THE PRIMITIVE MACHINE OF KRON
By C. S. GHOSH AND P. VENKATA R4O K/ ’

ABSTRACT

Tensor analysis of electrical networks and its apf)]ication to the
analysis of electrical machines as developed by G. Kron is discussed.
From the relations developed by considering the characteristics of a simple
machine, referred to as the Primitive Machine of Kron, the method of
amalysis is applied to determine the performance of a shaded-pole motor,

In the early part of this century Ricci, Levi-Civita and others! evolved
a mathematical discipline which is admirably suited to the study of problems
in Non-Euclidean spaces and it was this that has been later developed into
what is now known as Tensor Analysis. Einstein® was one of the earliest
to apply this new approach to the solution of physical problems. As tensor
analysis became better known among physicists and mathematicians it was
employed with greater and greater enthusiasm in the study of classical
mechanics, electromagnetic theory and electrodynamics.

It was Gabriel Kron® who first realised that many engineering problems
in general, and electrical engineering problems in particular, were best solved
by the Tensor method as the variables involved were inherently multidimen-
sional and non-Euclidean in character. He has developed a highly organised
method of attack to analyse and synthesise electrical networks in a routine
manner. The classical vector analysis as developed by Maxwell* and others
is a severely restricted type of organisation since it represents only physical
entities in three dimensions and Euclidean spaces. Tensor analysis on the
other hand is an extension and generalisation of vector analysis from three
to *N’ dimensions and from Euclidean to non-Euclidean spaces. It ha$
been shown by Kron that it is possible to set up, in the language of tensor
analysis, equations that truly represent the performance of a large variety
of networks or rotaiing machines or fransmission systems.

Once the tensor equations have been established it is possible to find
the equations of performance of any particular network or machine or trans-
mission systems by a routine substitution of particular constants. The
versatility of tensor methods enables the engineer, in the study of a large
variety of rotating machines, fo select one whose structure is_comparativ;ly
simple apgd to study the properties and equations of this simple machine
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only. If the cngineer learns, with the aid of tensor analysis, the general
method of analysis and the physical phenomenon taking place in this parti-
cular machine he learns at the same time the method of analysis of a largs
number of ‘ mathematically * similar machines without having to lewn a
new trick for each new machine as is necessary with tha classical mathods of
attack. In other words the same tensor equations, devetopad for the simpls.
machine, are valid for several different types of physical phenomenon.‘

Electrical machine analysis consists essentially of the derivation of
equations of performance for the purpose of predicting accurately the charac-
teristics for all the various types of machines. Comprehensive analysis of
an ideal machine is difficult to achieve and a segregation of the problems
involved would greatly simplify the work. The electrical elements of the
machine under study are considered as constituting two or more linear
circuits in relative motion having lumped constants and it is a well-known
fact that this assumption is amply justified by experiments.

In the case of a three phase machine supplied with balanced threz phase
power it is possible to analyse the performance of the machine in terms of
one phase only. If, however, there is any balance in the windings or the
current or any lack of symmetry in the physical structure of the magnetic
circuit the machine cannot be analysed in terms of one phase alone. To
overcome this difficulty two methods have been developed; namely, the
method of symmetrical components and the two-axis method. The former
method, originally developed by Fortescue, is widely used whensver the
unbalance is in the nature of the supply while the lattor method is invariably
used whenever the dissymmetry is in the physical structure of the magnetic

circuit.

For convenience and easy extension of tensorial methods to complicated
problems Kron makes a detailed analysis of what is known as the Primitive
Machine. The equations of performance of the primitive machine are first
developed from the fundamental laws of electrodynamics. Then by setting
up a connection tensor between the primitive machine and the machine under
study, the equations of the latter can be establishzd in a routine manner
without starting its analysis all over again from the fundamentals. It is,
therefore, quite evident that the study of all rotating machines will consist
of three important steps: (@) the establishment of equations of the primitive
machine; (b) the establishment of the connection tensor showing how the
given machine differs from the primitive machine (this is usually done by mere
inspection); and lastly, (¢} the routine determination of the performance
characteristics of the machine,
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The primitive machine consists of a cylindrical stator and rotor each
provided with concentric layers of windings. The stator is visualised as
consisting of two independent windings one on the salient pole and the other
at right angles to it between the main poles. The rotor layer of distributed
winding is considered as equivalent to two hypothetical coils at right angles
to each other as indicated in Figs. 1, 2 and 3. While the conductors consti-
tuting these coils are constantly in rotation the resultant coils between the
brushes are stationary. The voltages induced and generated in the various
windings when a current i* flows in the direct axis winding of the stator are
detailed below and shown in Figs. 4, 5 and 6. The induced transformer
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voltage arises through the alternating character of the flux induced by the
current i and is, therefore, independent of rotation. The rotational voltage
arises through the physical motion of the rotor confiuctors in the. ﬁeld' pro-
duced by the current i*. Thus the effect of introducing the two axis variables
is to divide the st of voltages associated with the machine into two compo-
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nents which follow from the fundamental laws of clectrodynamics. The
separation is to some extent artificial as the rotational voltages are those
that would appear if the conductors moved in a field of constant strength
and the transformer voltages are those that would appear if the conductors
remain stationary in an alternaling magnetic field. In an actual machine
we have the resultant of both these cliects as they cannot have independent
physical existence.

If the rolor is assumed to be stationary and the current varying, the
induced voitages in the direct agis windings of the stator and the rotor are
L, pi® and M_pi®. respeciively. (p is the differential time operator).

If the current is assumed to be constant and rotor rotating with a constant
velocity of pf, the generated voltage thal exists along the quadrature axis

~¢I/\

is given by (M./p#) i where M’ represents the proportionality (actor between

the gencrated voltage and i“pf.

All the voltages induced and gencraied and also the resistance drop
can be written down in the form of a Matrix.

dv

ol
Ea'r'

E,

B,

In a similar fashion if positive currents are assumed to flow in each of
the four hypothetical coils of the primitive machine and the transformer
and generated voltages are tabulated in the form of matrix, the resultant
matrix for the primitive machine becomes -

d; d, 7 45
d, Fao b Lgp M p 0 f O ‘
7 d, M,p £t Lgp ‘ } M, ptl
' — M’ p0 - L"{"p”« § ry i Mgp “
4 0 0 } rge A Lyap |

In a squirrel cage winding L,=1, =L, and M= M = M,
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The final equation of the motor is given by e = Zi.
where

and

the multiplication indicated is a matrix multiplication.

The impedance matrix developed above can be split up into three com-
ponents: the first one consisting of the coefficients of the differential time
operator p, denoted by L, as given in Table I: the second one consisting of
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the coefficients of pf denoted by G also given in Table I: and the last one
consisting of the resistances of the various windings denoted by R’s in
Table I. ‘
The performance characteristics of the machine can be determined by

solving the four simultaneous cquations:

€y = (s Lge) 17 - Mpi™”

Cap= Mgpi®™ <+, b L) 1% 4 L, pHit" A4 MU 01

gy = MUgpBI™ = L p@i® e (r, - Ly pY i A4 M, pi?

g =2 M,l.[]i']r - (",;.r “f L(;.r]]) e
The inductance tensor contains the self and mutual inductances of the four
hypothetical windings of the primitive machine, The resistance tensor con-
tains the resistances of the four windings; while the torgue tensor contains
the mutual inductances existing entirely duc to rotation.

Z =R+ L(p)+ G(ph)

The flux density tensor represeating the resultant flux density cut by each
coil is given by B = G.L

»

It therefore follows that the clectromagnetic torque is given by
T == LB+ LG.L

In alternating current steady state caleulation the steady component of
the torque T = §1*-B; where 1* is the complex conjugate of I

If the conpection Tensor C shows the manner in which the new variables
for the machine arc related to those of the primitive machine, Kron has
shown that it is possible to put down the equations of performance of the
new machine as ¢'== Z’'-1.
Where

L= CprZC; e Cpoy Ve L00¢

C; is the matrix transpose of C.

The torque tensor may be established quickly by considering those
components of Z that coptain pf. It can be independently derived by the
transformation C,-G-C, where the multiplications indicated are matrix
multiplications.

As an example, the analysis of performances of a shaded pole motor is
worked out by the method of Tensor.

The impedance tensor of a primitive machine having three stator
windings and two rotor windings is given by Z, in Table 1.
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TasLe 1
de dy 9s d, Gr
Ao | rye + X X -0 FXma Y
da s Pt I5aa i 0 JXma Y
Z =gy 0 0 L 0 JXmg
d; JXma FXma XpgV ry + jxg- LN
q, — XV = Xppd ¥ X g — %5V Ty + X,

The coefficients of V, the ratio of actual motor spesd and synchronous
speed, constitute the torque tensor G, in Table III.

TaBLE 11T
dg dy qs - d, q,
| ] !
d, 0 Lo ‘
G — 0 \ Xmg | Xgr !
qr ~ Xmd — Xmd 0 — Xdr 0 !
i

Figs. 7 and 8 show the schematic diagram of the shaded pole motor.
The shading coil is shifted by angle « from the direct axis (main winding
axis) and it has ‘@’ number of turns, where

_No. of turns of shading coil
2= No. of turns of main winding
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Figs. 7 & 8
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By mere inspection the connection fensor C is obtained and is given in
Table IV.

TanLr 1V
m § d, g,
- o

oy 0 aeons e 0 0

C o 4] ¢ 5in a O 0

The impedance of the machine, then, is Z° = C,YC, given in Table V.
G, the torque tensor is also obtained by inspection from Z', and is given in
Table VL
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m [P Xt 08 FXmyg 0
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With the aid of the equation established for Z’ it is not quite possibls
to establish the equivalent circuits which lend themselves to easy extension
to show the effect of space harmonics which are of considerable strength
in shaded pole motors.

e =27 ; and T = i*G,

represent the basic equations of the shaded pole motor in the crossfield
theory. There is, however, a serious drawback in that the direct and
quadrature axes are mixed up in an inconvenient form and hence the
equations are not well adapted for the introduction of symmetrical com-
ponents nor for the development of a simple and conventional equivalent
circuit. At this stage Kron hits on the idea of introducing the axes of
magnetising force (Fig. 8).

i =" 4 acos a

i* = 'gsin e

Solving the above two equdtions for i” and ¥,

" = i* — i%cot u
P
asina
Put into matrix form
d; qs . q
m 1 ~cota 0 ¢
s 0 —% 0 0
Cz - a S1n a
- 1
! d, 0 0 1 0 !
g 0 ; 0 0 1 ‘
|

formation to the impedance matrix given in Table V

By applying this trans n i _
Y fallowing fe of the impedance matrix is obtained.

the following expression for the new va
2= CoZ'Cy
where Cy is the matrix transpose of C,

9
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TasLg VI
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By this simple transformation the equations have been reduced to the
form of those of an unsymmetrical split phase induction machine having
windings along the dircel and quadrature axes. There is, however, a re-
markable difference between the usual split phase machine and an unsym-
metrical machine of this type in that mutval impedance . exists between the
two stator windings at right angles in space.  In an actual shaded pole motor
the mutual inductance consists of one component which arises on account of
the angle between the main winding and auxiliary winding being different
from 90° electrical and another component due to the magnetic bridge which
provides a leakage path of low reluctance for the flux.

In the case of a machine having a smooth air gap and a cage winding
on the rotor the impedance matrix given in Table V can be written in a simple
form in terms of the self-impedances of the various windings and the mutual
impedances that cxist between them. This is shown in Tables VI and IX.
Z” can be rewritten in the following way:
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TaBLE VIII
" s d. 9
| Z, SX s ‘ JxXm 0
| ; ‘
| s | Z, l afx, 05 a | gjxgsina |
| ‘ |
oy X ajX,, COS @ ) Z, X,V ‘
=+ ax,,V sin e & [ :
|
Gr | —xpV @jx,, sin @ —xV | z, !
—~ X,V oS a 1 i
where
Xor = Xy = X
Xomg = Xpgd™= Xm
and
Xx», = mutual reactance between main and rotor winding.
X, = Total mutual reactance between main and shading coil.

R,, X, = Resistance and reactance, respectively, of the rotor, referred to
the main winding,

Z, = Ry + jx
R,, x; = Resistance and reactance, respectively, of shading coil.
Z, = R, + jxrn

TasLe IX

By inspection :—
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where, referring to Table VIII,

2y = Zn :{x,,,f and Z, : — ;":‘,.f"v.“ E, e .(.)_.._.,-._
% Ry COS @ | @Yy, 50w
U S .
z Jxm (ajx,, cos a - aVx,, sin ) ]
? — X V1 (@fx,, 810 @ ~- 4V, €05 a) '
z | |
Z, = |
-3V | Z, ‘;
Thus
-
SR Co T T
Pz Z L ‘
J E | E ( ; e
L Zy l L |
] o i
whence
E, =2Z]l,+ZJ, @
E, =230y + Zyl, @
ZJy =FB, — Z,l, 3
I, = Z; By — Zol)) (CH]
E, = ZiLy + LZ M (By — Z1h) %
=y 4 L2y By~ ZoZ 2] (6)
E, == LBy + (Zy — 2,2, '2,) Ty 7
(By — ZyZ,'By) = (Zy — ZZ,'Z) Iy ®
E =271, ©)

If we are finally interested in knowing the values of 1, and I, only the
two unwanted axes d, and ¢, can be climinated by the process outlined.

Since E; = 0 for a shaded pole motor in which the shaded coil is short-
circuited on itself
E' == E,
L= (ZYYVE = (ZYy"E (10)
Ip= ~ Z;tZs X (1)
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The inverse of this matrix, i.e., Z' can be obtained as follows and then

I
the values of I = gI,,,‘LE estimated.
oy

P
.
) = Pz, ¥ 50— P @Za T 2y U2, T V0 = 2%, a Gos a (JZ, F % VI — @ sinta (1—V9) G T 50
m : 5
m 1 PZ, — @ (JZ, + xV9) § (B, — a{e0s  (GZ, 4 xa¥%) + V sin a (jx, — Z,)}] l

i
i

s } — [P — @ {008 & (JZ, + V%) — V sina (xy — Z,)}]
L . }

PZ,, — (J, + %,V

Hence
m K
Z'y = r m (Z,% + 3PV Z, — jxp2a® (JZ, + xV?), fe, Y, Y,
b V2 (afx,7 %, €08 0 — fX57) — V (Jx, 2% sin a) — (jx,Z,% + ax, 27, cos a), i, Y, Y,
Where

Zr="2 +jx2; J=r;+jxs; and Zm:rl + Jxy

and

D=1 —~ V) UZ,x: — jx?) (Ja%x,,t — x,Z) — jX,,%a cOS a (afx,,? COS a — 2jxyx,,) — X, 2%0]
F 12 {ZmZ, + Xps® (s + 2X9) — jxn® (JZs+ 2ax,,, cos a + ja?Z,)}]

i
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Thus m 5
m s o
s B R A B
Lo I =55 : ’ 1
e Bl ; v, |y, | o ¥
o | | |
and
;m::’\f'%&, IS"——:-Y—”‘E? -

Substituting for Y, ¥, and D, I, and 1 then are obtained as;
1, = Vo, [(Ja%5,20 — 2,00 (1 — VO + o (Zs -+ a?x,,% + 2iZ,35))
(1= VO {(Zpxe — Fxn®) (Jatx,® — x,2)
e JX P €O u (@x,,% COS e 2fxaN,) - XP,, Ko}
o g U270 A X T) (g - 2PX) — J3n” (J2, A 2ax,,, cos o -+ ja®L, W]

and
¥, = Vs [VE (@ix, 2 €08 @ — jX,,%0®) — V (U0 8in &) — (X, 2,7 + ax, "2, cos o]

< I (as above for 1)
TorQUE A¥D QurPur

The torque equation is given, in the case of a machine having a constant airgap length and smooth surface
for the rotor, by
Tow= L* B = 1L,%* Gy Iy
where T,* is the complex conjugate of I, and B j& the flux density tensor.
With the aid of the equations already given it is easily shown that in a shaded pole motor, the

synchronous torque is
T o [ L* (i Zg) -G ly

uvdy fo oumppyy sagunag sy

Lel



since
L =(-Z2,1Zs1)
G, is obtained by retaining the coefficients of the V in Z; and putting down zeros everywhere else.

m K
4 : :
0 ax,, sina |
Gy = ” ;
G — Xy ! —aX,C08a
! i
m £
. d, i JZ, +x,V2 1 Z,{ajcos a +aV sin a) — x;V (aj sin a — aV cos o)

i

Z T, = 5 Ko —_
E2r 52V g, ; JxsV —~ZV | xV (—agjcosa -+ aV sine) -+ Z, (g sin e — aV ¢os a)

m Ry
m Vi, U, +Z,) aVx,, €S o (jXy 5 Z,) - GXy Sin a (V2 — JZ,)
Z 29 Gy =g B Yo w5 % X -
Z,2 - X2V s | Vax,cosa(jx, + Zy @V, (g + Z,)
I~ ax,, sin o (X,V2 — jZ,) ! TSt 4
{

m‘ B | B,
s | B | B
i
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Torque, in Synchronous watts, is

—— m 8
m S
]
* . " ugl Bz | Im m
Ly, I* I 7
o s 1 B, B, ‘ L |
{

=1, (B-L,* + BL*) + I (B, L,* + B, 1%

Thus, it is shown that the impedance matrices of any machine can be
quickly obtained from the primitive machine. An advantage of the method
is that the initial steps for analysis is done once for all for the primitive machine
and the steps of analysis for other machines can start later; sometimes only
the final step being necessary. The correlation between machines is so
complete that analysis of a new machine is built on that of machines
already analysed. Herein lies the power in this method of machine analysis.

Our thanks are due to the Director, Indian Institute of Science, for the
facilities for publishing this paper.
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