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ABSTRACT
The differential equation for the equivalent circnit of a double loop
coupled micro-wave cavily resonator has been determined by the appli-
cation of Lagrange’s equation. The losses on the walls and the Q of
the cavity operating in the TE,, mode have been evaluated with the
help of the field equations.
=

INTRODUCTION

A microwave cavity resonator represents a complicated oscillating
system having an infinite number of natural frequencies arranged in the
sequence of increasing magnitude. Microwave cavities have found wide
applications as circuit elements. In practice a microwave cavity is usually
coupled to an external system by means of a probe, loop or iris. The
behaviour of a coupled cavity can be studied by the conventional method
of circuit analysis or with the help of the field equations. The object of the
present paper is to approach the problem of a double loop coupled cavity
resonator from the energy point of view and to form the differential equa~
tion of the coupled system with the help of Lagrange’s equation. In view
of the practical importance of the method, it is worthwhile to consider first
the application of Lagrange’s equation to the analysis of an electrical network
before discussing cavity resonators.

LAGRANGE'S EQUATION AND ANALYSIS OF ELECTRICAL NETWORK

If for a holonomic system the generalised co-ordinates are ;cpresented
bY ¢1, ¢s....q, and the corresponding velocities by 4y, Gs....4, then the
Lagrangian equation of motion for the dynamical equilibrium of the system
is given by the following expression:

oL aL

b%)_ s, = Fr k=12 0]
where thé operator p = d/dt and F; represents the dissipative forces and
any external applied forces present in the systemn. The symbol L represents
the Lagrangian and is a function of g and g.
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The Lagrangian equation can be applied to find the performance of
an electrical network if suitable co-ordinates corresponding to ¢, ¢,....q,
and g, ¢s.... ¢, can be found in the clectrical system. The kinetic energy
(T) and the potential energy (V) of the system, and hence the Lagrangian
L = T — V can then be found. The value of L substituted in (1) will give the
differential equations of the network. The solution of the differential
equations describes the characteristics of the network. The charges

Qy, Q,....Q, and the currents Qu Q,....Q, in an electrical network can
be considered (Wells, 1938; Olson, 1944) as equivalent to ¢, ¢s....q, and

g1 G- - - -4, respectively.

Let us consider a linear electrical network composed of » independent
meshes whose elements are lumped and dissipationless. The total instanta-
neous magnetic energy (T) and electric cnergy (V) of the system are given

by the following relations in terms of the mesh currents [Q] and mesh
charges (Q) respectively of the network.
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Microwave Cavity Resonators as Circuit Elements ioi
As S,,= 8, the matrix (S) is symmetric. The tilde in (2) and (3) indicate
that the matrix is transposed.

If the electromotive forces (¢) applied to the # meshes are given by the
following column matrix

&
€
fel = - @
eﬂ -
then the Lagrangian equation
ALy | L
Sy S = k=12.... 5
p(an) Q. § ®

can be evaluated from the equations 2, 3 and 4. The equivalent circuit of
the network is then given by the differential equation (5). If there is a
dissipative force
Fo= - 2R, 0

present in the system then the differential equation describing the equivalent
circuit of the network is given by the following equation

RN ©

2Q, 2Qz
The dissipative force F, may be derived in terms of the Rayleigh’s dissipation
function F* (Goldstein, 1950) and is given by

Fp— — 2
Qs
So the differential equation for the network is given as follows
oL oF
P EE) — 0t = 7
3Qy &y

where R,'s rtepresent the resistances in the different meshes of the network.
The two scalar functions L and F have to be evaluated in order to describe
the equivalent circuit of an clectrical network.

* In a system where frictional forces are present, it frequently happens that the frictional
forces are proportional to the velocity of the particles. In this case, F is defined as
F=13 2 (oaqu' + ket + keqi®)
4
where the summation is taken over the particles of the system.
also be interpreted as one-half the rate of energy dissipation due to friction,

The dissspation furction can
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As an illustration, let us find the diffcrential equation of the following
network (Fig. 1) which finds wide applications in radio cnginecring.

/ Laa \ fy

{:Qz cT @ fe,

In the abovenetwork Q,, Qs....Q, arc charges and Or. .. .Q, arecurrents.
The kinetic and the potential enzrgies and the dissipative forces for the above
network can be wrilten as follows i—

T = 3 LyQut + b LQu LysQsQs

e E L Q- Q| (Qy— Q®

Vo= EQ 4 2¢4 * 2¢,

F e - RxQx" RzQ:; (8)
In the above equations -- E,Q, indicates energy extracted from the source.
Hence the Lagrangian is given by the following expressiou:

L= & L:;Q:xz”f‘ ?1.\ L2Q22*|“ L:xQ;Qf%‘ E1Q1

— (Q‘ Qa)l - (Q( o Q:‘):’. (!
2, "2, )

So the differential equations of the network can be writien from 7, 8 and 9
as follows:

Ei= e = o T Rin

- pa
0= prylgy-- o ( pla 4 plcz) - ;(‘fg
0= = plzg R (plc‘2 + RZ) (0

where 1 = Qy, 1= Qp o= Qg 1= Q, and p == dldt
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The_cqualinns (10 can be solved for steady or transient currents for any
apphcd-vnnagc E. The coefficients of the currents can be directly written
by the inspection of the network in Fig. 1. (Stigant, 1947) as follows:
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This agrees with the results that can be derived from (10).
SOME FUNDAMENTAL RELATIONS IN A MICROWAVE CAVITY RESONATOR

The properties of microwave cavities of simple geometry, and oscillating
in normal modes have been studied by Borgnis (1939), Hansen and Richtmyer
(1939), Condon (1942) and Slater (1942, 1946) using Maxwell’s equations
of the electromagnetic field which for a source-free cavity are given in
m.k.s. units as follows:

v XE=—B
vxH=—-D
v B =0
y -D=20

where, B=puH, D= B, p=pek, and e= ¢k, -k, and k, are
respectively the magnetic and the electric specific inductive capacities of
vacuum and g, and ¢, are the magnetic and the electric inductive capacities
of vacuum. The normal mode ficlds for a microwave cavity can be expressed
in terms of a pair of vector functions E, and H,, associated with the ath mode.
The mode vectors satisfy the following equations:

VIE, + K B, =0

v, + K, H,= 0

v Ea =0

V . Ha = {}
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The wave cquations have an infinite sets of soluiions, each set being charac-
terised by the particular wave number K, given by K, *== w,*e and subject
to the following boundary conditions

ax E, =0
n. H, =0

whete n represents the outward normal unit vector. It can be shown that
the mode vectors form orthogonal sels and are normalised in such a way
that

50 &= h

f E, * Esdo ==
¢ lr’ a =h

and
0 Q== b

f H, - Hydo =
b i a==h

EQuivaLENT CIrcUIT OF A DousLe Loor CourLeEp CAvITY

The problem of a single loop coupled cavity has been studied by Hansen
(1938), Condon (1941), Slater (1946), Crout (1944, 1948) and Banos (1944).
In the present paper the case of a double loop coupled cavity is treated with
the help of Lagrange’s equation and the Maxwellian field equations.

The energy stored in the magnetic field of the cavity is equivalent to
the kinetic energy (T) of the mechanical system and is given as follows:

T=4%p [ Hgr (1)

The energy stored in the electric field of the cavity is equivalent to the
potential energy (V) of the mechanical systemn and is given by

V= f Eido (12)

where H and E represent the field inside the cavity and can be expressed in
tetms of solenoidal and irrotational fields as follows:—

EzzeaEu+"2f;1Ea

H=ZmH,+2IH,
« @
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The vector func.lions E, and H, satisfy the conditions v -E, =0 and
V-H, = 0. Inside the empty cavity v E, = 0; and so there is only the
solenoidal part of E. And as H has no irrotational part

Ew=Ze, E, and H =2m, H,

0

Multiplying the above expressions by B, and H, respectively and integrat-
ing over the volume v of the cavity the following expressions for the coaffi-
cients e, and m, are obtained due to the Fourier nature of the expansions
and the properties of orthogonality.

0= 3] E-E, dv

m, = Zl;fHHadv

As the mode vector functions E, and H, have zero divergence, they can be
expressed as the curl of another vector. Let it be assumed that the follow-
ing relations hold good

v XE, =K, H,

v x H=K,E,
The vector fields B and H can be expanded in the following form (Crout,
1944)

E= ! ZKQE,

H= ZKQH, (13)

where Q, and Q, are the normal coordinates of the system. So the energy
expressions can be written as follows from 11, 12 and 13:

T=ju [ 2R HAb
= bu TK2Q»
and
v= 4 f ZRQE, v

e _1 4 2
= 5 TKAQ
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The differentials of the Lagrangian are then given as follows:

ok T
P e KEQE
»Q, "
oL Loy ae s
s NK QM
QT T KA,

The differential equation of a dissipationless cavity is then given by

5 i
I z Ku“ Q«z o € & Ku4 U 0
“ s
or

LQ, + Qufey =0 {19
where

L, = pd K% and ¢, = €] K
The dimensions of L, and ¢, are [ML*Q~?] and [M Y-*T2Q? respectively
and so L, and ¢, may be deflned as the equivalent inductance and capacitance
respectively of the cavity. So eguation (14) represents the equivalent circuit
of a dissipationless microwave cavity as a paralie! resonant circuit composed
of L, and ¢,.

Let the cavity be excited in the ath mode by two identical loops and
carrying equal currents 1,. In deriving the differential equation for the
equivalent circuit let us make the assumptions (@) that the dimensions of
both the loops and the holes are so small compared to the size of the reso-
nator and the wavelength that the normal mode fields inside the unperturbed
cavity remain unaltered by the introduction of the loops through the holes
made through the walls of the cavity; and (b) that there is coupling only

between each loop and the cavity but no coupling between the loops them-
selves.

It is clear that there is no mutual coupling between the different modes
of the cavily in consequence of the orthogonality relations

f E . -Eydo == 0 q b
of the vector functions. )

The voltage induced by each loop is M,!,, where the mutual inductance
M, between the loop and the cavity is given by (Condon, 1941)

M, = j H,dS (15)
L]
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The integration is performed over the surface of the loop and H|, represents the
vector sum of the components of the magnetic field for the ath oscillation
mode. So the mutual inductance between the loop and the cav1ty will differ
for different modes present in the cavity.

A portion of the power coupled into the cavity from the loops will be
lost if the boundary walls of the cavity have finite conductivity. The loss
of power in the rcsonator walls per unit length is given by

5 @ s, (16)

where the integration is extended around the periphery of the cross-sections
of the resonator and H, is the amplitude of H at the surface of the cavity
for the particular mode. R is the surface resistance of the resonator walls
and is given by R = +/uw/2c, whereo is the conductivity of the walls in mhos
per metre, p is the permeability and « is the angular frequency of the mode.
The loss of power in each loop due to its resistance Ry is Ry1,2. So the total
power lost in the two loop coupled cavity is given by

FQ,= 2R, + 5 ¢ B as.

So, the differential equation for the double loop coupled cavity is given by
the following expression

B IR0 4 L2 K v + Ryl o § HS = Myl Myl
« a 28

where My, and M,, refer to the two loops. The above equation can also be
written in the following form to represent the equivalent circuit shown in
Fig. 2.

L1+f‘ dt+2R11 + gSHo 48 = My, + My,

where ¢, represents the 1nstantaneous value of 1.

Ry Mia R
Ry ! (Y Ca ==
M;
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Powsr LOST on THE WaLLs oF THE Caviey (TBy;, MODE)

Let it be assumed that the two loops are excited in proper phase and
are so displaced spatially inside a cylindrical cavity that the cavity is excited
in the TE,;;,, mode. The H-components of the TE,,, mode (or the eylindrical
cavity can be deduced from the field components of the TEy,, mode (Kinzer,
1943) as follows:

H, = K"‘ I (K cos 0 cos KyZ j

g 0
Hy = K 4 (Klr) sin 0 cos K,Z {17
‘1 w0
H, = ‘;‘ J {Kyr) cos O sin K,Z i
where, K= xy,/d d = radius of the cavity.
Ky= nmfl. L = length of the cavity

K2= K2+ K2 K == 2m/A
Xpy== Ist root of J," (x) = O
I, m, n have thelr usual meanings.

The power lost on the walls of the cavity can then be determined from (17)

as follows:
2 d

$H, S = j J’ (H,? -+ H® -+ H,3) rdbdr
: =6 r=0
4 27 o
H,2rdrd0 = Kﬂ cos? K,Z [}, 4 322 () + T2 (o)}
d 2
+ K s - kz{"l 7’2}]1
where
m= ¥ (— 17 (2 4 29!
a ERr=C A TERR (R
an
s (— (1 2
m= 25 5 e e
q A% K N .
j Ho2dS = = X2, cosa,z L Kt

¢ 27
j f S = = ', sin®K,Z ba? [ 05 (1= K}j da){]](xn)}z]
(LI
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So, loss per unit length of the cavity wall is given by

R opogs R K
2 S H, dS- ™ 08 KeZ [ 0210422 1 + 2 om —m} |

R K1 . 1
+ 7 SR Z {0-3386(1 - g}
as Jy () = 0, J; (%) = 0-5819 and J, (%37) = 0-3167.
MUTUAL INDUCTANCE BETWESN THE LOOP AND THE CaviTy

The mutual inductance M, = [H,dS for the TE,, mode can be

evaluated from the field components (17) in a similar way as above. Let
it be assumed that the loops are placed symmetrically about the axis,

f H,dS = «/ T costKeZ 4+ L K (4 g (r—a)m}

X {2y — 7y + ma} + 71 ——»— sin? K,Z

where,

1
7%

Ky (o) — (a2}

oo . 1 5 2 '
n=3 G

and a = radius of the loop.

When the loops are placed at either end of the cavity the expression above
for mutual inductance reduces to the following:

f H,dS = s Ko gy U= m—mtm) ]

as sinKy;Z=0at Z=0and Z=1L.

It will be observed from the above relation that as the loops shrink in size,
a~»0, r —d and so M, — 0.

Q or THE CAvity (TE,;, MODE)

If the medium inside the cavity has conductivity o, and dielectric con-
stant e, then the total loss inside the cavity will be due to the loss in the
dielectric and the loss due to the finite conductivity of the cavity wall. The
Q(Q) of the cavity is then given by the following well-known relation:

11 L.
o + 18)

delectrie wall
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It can be shown from the ficld equations that

y 2/ e

way O /t/i‘llﬁfg (19)
where, 8 = /(o) = skin depth.
The numerator in (19) can be evaluated from (17) and is given by the follow-
ing expression:

2 asg
H 2 = ”2“ ‘;‘(* [0-219442 bR, 2‘5" g f2m - wz}J

» (eavilyy - .
ty n q—rz:_, fi{,: o2 [ 0-3386 (] - K]l"’ll'é)} (20)

as .11, (xyy) == 0.

Similarly, / 1,58 can be evaluated from (17) and hence Q  can be calcu-

wall

lated from (19). The value of’ Q is given by the following well-known
st beeerie
relation :
o Oy
diclectsic O1 @n

where w, is the angular frequency of the ath mode.  So, the Q of the cavity
operating in the TE,,, mode can be ¢valuated from (18) to (21) and the value
of f H, %/8.

! INPUT IMPEDANCE OF THE CAVITY

The equivalent circuit (Fig. 2) can be generalised into an oscillating
system having an infinite number of natural frequencies w;, w,.... 0,
The natural frequency o of the loops will be affected by the presence of the
cavity and vice versa. When the loops are very small, the current distribu-
tions along the loops may be considered to be uniform.  In this case the
input impedance of the cavity across the terminals of each loop is given by
(Schelkunoff, 1944) the following impedauce function
»/(U:KLZ

oo
y - T oy ot
Lo fol 8 2y

This is the expression for the impedancs looking into the cavity through the
loop and consists of a sum of resonant terms. It is also seon that Z,, —oo
when the frequency tends to equal the resonant frequency of any one of the
modes. In the above expression L, is the inductance of the cavity at the
nth mode and can be evaluated from

L?Z = M .Hﬂ .Hﬂ *d’l«'

o (cavity)
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and the H-components for the nth mode of oscillation. L,,, is the mutual
inductance between the loop and the cavity and can be evaluated from the
field equations (17) and relation similar to equation (15). L is the inductance
of the loop.

If the cavily oscillates in the ath mode and has slight dissipation, then
the above impedance function needs modification and is given by
=R Y i ° VI
Lo RSl L = et S )
where 8, is the reciprocal of the Q in the ath mode (Q,) and can be found
from (15) and the field equations.

If one of the loops is used for exciting the cavity and other loop for
taking output from the cavity, then the system behaves as a two pair tzrminal
network. In this case the transfer impedance Z,, across the cavity is given
(Schelkunoff, 1944) by the following expression: '

- 0 5 JorLla, Lo,

T = Jo L’ + F i )
where L%, represents the low frequency mutual inductance between the
loops in the cavity. L,,. L,, tepresent the mutual inductances between
the cavity and the first loop and the cavity and the second loop respectively.
The values of L, and L,, can be found from the field components as above.
So, Z,, can be determined. The above expression for the impedance con-
sists of two terms, the first term varying slowly with frequency and the other
is the summation of the resonant term. The latter term shows the effect of
Q, the losses in the walls on the impedance. The above relation holds good
so long as the cavity operates in a non-degenerate mode. If the two resonant
modes are close together, so that the two resonant peaks overlap, then the
Q of the cavity and the losses will be different and the expressions for Z;,
and Z,, will not hold good. In the case of degeneracy, more elaborate
methods will be necessary.
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