 5), while
the other transverse wave with g = ¢,, is ineffective in scattering when T is
the dodecahedral plane (case 7). It is also interesting to note that the sum
of the intensities for cases (5) and (7) is not the same as the sum of the inten-
sities for cases (6) and (8). That is to say the sum of the intensities of the
components due to the elastic wave traversing a specific direction [110]
when observed in mutually perpendicular plaues, (5) and (7); or (6) and
(8) of Table IL, is not the same even though the Doppler shift is the same in
all the four cases. All these results arise {rom the fact that the intensity of
light scattering depends on rwo fourth order tensors, viz., elastic and elasto-
optic tensors.

N
When the elastic wave normal R, coincides with the cubic or octahedral
direction, there is complete degeneracy (both elastic and optical) in the

N
plane at right angles to R,. Hence the shifts as well as the intensities of all
the Doppler components are independent of the plane of scattering.

In the case of backward scaitering along a 2-fold axis [110] or a 4-fold

axis [100] the intensity of the transverse components is zero (case 3 of
Table ).

5. INTERCHANGE OF DIRECTIONS OF INCIDENCE AND OF SCATTERING
When the directions of incidence and of scattering are interchanged,

- - =
fand @ get interchanged with ?I and \; and consequently, while V, and Hy
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remain unaltered in the process, V; and H,, get interchanged. But the sum
of the intensities of the various components is unaltered. In general, V;
is not equal to H,. See cases (2) and (3) of Table II. Only if the effective
elastic wave vector is parallel to an even fold axis of symmetry (2, 4 or 6-fold)
or if there is a plane of reflection parallel to it and perpendicular to the
plane of scattering will the relation H,= V, be valid.

6. DEPOLARISATION FACTORS

Although not given in the above tables, the depolarisation factors of
the Doppler components p, for unpolarised light, p, and p; for polarised
Light can be calculated from the formule given below, knowing the values of
H,}, H,, V/, and V‘u

pu = (Hy + H/(V, + V) an
Py — Hﬂ/ V:/ (18)
pa = V,/H,; 19

If the incident light is polarised, the question arises whether in the
light scattered the two components V and H are coherent or not. The
derivation of the results shows that the components V and H arising from
any particular elastic wave g1, ¢, or gs should be coherent. Consequently,
the light scattered should be plane or elliptically polarised but not partially
polarised. However, there is no question of any phase relationship existing
between the three elastic waves giving rise to scattering since the shifts of
the components due to each wave is different. Even in the case of transverse
degenerate waves travelling along the cubic or octahedral directions with
the same velocity, the effects of the two waves should be treated separately
and the intensities added. This procedure is similar to the calculation of
intensities of degenerate Raman lines in cubic crystals (Couture and
Mathieu, 1948). The degeneracy of the elastic waves exists only for specific
directions and for even a very small departure of the elastic wave normal
from these directions the velocities of the waves are different.

7. T and T, CRYSTAL CLASSES

For these crystals the result py, 3= py; follows from the fact that the
cubic directions are only 2-fold axes of symmetry and not 4-fold as in the
other crystal classes of cubic symmetry. The definition of X, ¥ and Z
axes are given in the paper on Photo-Elastic Constants of Sodium Chlorate
(Ramachandran and Chandrasekharan, 1951). As is to be expected, the
formulze given in Tables III and IV reduce to the corresponding expressions
of Tables I and II if we put (py— pw)f2 = 6 =0. This affords a check
on the calculations.
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For compression or dilatation along a cubic direction, the crystel
becomes biaxial and not uniaxial as happens when pyy= py,. Consequently,
in light scattering this leads to interesting results. As will be noticed for
backward scatiering along the cubic direction, say the X-axis [010], the
components of light scattered pardllel io OY and OZ respectively are of
different intensity. For incident unpolarised light the scattered light should
be polarised. The presence of the four 3-fold axes of symmetry gives rise
to the equivalence of only (0X)y=(0Y),=(0Z)x and (0X);=(0Y)z=(0Z),.
But (OX)y == (OX); nor even (OX)y == (OY)x., where (OX)y, etc., mean the
component of the light scattered parallel to OY for backward scattering
along OX..

Again in transverse light scattering, when the elastic wave normal
coincides with the cubic direction, the intensity of the longitudinal Ddppler
components would vary for different planes of scattering. It is interesting
to remark that these results are in striking contrast to the case of Raman
scattering in which all classes of cubic symmetry are equivalent and these
differences should not exist.

8. CRITICAL DISCUSSION OF ASSUMPTIONS

Firstly, we have assumed following Brillouin that the scattering in a
given direction is due only to elastic waves traversing a specified direction.
The fact that sharp Brillouin components appear in the thermal scattering
of crystals justifies this assumption. Secondly, it is assumed that the
velocity of elastic waves is given by the solution of the Christoffel determinant.
This is justified because the wavelength of the sound waves is comparable
with that of light except for very small angles of scattering and the effect
of boundaries of the crystal on the velocity of the elastic waves even in small
specimens is negligible. Since A, > 4, the crystal spacing, the dispersion
of velocity with the wavelength is not important. Thirdly, the effect of the
elastic wave is assumed to be given by photo-elastic laws which is also
reasonable since the wavelength of the elastic waves is of the same order
as that of the light wave.

9. APPLICATION OF FORMULZE TO VARIOUS CRYSTALS

The expressions given in Tables I-IV have been directly applied to the
following crystals—diamond, calcium fluoride, lithium fluoride, sodium
chloride, potassium chloride, potassium bromide, potassium alum, ammo-
nium alum and sodium chlorate for which elastic and elasto-optic data are
available. The last three crystals belong to T and T classes and expressions
of Tables III and IV should be used for them. But in the case of the two
alums the difference (pp— p1s)/2 = 8 is so small that it has been ignored
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and calculations made using only Tables I and II. Only in the case of
sodium chlorate § is comparatively large and the calculations have thercfore
been made separately in this case. The data are pressnted in the follow-
ing Tables V to VIIL. In the case of diamond the intensities of the Doppler
components for cases other than those specified in Tables T and I have also
been made so as to correspond to the orientations employed with the parti-
cular specimens studied.

10. DIscussiON OF RESULTS

(@) Diamond—Diamond is excoptional in its elasto-optic properties
since pgq is very large and greater than even py,. Also the elasto-optic
anisotropy factor K is very large. Now although all the constants figure
in the expression for the intensity of each component, the value of pg,
mainly determines the intensity of the transverse components, while py,
determines that of the longitudinal components. Therefore, in the cass of
diamond the transverse components should in general be brighter than the
longitudinal components unlike in the case of other cubic crystals. Further,
since K is also large, the ratio of the intensities of the components should
vary markedly with the orientation of the crystal. In the particular case
when the effective elaslic wave normal coincides with or is very near to the
cubic axis (cases 1 and 9 of Tables VI) the longitudinal components should
be brighter than the transverse components. Again when the elastic wave
normal coincides with or is very near to the octahedral direction {(cases 2
and 10) of Table VI the transverse component with a separation of 4-35 cm.~1
should be recorded when the plane of scattering coincides with [110] but
the other transverse component should have zero or very small intensity.
In backward scattering along the [111} direction, the transverse compo-
nents should be brighter than the longitudinal components. In the case
of backward scattering along [110] direction, the transverse components
should not be recorded while the longitudinal components should be very
weak. '

(b) Comparison with Experimental Resulis—Two pairs of Doppler
components in diamond have been recorded by R. S. Krishnan (1947) using
the E, spectrograph, the outer arising from longitudinal and the inner from
transverse sound waves. Recently, for four different orientations, these
components have been more clearly resolved using the three-metre quartz
spectrograph (Part II, Chandrasekharan, 1950). The ratio of the intensities
of the longitudinal components to the transverse components has also been
estimated for three different crystal orientations. It has established definitely
that the ratio varies with orientation as is to be expected from theory. The



Backward Seattering in Diamond

TaBLE V

. . Intensities
No. ]gtl“rskc’ggg gx10-n | Vibration e sg,?iﬁi?én —
Normal R, km.[sec. | incm.~ V, H, V,=H, ];%71\517, I=>I<1]J(r)11§+13
1 {100] 95 [100] 16,440 113 |08 085 0 1.7 1-7
P=V—[010] 83 010} 11,060 7.63 o 0o 0 0
43 [001] 11,060 7-63 0 0 0 0
2 110} 110 [110] 17,690 1220 (001 074 0 075
=V =[110] e {0011 11,060 7.63 o o 0 0 0-8
28 {110} 8,930 616 0o o 0 0
3 [111] 115 [111] 18,090 1247 |012 012 0 023
2=V =[117] 33 [112] 9,700 660 | 043 043 0 08 20
33 [110] 9,700 669 0 0 043 086
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TABLE VI
Transverse Scattering in Diamond

. . Intensities
Direction Plane of Viben Doppter
No. of Wave Scattering X]"Oﬁn Dirn. | Separation T s — -
Normal &, T T oimem v, H, V, H, I=IV, IjL =LA,
_“3
1 [100] Atbitrary | 95 I[mml 8-02 085 0 0 421 506
4 | [o10] 5-40
} 0 168 1-68 O 335 066 84
43 [001] 5-40 )
2 {110 [11oj 110 | [110] 863 0-01 0 0 2:33 237 )
43 {0011 5-40 0 0 0 0 0 612 166
28 110} 4-35 0 7-15 715 0 14.29
3 {110} [ty 110 [110} 863 0-12 0-07 0-07 1-96 2-21
43 [001] 5-40 0 05 056 0 1-12 482 12:9
28 [110] 4-35 0 476 476 0  9.53
4 (110] 01 | 110 | [110] | 863 074 0 0 131 205
43 {001} 5-40 0 168 168 O 335 164 5.4
28 [10] 435 | 0 0 0 0 0
5 [110] [112) o | [110] 863 10:37 007 0-07 1-62 2-11
43 | [oon 540 | 0 1412 1-12 0 223 322 81
i - 1
i 2 | [io] 4.35 | 0 238 238 0 476
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TABLE VI—(Contd.)

Intensities 52
Direction Plane of Vibrn Doppler &)
No. of Wave Seattering | . #6.u1 | Dn | Separation
Normal R, T Y| dnem by, H, V; H; =3V, il L=l
3
6 [1113 i1o] | us {m]! 8-82 0-12 0 0 1-25 1-37
33 1101 4-73 4
N {043 675 279 0-11 10:07 7:35 114
33 [112] 4-73
< =
7 [1111 {ie] | 115 [111} 882 012 0 0 125 137 a
! - o]
P33 {110} 4-73 z
0 } 043 279 675 0-11 10-07 7-35 11-4 g
33 (112 4.73 2
8 [t11 {112y | 1s {111} .82 012 0 0 125 1-37 =
- ‘ =
33 {110] 4-73 2
} 0-43 4.76 476 0-11 .10-07 7-35 1i-4 -
33 [oo1] 4-73
9 [8, 1, 11 011} 97-1 7 8-11 77 0 0 373 450
T—p211]; §=(1i1 426 | [011} 5.37 0 166 173 0  3-40 0-83 8-2
4i-3 ¢ 5-29 0-05 0 0 031 0-36
10 {i, 4, 41 o1f] | 1to-86 | 8-66 001 0 214 2415
Y2115 S==[111] a1-69 | 1 5.31 o o 01 01 647 16°1
: 28 -45 [O.il] 4-39 l 8} 7-83 597 5:0 13-80




TABLE VII

No. Crystal

i for

Napiy

Thoto-elastic constants

€1

P1a ! K

i

1 Diamond

2:62¢ | 05

14467

012 [~0-18

0.024 | 0-219

1.418 | 1190 | 4.58

1644 | 501 |

—0-064 - 0-330

1-885

1652 | 4.85 ‘ 1.23 ‘ 26011 ~0-D19
1718 | geac | 058 | 051 | 186 10 —0-028 . 0-101
3.98 | 0:62 | 063 | 211 10 “o-g28 i 0-114

: :

I

| it

106 080 | ~0:36 18
I

~0:009 ;~0-062

100 | 0.86 | —0.25

17

0-0056]~ 0164

1 NI, alam
8 K-alum
9% | NaC

| 147 | 318 | 1270 6,12 0:173

—0-01871~0-0153

¥ pya = 0268, gy = 0-225,
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TasLE VIII

Dircction of Klastic Wave i [100] Ty, = ‘ {11 {110] T,=0 [110] T,=0 {11
. Normal Re S S N . SN S
Angle of Scattering 6 l 180° l 180° 90° 80° \ 9p°
Plane of scattering T ' . 001} [IIO] 1 15]
Ty ‘ [o10} {17 001} [110] 3
No Ciystal bn xi(l»" L7 | Ay xﬁ)“ Ao I)E]J?)in an x%(l)“ ar x{é"' xﬁ)“ S xlla“ xﬁ)" leiil-')l
Diamond L1340 1487 | 7063 [12447| 025 |1 6.69 | 1-90 | 8-683 | 2.26 | 5-40 | 3-89 | 2.6 | 4:35 [15-72 { 1-5] [11-0L
'—2—- CaF, 2771 0-66 4 1-28 { 2-51 | 0-37 | 1.52 | 0-23 | 1-82 | 0-38 | 0.90 | 0-02 § 0-11 Tlﬁ 014 | 0-19 | 0-18
3 LiF [ 2.5210-2211-70 | 2-76 | 0-20 | 1-51 0'00? 1-91 1 0-12 [ 1-20 | 0:06 | 0-13 1 0-99 { 0-06 | 0-13 |} 0-08
4 NaCt . 205 13.55]1-04 | 1-89 ) 39 {117 0-01 | 1.36 AZ—OI_‘ ‘0-74 0-03 | 1-80 ] 0-88 | 007 | 1-96  0-06
5 KBr 1-60 | 6-29 | 0-60 | 1-28 114-09 [ 001 | 075 [ 097 | 4-40 | 0-42 | 0:49 [ 7-18 1 0-73 | 016 | 2:84 [ 0-44
6 K1 . 187 Tﬂ‘i 0:74 | 1-34 | 6-59 | 1-08] 0-42 | 1-13 _1—9_3—' Tf;{-‘ 7)—:“2: .41} 0.86 | 1.05 | 3:35 -0‘_2;
T NH~alm .i 1-55 22.7 ES_ 1-59 (19-81 | 0-65 | 0-15; 1-12 |11.0 .0-62 ! 0 960 | 0-59 | 030 E ~(;TZE-
8 K-alum ool 1eB1 {12:2 | 088 | 1-56 10469 | 0.84 | 0-16] 1.10 | 5-82 | 0-62 i 0-05 | 5-66 | 0-58 | 0:26 | 5.35 | 0-21
T NaClQOq JLBT [ 466 | 08D 1 1.72 | 526 I 0-96 1 0-22, 1-24 1 2:65 | 063 I 008 . e 1 .
*Y, = 109 Hy == 2466 Dy, =079 ~ T, = 0.03 ’
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transverse components are always brighter than the longitudinal one, by
a factor of about 1-5 to 3 times for the different orientations studied. This
result is also in general accord with the theoretical result stated in the pre-
vious section. However, the theoretical prediction that for case 9 of Table
VI (which was studied experimentally; case 2 of Table I, Part 1I) the longi-
tudinal components should be brighter than the transverse components is
in striking contradiction to the experimental result that the transverse
components are brighter. Again for case 10 of Table VI (case 1 of Table I,
Part II) transverse components recorded had a shift of about 5.6 cr.—!
while according to theory, the 5-4 cm.~* components should have very little
intensity and the 4-5cm.”* components should be very bright. This dis-
agreement between theory and experiment indicates that both on the theo-
retical as well as on the experimental side more work has to be done. On
the experimental side it would be best to work with a large specimen and to
record the Doppler components for backward scattering along the [110}
direction (case 2 of Table V).

(¢) Other Crystals.—It is seen from Tables VII and VIII that, since p,,
is generally small for these crystals the intensity of light scattering due to the
transverse wave is very much smaller than that due to the longitudinal waves.
Further since the anisotropy factors K and v are small compared to p;, and
¢y, respectively, the intensities of the components do not vary very much for
different crystal orientations. Further the absolute infensity of scattering in
LiF and in CaF, is far smaller than that in other crystals since it is propor-
tional to n%/g, and since their refractive indices are small and elastic constants
are large.

11. NoOTE oN STIFFNESS COEFFICIENTS OF CupiC CRYSTALS

While making the calculations for the stiffness coefficients when the
effective clastic wave normal is along an arbitrary direction, it was noticed
that the sum of the three stiffness coefficients is always the same and equal
to cy+ 2c44. This result can be proved rigorously by expanding the
determinantal Christoffel equation (11) of Part IV giving the stiffness coeffi-
cients in terms of the clastic constants. On expanding, we have

Ay~ §) (Ape— 9) (Aps— q) — An® (A~ 9) — Aps® (Be— g)
— A (Asy— q) + 2A13 Agg A= 10 (19
In this, the coefficient of g2= A+ A+ Ay (20)
From equations (12) of Part 1V, we have for cubic crystals.
Ay = g3 P gy (P 0%
Agy = cin®+ oy (WP 1)
Agy == cyn®+ cqq P+ m?)
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Adding, the coefficient of g%= Ay + A+ Ayy= ¢y (B4 m®+ n?)
- 2044 (P-4 m2 12 = ¢+ 2¢4y, since P4 mi4 pi=1 o)}
Now the coefiicient of the square term ¢* in a 3rd degree equation (19) gives
the sum of the three roots, ¢y, g, and ¢qs.
Therefore,
G+ Got ga= e+ 2044 (22)
This relation is extremely useful in checking the numerical calculations
in cases like 9 and 10 of Table VL

However, no such simple relation could be found for the sum of the
intensities of the various Doppler components in different settings of the
crystal.
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