DISSOCIATION CONSTANTS OF ORTHO-, META-AND PARA- HYDROXY BENZOIC ACIDS, GALLIC ACID, CATECHOL, RESORCINOL, HYDROQUINONE, PYROGALLOL AND PHLOROGLUCINOL.

By C. T. Abichandani and S. K. K. Jatkar.

INTRODUCTION.

The concept underlying the polar effects of substituent groups in the benzene ring has been based partly on the dissociation constants of the substituted benzoic acids. The effect of OH substitution in benzoic acid and in phenols, has been studied by various methods. Kohlrausch and Stockmair (Monatsch, 1935, 66, 316) while studying the Raman spectrum of hydroxy substituted benzoic acid esters, found that the presence of OH in ortho-, meta- and para-positions affects the CO frequency, and the order of influence is the same in which the substituent increases the dissociation constants of the acids. Recently Wulf and Liddel (Jour. Amer. Chem. Soc., 1935, 57, 1464) have measured infra-red spectra of mono, di- and tri-hydroxy benzenes, and observe that catechol and pyrogaliol show double peaks. while the rest of the phenols show only single peaks. Pauling (Ibid., 1936, 58, 94) and later Wulf, Liddel and Hendricks (Ibid., 1936, 58, 2287) have explained these peaks on the assumption of cis and trans positions of two OH groups in catechol and pyrogallol. The other phenols have both the OH groups in cis-cis or trans-trans positions. The effect of substitution of various other groups on the infra-red spectra has been studied, but little attention has been paid to the mutual effect of hydroxyl and carboxyl groups in various positions in substituted phenols.

It has been known for a long time that the dissociation constants of carboxylic acids are influenced by the polar characters of the substituent groups. The extensive work of Ostwald has shown that the substituents may either increase or decrease the strength of carboxylic acids. Derik (*Ibid.*, 1911, 33, 1152) has expressed the action of substituent groups as a logarithmic function of dissociation constants (log K) of the substituted acids. Walters (*Phil. Mag.*, 1929, **8**, 436) was the first to correlate the values of dissociation constants of a number of substituted benzonic acids X-C₆H₄COOH

with the dipole moment of the corresponding substituted benzene $X-C_6H_5$. He suggested that in the absence of the complications arising from factors such as electronic and steric effects, log K is a linear function of the dipole moment. Recently Nathan and Watson (*Jour. Chem. Soc.*, 1933, 893) have derived an equation connecting the dissociation constans of substituted acetic acids with the dipole moment of appropriate methane derivative X-CH₃. The possibility of a similar relationship in the aromatic acids was considered by Nathan and later by Dippy Williams and co-workers (*Jour. Chem. Soc.*, 1934, 161, 1888; 1935, 343, 346; 1936, 644; 1937, 1008) who found that, a straight line relationship exists between the dissociation constants of the substituted acids and the dipole moment of corresponding substituted benzene.

The first dissociation constants for the various acids and phenols have been obtained previously (Thiel and Roemer, Z. Physik Chem., 1908, 63, 731, 744) by the conductivity method, using Ostwald's classical formula for deducing the constants. It was necessary to obtain the value of the dissociation constants more acurately. In this investigation, the first and second thermo-dynamical dissociation constants of various ortho-, meta- and para-substituted hydroxy benzoic acids and di- and tri-hydroxy benzenes have been measured from the potentiometric titration data, making corrections for the interionic attraction, with the help of Debye-Huckel equation.

EXPERIMENTAL.

Titration cell used was the same as described previously (*This Journal*, 1938, **21A**, 345). It was kept in a water-bath maintained at a constant temperature at 30°. Pure o-hydroxy benzoic acid (m.p. 159°), *m*-hydroxy benzoic acid (m.p. 200.8°), *p*-hydroxy benzoic acid (m.p. 213°-7°), gallic acid (m.p. 239°), catechol (m.p. 105°), resorcinol (m.p. 110°), hydroquinone (m.p. 170.3°), pyrogallol (m.p. 132.9°-133.3) and phloroglucinol (m.p. 110°) were used.

Standard alkali solution was prepared from pure sodium taking all precautions to exclude carbon dioxide.

The pH was calculated from the observed E.M.F. by the use of the formula $\frac{E_{obs} - E_{cal.}}{.0601}$ at 30° C.; the junction potential being very small was neglected. (*Cf.* Abichandani and Jatkar, *This Journal*, 1938, 21A, 373.)

CALCULATION OF DISSOCIATION CONSTANTS.

A dibasic acid dissociates in the following manner,

$$H_{2}An \leftrightarrows H^{+} + HAn^{-}$$
$$HAn^{-} \leftrightarrows H^{+} + An^{-} -$$

and from the law of mass action the two dissociation constants are given by

$$K_{1}^{a} = \frac{a_{H}}{a_{H_{2}An}} = \frac{c_{H} \cdot c_{H_{An}}}{c_{H_{2}An} \cdot f_{H_{2}An}} = K_{1}^{a} \frac{f_{H} f_{HAn}}{f_{H_{2}An}} \qquad ..$$
(I)

$$\mathbf{K}_{2}^{u} = \frac{a_{\mathrm{H}}}{a_{\mathrm{HA}}} \frac{a_{\mathrm{A}n}}{c_{\mathrm{HA}n}} = \frac{c_{\mathrm{H}}}{c_{\mathrm{HA}n}} \frac{f_{\mathrm{H}}}{f_{\mathrm{HA}}} \frac{f_{\mathrm{A}n}}{c_{\mathrm{HA}n}} = \mathbf{K}_{2}^{e} \frac{f_{\mathrm{H}}}{f_{\mathrm{HA}n}} \cdots$$
(II)

The above equations involve the terms a the activity. f the practical activity coefficient and c the concentrations in moles per litre, while the Guldberg and Waage's original equation only involved the term c. Both experimental and theoretical observations have shown that mass law relation is given by activity rather than by concentration factors. The value of the activity coefficient f can be calculated from Debye and Huckel (*Phys. Z.*, 1923, 24, 185, 305, 334) theory, which gives it as a function of concentration,

$$\log f = \frac{2 \cdot 954}{2 \cdot 3026} \times \frac{10^6}{(\text{DT})^{1.5}} Z_1 Z_2 \sqrt{\Sigma} C_r Z_t^2$$

= - A Z_t^2 \sqrt{\u03cm} \u03cm \\u03cm \u03cm \u03cm \u03cm \u03cm \\

where D is dielectric constant of solvent, T is absolute temperature, Z = ionic charge, 2.954 ×10⁶ is the numerical product of Boltzman constant and the electronic charge, and D has the value 78.54. All these terms being constant, are grouped under one constant A. Guggenheim (*Jour. Phys. Chem.*, 1934, 38, 533) has treated the electrolytes as though they have equal ionic parameters and modified the above equation; according to him

$$\log f = -A \ Z_{t}^{2} \ \frac{\sqrt{\mu}}{1 + \sqrt{\mu}} \qquad .. \quad (IV)$$

and for concentrated solutions

$$\log f = -A Z_{i}^{2} \frac{\sqrt{\mu}}{1 + \sqrt{\mu}} + \beta \mu \qquad .. (V)$$

where term β is a constant called the 'salt coefficient' and arises from the repulsive forces between ions in concentrated solutions (Huckel, *Phys. Z.*, 1925, 26, 93). In our case, however, the term involving β will be dropped, as the concentrations used are very low and the salt coefficient is very small. Upon substituting the equation (V) for activity coefficients in equations (I) and (II), taking $f_{\rm H2An}$ and $f_{\rm H}$ (in very dilute solutions) as unity, we get

$$\log K_1^a = \log K_1^c - A \frac{\sqrt{\mu}}{1 + \sqrt{\mu}}$$
 ... (VI)

$$\log K_{2}^{s} = \log K_{2}^{s} - 4A \frac{\sqrt{\mu}}{1 + \sqrt{\mu}} + A \frac{\sqrt{\mu}}{1 + \sqrt{\mu}} \cdots (VII)$$

where K_1^a and K_2^a are thermodynamical dissociation constants in pure water.

For the calculation of dissociation constants, the various ionic concentrations have been calculated from their stoichiometrical concentrations. In Table I for each acid, the values of moles of NaOH per mole of acid and the stoichiometrical concentrations of added alkali (equivalent concentration of sodium salts = J), total acid, unneutralized acid, mono sodium salt and di-salt, are given. If M represents the stoichiometrical concentration and c the ionic concentrations, the following relationships hold good between the various quantities, throughout the titration. For the first half of titration,

$$\begin{split} C_{NaHAn} &= J + C_{H} - C_{OH} \\ C_{H_{2}An} &= M_{H_{2}An} - C_{NaHAn} \\ &= M_{H_{2}An} - J - C_{H} + C_{OH} \\ &= M_{U} - C_{H} + C_{OH} \end{split}$$

For the second half of titration

$$\begin{split} \mathbf{C}_{\mathbf{N}a_{2}\mathbf{A}\mathbf{p}} &= \mathbf{J} - \mathbf{M}_{\mathbf{H}_{2}\mathbf{A}\mathbf{n}} + \mathbf{C}_{\mathbf{H}} - \mathbf{C}_{\mathbf{O}\mathbf{H}} \\ &= \mathbf{M}_{\mathbf{N}a_{2}\mathbf{A}\mathbf{n}} + \mathbf{C}_{\mathbf{H}} - \mathbf{C}_{\mathbf{O}\mathbf{H}} \\ \mathbf{C}_{\mathbf{N}a\mathbf{H}\mathbf{A}\mathbf{n}} &= 2\mathbf{M}_{\mathbf{H}_{2}\mathbf{A}\mathbf{n}} - \mathbf{J} - \mathbf{C}_{\mathbf{H}} + \mathbf{C}_{\mathbf{O}\mathbf{H}} \\ &= \mathbf{M}_{\mathbf{H}_{2}\mathbf{A}\mathbf{n}} - \mathbf{M}_{\mathbf{N}a_{2}\mathbf{A}\mathbf{n}} - \mathbf{C}_{\mathbf{H}} + \mathbf{C}_{\mathbf{O}\mathbf{H}} \\ &= \mathbf{M}_{\mathbf{N}a\mathbf{H}\mathbf{A}\mathbf{n}} - \mathbf{C}_{\mathbf{H}} + \mathbf{C}_{\mathbf{O}\mathbf{H}} \end{split}$$

These relations hold good for each acid group when treated independently of the dissociation of other acid groups. In the cases where overlapping of the two groups occur and both of them titrate simultaneously over a particular range, the above relations do not hold good.

It is seen from the results for phloroglucinol, and also from the dibasic acids studied by us previously (*This Journal*, **21A**, 373-84) that the range over which the overlapping of two groups occurs, depends on the ratio K_1/K_2 , the range increasing with decreasing ratio and is shown by the fact that the calculated values for dissociation constants in this region vary enormously. This variation is due to

the formation of di-salt before the first group is completely neutralized. To calculate the ionic concentration in this region, the value for each ion is solved by taking into account the formation of di-salt, (Burton, Hammer and Acree, *Jour. Bureau of Standards*, 1936, 16, 575).

The equation $M_{NaOH} + C_H = C_{HAn} + 2C_{An}$ expresses the solution neutrality, and $C_{H_2An} + C_{An} + C_{HAn} = M_{H_2An}$ due to the conservation of mass. Solving these two simultaneously with equations (I) and (II), we get the ionic concentration of di-salt as

The average values of K_1^e and K_2^e in the region where they are constant, are employed in the above equation. In phloroglucinol it is seen that the values go on changing rapidly from the very beginning, showing titration of both groups simultaneously. By taking the value of $K_1^e = 3.6 \times 10^{-9}$ and $K_2^e = 1.6 \times 10^{-9}$ the ionic concentration of di-salt formed is calculated as given in Table III for this substance. The new values of K_1^e and K_2^e have been obtained by the method of successive approximation. The values of K_1^e and K_2^e are fairly concordant.

The ionic strength μ , corresponding to various ionic concentrations, is equal to one half the sum of each ion molality present in the solution, multiplied by the square of its valence (Lewis and Randall, *Thermodynamics*, 1923, pp. 373 and 428). In the first part of titration $\mu = (2J + 2 \text{ CH})/2$ and for the second part $\mu = (4J - 2M_{\text{H,An}} + 4\text{ CH})/2$. The values of μ calculated according to the equations are given in Table II for each acid.

Burton, Hammer and Acree (*Jour. Bureau of Standards*, 1936, 16, 575) have taken the value of μ in the first half of the titration as (2J + 3CH)/2 and during the second half as $(4J - 2M_{Hahr} + 5CH)/2$. They have evidently taken the concentration of sodium ion as equal to $J + C_{\rm H}$, which should be equal to J, the concentration of added alkali, since the salts are completely dissociated. The values of $K_{\rm i}^{\rm s}$, $K_{\rm g}^{\rm s}$ and $K_{\rm i}^{\rm s}$, $K_{\rm g}^{\rm s}$ calculated according to the method outlined, are given in Table II for each acid.

422

(1) ORTHO-HYDROXY BENZOIC ACID.

0.1057 N NaOH	Moles NaOH per mole acid	J = equiv, cone. of Na salts $\times 10^4$	$\stackrel{ m M_{H_2An}}{ imes 10^4}$	$\begin{array}{c} \mathrm{M_{H_{2An}}=U}\\ \times 10^{4} \end{array}$	${ m M_{NaHAu}} imes 10^4$	$\stackrel{\mathrm{M}_{\mathrm{N}^{a_{2}\mathrm{A}n}}}{\times 10^{4}}$
$\begin{array}{c} 0.0 \\ 1.0 \\ 2.0 \\ 3.0 \\ 4.0 \\ 5.0 \\ 6.0 \\ 7.0 \\ 8.0 \\ 9.0 \\ 10.0 \\ 11.0 \\ 12.0 \\ 13.0 \\ 14.0 \end{array}$	0.0000 .0741 .1482 .2224 .2965 .3708 .4448 .5189 .5930 .6671 .7412 .8154 .8895 .9636 .0377	$\begin{array}{c} 0.00\\ 5.26\\ 10.47\\ 15.62\\ 20.78\\ 20.78\\ 25.78\\ 30.79\\ 33.74\\ 40.65\\ 45.52\\ 50.33\\ 55.10\\ 59.83\\ 64.51\\ 69.15\end{array}$	71.30 70.94 70.550 70.23 69.37 69.23 69.23 68.52 68.16 67.58 67.52 67.52 67.52 67.52 67.54 66.88	$\begin{array}{c} 71\cdot 30\\ 65\cdot 68\\ 60\cdot 12\\ 54\cdot 61\\ 49\cdot 14\\ 43\cdot 74\\ 33\cdot 66\\ 27\cdot 87\\ 22\cdot 64\\ 17\cdot 55\\ 12\cdot 42\\ 7\cdot 41\\ 2\cdot 37\\ \end{array}$	$\begin{array}{c} 0.00\\ 5.26\\ 10.47\\ 15.62\\ 20.73\\ 25.78\\ 30.79\\ 35.74\\ 40.65\\ 45.52\\ 50.33\\ 55.10\\ 59.83\\ 64.51\\ 61.03\end{array}$	··· ·· ·· ·· ·· ·· ·· ··
$15 \cdot 0$ $16 \cdot 0$ $17 \cdot 0$ $18 \cdot 0$ $19 \cdot 0$ $21 \cdot 0$ $22 \cdot 0$ $23 \cdot 0$ $24 \cdot 0$ $25 \cdot 0$ $26 \cdot 0$ $27 \cdot 0$	1.119 1.1860 1.2601 1.3342 1.4083 1.4825 1.5566 1.6307 1.7048 1.7790 1.8531 1.9270 2.0013	$\begin{array}{c} 73.74\\ 78.30\\ 82.81\\ 87.28\\ 91.70\\ 96.09\\ 100.44\\ 104.75\\ 109.02\\ 113.25\\ 117.44\\ 121.60\\ 198.72 \end{array}$	$66 \cdot 31$ $66 \cdot 02$ $65 \cdot 67$ $65 \cdot 38$ $64 \cdot 53$ $64 \cdot 53$ $64 \cdot 24$ $63 \cdot 96$ $63 \cdot 67$ $63 \cdot 39$ $63 \cdot 10$ $63 \cdot 10$	··· ··· ··· ···	$58 \cdot 87$ $53 \cdot 74$ $48 \cdot 53$ $43 \cdot 48$ $38 \cdot 50$ $23 \cdot 53$ $28 \cdot 62$ $23 \cdot 73$ $18 \cdot 90$ $14 \cdot 09$ $9 \cdot 34$ $4 \cdot 60$	$\begin{array}{c} 7.43\\ 12.28\\ 17.14\\ 21.90\\ 26.60\\ 31.28\\ 35.91\\ 40.51\\ 45.06\\ 49.58\\ 51.05\\ 51.05\\ 58.50\\ 90.00\end{array}$

TABLE J. Stoichiometrical concentrations prevailing in the distribution of 200 c.c. of 0.007100 M acid by 0.1057 N sodium hydroxide.

TABLE II. Data for the titration.

First Equivalent of Sodium Hydroxide.

Calomel temp.	0.1057 N NaOH	E.M.F.	pH	$C_{\rm H} \times 10^{\mu}$	n	$K_1^c \times 10^3$	$\mu imes 10^4$	$K_1^a \times 10^3$
28.0 28.2 ,, 28.3 ,, 28.4 28.4 , 28.5 , 28.6 , 28.8	$\begin{array}{c} 0 \cdot 0 \\ 1 \cdot 0 \\ 2 \cdot 0 \\ 3 \cdot 0 \\ 4 \cdot 0 \\ 5 \cdot 0 \\ 6 \cdot 0 \\ 7 \cdot 0 \\ 8 \cdot 0 \\ 9 \cdot 0 \\ 10 \cdot 0 \\ 11 \cdot 0 \\ 12 \cdot 0 \\ 13 \cdot 0 \\ 13 \cdot 2 \\ 13 \cdot 3 \end{array}$	$\begin{array}{c} 0.3941\\ -3992\\ -4021\\ -4057\\ -4101\\ -4145\\ -4197\\ -4252\\ -4316\\ -4387\\ -4482\\ -4602\\ -4789\\ -5408\\ -6342\\ -7623\\ \end{array}$	2.51 2.59 2.64 2.707 2.85 2.93 3.03 3.14 3.25 3.41 3.92 4.96 	3.090 2.570 2.291 1.995 1.698 1.413 1.175 9.333 7.244 5.623 3.890 2.455 1.202 1.096 	333333444445	1.99 2.06 2.05 1.99 1.90 1.87 1.777 1.68 1.69 1.54 1.42 1.18 3.13 	$\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $	1.87 1.93 1.92 1.86 1.77 1.74 1.65 1.56 1.56 1.56 1.43

.

Calomel temp.	0.1057 N NaOH	E.M.F	pH	Си×107	n	$\mathrm{K_2}^{c} \times \ \mathrm{I0^{13}}$	$\mu imes$ 104	K ₂ ^a × 10 ¹³
28.8 ,, 28.9 ,, 28.8 ,, 28.7 ,, ,, ,, ,, ,, ,, ,, ,, ,, ,	$\begin{array}{c} 13 \cdot 4 \\ 14 \cdot 0 \\ 15 \cdot 0 \\ 16 \cdot 0 \\ 17 \cdot 0 \\ 18 \cdot 0 \\ 19 \cdot 0 \\ 20 \cdot 0 \\ 21 \cdot 0 \\ 22 \cdot 0 \\ 23 \cdot 0 \\ 24 \cdot 0 \\ 25 \cdot 0 \\ 25 \cdot 0 \\ 26 \cdot 0 \\ 27 \cdot 0 \end{array}$	- \$132 - \$525 - \$758 - \$9036 - 9036 - 9085 - 9128 - 9185 - 9193 - 9221 - 9245 - 9260 - 9229	$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ &$	$\begin{array}{c} & . \\ & . \\ & 2 \cdot 951 \\ 2 \cdot 455 \\ 1 \cdot 288 \\ 1 \cdot 000 \\ 8 \cdot 318 \\ 7 \cdot 079 \\ 6 \cdot 166 \\ 5 \cdot 495 \\ 5 \cdot 012 \\ 4 \cdot 571 \\ 4 \cdot 266 \\ 4 \cdot 072 \\ 3 \cdot 715 \end{array}$	$\begin{array}{c} \\ 11 \\ 11 \\ 11 \\ 11 \\ 12 \\ 12 \\ 12 $	 4.70 18-77 5.50 5.50 5.53 5.89 6.13 7.99 6.13 7.07 7.37 8.37 10.35 	 69.14 74.86 82.99 95.50 90.56 95.91 101.07 106.15 111.18 116.93 122.09 127.84 134.39	 4.10 3.99 4.13 4.29 4.33 4.33 4.33 4.20

Second Equivalent of Sodium Hydroxide.

(2) META-HYDROXY BENZOIC ACID.

TABLE I. Stoichiometrical concentrations prevailing in the titration of 200 c.c. of 0.007268 M acid by 0.1017 N sodium hydroxide.

0 • 1017 N NaOH	Moles NaOH per mole acid	J = equiv. cone, of Na salts $\times 10^4$	$\stackrel{ m M_{H_2An}}{ imes 10^4}$	${}^{\mathrm{M}_{\mathrm{H}_{2}\mathrm{An}}}_{ imes 10^{4}} = \mathrm{U}$	M _{NaHAb} × 10 ⁴	$rac{M_{ m Na_2An}}{ imes 10^4}$
0.0	0.0000	0.00	72.68	72.68	0.00	,
2.0	1399	10.07	71-95	61.88	10.07	
3.0	-2099	15.03	71.59	56-56	15.03	
4-1	·2869	20.43	71.15	50.72	20.43	••
5.0	·3498	24.80	70.86	46.06	$24 \cdot 80$	
6.0	-4198	29-62	70.57	40 - 95	29.62	
7.0	+4897	34-39	70.14	35.75	$34 \cdot 39$	
8.0	+5597	39-12	69.85	$30 \cdot 73$	39.12	••
9.0	·6297	43.79	69-48	25+69	43-79	
10.0	 6996 	48.43	69-19	20.76	48.43	
11.0	-7696	53,02	68-83	15-81	53.02	••
12.0	 -8396 	57.57	68-54	10.97	57-57	••
13.0	•9095	62.07	68-17	$6 \cdot 10$	62.07	••
14.0	-9795	66-53	67-88	1.35	66+53	••
15.0	1.0495	70 • 95	67-59		64 - 23	3.36
16.0	1.1194	75-33	67 30		59.27	8.03
17-0	1.1894	79.67	66.94		54.21	12-73
18.0	1.2594	83.98	66+65		49.32	17-33
19.0	1.3293	88.23	$66 \cdot 36$		44.59	21.77
20.0	1.3993	92.45	66-07		39.69	26-38
21.0	1.4692	96-64	65.78		34 - 92	30.86
22-0	1.5392	100.78	65-48		30.18	$35 \cdot 30$
23.0	1.5092	104.89	$65 \cdot 19$		25.49	39.70
24.0	1.6791	108.96	64.90		20.84	44.06
25.0	1.7491	113.00	$64 \cdot 61$		$16 \cdot 22$	48.39
26.0	1.8191	117.00	64.32		11-64	52+68
27.0	1.8890	120.96	64.03		7.10	56-93
28.0	1.9590	124.89	63 • 74		2.59	61-15
29.0	2.0290	128.79	63-45			65+34

423

Λ	2	4
- 6		- 7

TABLE II.	Data for the titration.
First Equiva	lent of Sodium Hydroxide.

Calomel temp.	0.1017 N NaOH	E.M.F.	$_{\rm pH}$	$C_{II} \times 10^{n}$	n	$K_{1c} \times 10^{4}$	$\mu imes 10^4$	$\mathrm{K_{I}}^{a} \times 10^{4}$
26.5 ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	$\begin{array}{c} 0 \cdot 0 \\ 2 \cdot 0 \\ 3 \cdot 0 \\ 4 \cdot 1 \\ 5 \cdot 0 \\ 6 \cdot 0 \\ 7 \cdot 0 \\ 8 \cdot 0 \\ 9 \cdot 0 \\ 11 \cdot 0 \\ 12 \cdot 0 \\ 13 \cdot 0 \\ 14 \cdot 2 \\ 14 \cdot 2 \\ 14 \cdot 3 \end{array}$	0 -4269 -4417 -4493 -4579 -4579 -4785 -4785 -4853 -4853 -4853 -4853 -4853 -4853 -4853 -5006 -5217 -5393 -5909 -6252 -6715	3-03 3-28 3-41 3-55 3-66 3-77 3-89 4-00 4-12 4-26 4-24 4-61 4-91 5-76 	9.333 5.248 3.890 2.818 2.188 1.609 1.288 1.000 7.586 5.495 3.631 2.465 1.230 1.738 	4 4 4 4 4 4 4 4 4 4 4 5 5 5 6 	 1.42 1.40 1.37 1.35 1.35 1.35 1.35 1.35 1.36 1.38 1.25 1.38 1.25 1.38 1.25 1.38 1.38 1.38 1.38 1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.35 1.55 1.35 1.55 1	15-32 18-92 23-25 26-99 31-32 35-68 40-12 44-55 48-98 53-38 57-82 66-55 	$\begin{array}{c} & & & \\ & 1 \cdot 36 \\ & 1 \cdot 33 \\ & 1 \cdot 30 \\ & 1 \cdot 28 \\ & 1 \cdot 25 \\ & 1 \cdot 26 \\ & 1 \cdot 23 \\ & 1 \cdot 16 \\ & 1 \cdot 22 \\ & 1 \cdot 22 \\ & 1 \cdot 20 \\ & & \\$
		1	Ì	I	1	$K_{2^{c}} \times 10^{10}$		$K_2^a \times 10^{10}$

			1	Ì	1	$K_{2}^{c} \times 10^{10}$		$K_2^a \times 10^{10}$
26.6	14.4 14.5 15.0	•7106 •7215		 		::		
26.5 ,, 26.7 ,, ,,	$ \begin{array}{c} 16.0\\ 16.0\\ 17.0\\ 19.0\\ 20.0\\ 21.0\\ 22.0\\ 23.0\\ 24.0\\ 25.0\\ 26.0\\ \end{array} $.7736 .7851 .7950 .8041 .8117 .8189 .8262 .8334 .8402 .8479 .8479 .8555	8.80 8.99 9.16 9.31 9.43 9.56 9.68 9.80 9.91 10.04 10.17	$\begin{array}{c} 1.585\\ 1.023\\ 6.918\\ 4.898\\ 3.715\\ 2.754\\ 2.089\\ 1.585\\ 1.230\\ 9.120\\ 6.761\end{array}$	9 9 10 10 10 10 10 10 10 10 10	2 · 11 2 · 36 2 · 38 2 · 33 2 · 39 2 · 39 2 · 31 2 · 29 2 · 34 2 · 31 2 · 34 2 · 34 2 · 35	$83 \cdot 24$ $92 \cdot 22$ $101 \cdot 04$ $109 \cdot 62$ $118 \cdot 33$ $126 \cdot 82$ $135 \cdot 19$ $143 \cdot 41$ $151 \cdot 51$ $159 \cdot 35$ $166 \cdot 93$	$\begin{array}{c} & & & \\ & & & \\ & & & \\ 1 \cdot 74 \\ & & & \\ 1 \cdot 73 \\ & & & \\ 1 \cdot 68 \\ & & & \\ 1 \cdot 67 \\ & & & \\ 1 \cdot 62 \\ & & & \\ 1 \cdot 59 \\ & & & \\ 1 \cdot 61 \\ & & & \\ 1 \cdot 57 \end{array}$
26.5	27-0 28-0 28-5 29-0	-8642 -8725 -8771 -8805	10.31 	4.898 	ii 	2.39 	100-33	1.60 <u>1.65</u>

,

425

(3) PARA-HYDROXY BENZOIC ACID.

0.1017 N NaOH	Moles NaOH per mole acid	J = equiv. conc. of Na salts $\times 10^4$	$\stackrel{\mathrm{M_{H_2An}}}{\times 10^4}$	$ \begin{vmatrix} M_{\rm H_2An} = U \\ \times 10^4 \end{vmatrix} $	$M_{NaHAn} \times 10^4$	$\stackrel{\mathrm{M}_{\mathrm{Na_2An}}}{ imes 10^4}$
$\begin{array}{c} 0 \cdot 0 \\ 2 \cdot 0 \\ 3 \cdot 0 \\ 5 \cdot 0 \\ 5 \cdot 0 \\ 7 \cdot 0 \\ 9 \cdot 0 \\ 11 \cdot 0 \\ 12 \cdot 0 \\ 13 \cdot 0 \\ 15 \cdot 0 \\ 22 \cdot 0 \\ 22 \cdot 0 \\ 22 \cdot 0 \\ 22 \cdot 0 \\ 24 \cdot 0 \end{array}$	$\begin{array}{c} 0.0000\\ -1573\\ -2360\\ -3147\\ -3933\\ -4720\\ -5507\\ -5507\\ -7867\\ -8653\\ -9440\\ 1.0227\\ 1.1013\\ -1.0227\\ 1.1013\\ -1.2587\\ 1.42587\\ 1.42587\\ 1.42587\\ 1.45733\\ 1.44160\\ 1.4947\\ 1.5733\\ 1.6520\\ 1.7307\\ 1.8093\\ 1.8093\\ 1.8093\\ 1.8093\\ 1.8880\\ \end{array}$	$\begin{array}{c} 0 & 00 \\ 10 & 0.7 \\ 15 & 0.3 \\ 19 & 94 \\ 24 & 80 \\ 29 & 62 \\ 34 & 39 \\ 43 & 79 \\ 48 & 43 \\ 55 & 02 \\ 57 & 57 \\ 65 & 07 \\ 66 & 53 \\ 77 & 53 \\ 77 & 53 \\ 70 & 95 \\ 75 & 33 \\ 98 & 23 \\ 92 & 45 \\ 92 & 45 \\ 96 & 64 \\ 100 & 78 \\ 104 & 89 \\ 108 & 96 \end{array}$	$\begin{array}{c} 64.64\\ 63.90\\ 63.67\\ 63.85\\ 63.02\\ 62.77\\ 62.38\\ 62.12\\ 61.50\\ 61.54\\ 61.91\\ 60.63\\ 60.63\\ 59$	64-64 53-92 48-64 48-64 48-41 38-22 33-15 27-99 23-00 18-01 18-01 18-19 3-39 3-39 3-39 3-39 3-39 3-39 3-39 3	$\begin{array}{c} 0.00\\ 0.07\\ 10.07\\ 15.03\\ 19.94\\ 24.80\\ 29.62\\ 34.39\\ 39.12\\ 48.43\\ 53.02\\ 57.57\\ 59.19\\ 54.21\\ 49.29\\ 44.39\\ 30.39\\ 34.56\\ 25.07\\ 20.39\\ 34.56\\ 15.07\\ 20.38\\ 14.67\\ 16.7\\ 6.48\\ \end{array}$	
25.0	1.9667	113.00	57-46		1.92	55-54

 TABLE I.
 Stoichiometrical concentrations prevailing in the totration of 200 c.c. of 0.006484 M acid by 0.1017 N sodium hydroxide.

TABLE II. Data for the titration.

First Equivalent of	Sodium.	Hydroxide.
---------------------	---------	------------

Calomel temp.	0 • 1017 N NaOH	E.M.F.	pĦ	$C_{H} \times 10^{n}$	n	$K_1^c \times 10^5$	$\mu \times 10^4$	$K_1^a \times 10^5$
25.6 25.7 26.0 26.1 26.0 25.8 26.0 25.9	$\begin{array}{c} 0 \cdot 0 \\ 2 \cdot 0 \\ 3 \cdot 0 \\ 4 \cdot 0 \\ 5 \cdot 0 \\ 6 \cdot 0 \\ 7 \cdot 0 \\ 8 \cdot 0 \\ 9 \cdot 0 \\ 10 \cdot 0 \\ 11 \cdot 0 \\ 12 \cdot 4 \\ 12 \cdot 6 \\ 12 \cdot 7 \end{array}$	0.4376 -4632 -4736 -4829 -4911 -4994 -5078 -5185 -5257 -5257 -5359 -5499 -5754 -5836 -6181 -6388	3.20 3.63 3.80 3.96 4.10 4.23 4.50 4.67 4.67 4.67 4.67 5.07 5.49	6-310 2-344 1-585 1-096 7-943 5-888 4-266 3-162 2-138 1-445 8-511 3-236 	444455555566	5-64 5-60 5-43 5-43 5-43 5-43 5-43 5-43 5-43 5-51 5-28 5-51 5-55 5-55 5-55	12:41 16:64 21:04 25:59 30:21 34:82 39:47 44:00 48:57 53:11 57:60 	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $
25.7	12.8	•6578	••	••	••	[••	5.15

Calomel temp.	0-1017N NaOH	E.M.F.	$_{\rm pH}$	$C_{\rm H} \times 10^{12}$	n	$K_2^c \times 10^9$	$\mu \times 10^4$	$\mathrm{K}_{2}^{a} \times 10^{10}$
25-7 25-8 25-9 26-0 25-9 ., 26-0 25-9 ., 26-0 25-9 ., 26-0 25-8 ., , , ,	$\begin{array}{c} 13 \cdot 0 \\ 14 \cdot 0 \\ 15 \cdot 0 \\ 16 \cdot 0 \\ 17 \cdot 0 \\ 19 \cdot 0 \\ 20 \cdot 0 \\ 21 \cdot 0 \\ 22 \cdot 0 \\ 23 \cdot 0 \\ 25 \cdot 0 \\ 25 \cdot 2 \\ 25 \cdot 4 \\ 25 \cdot 6 \\ 25 \cdot 8 \\ 26 \cdot 0 \end{array}$	-6806 -7265 -7446 -7566 -757 -7838 -7919 -8095 -8193 -8327 -8467 -8505 -8541 -8568 -8607 -8635	7-24 8-01 8-31 8-58 8-83 8-96 9-10 9-24 9-39 9-55 9-78 10-01 	5.623 9.772 4.898 3.090 2.089 1.479 1.0943 5.754 4.074 2.818 1.660 9.772 	8 9 9 9 9 9 9 9 10 10 10 10 10 10 10 11 	 1.07 1.07 1.06 1.05 1.06 1.05 1.06 1.10 1.09 1.37 	81-74 90-74 90-72 108-56 117-24 126-24 126-24 142-86 151-14 142-86 151-14 159-08 166-63	 S.01 7.80 7.72 7.57 7.39 7.31 7.31 7.48 7.38 7.46

Second Equivalent of Sodium Hydroxide.

(4) GALLIC ACID.

 TABLE I. Stoichiometrical concentrations prevailing in the titration of 200 c.c. of 0.004510 M acid by 0.0718 N sodium hydroxide.

	[
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \cdot \cdot \\ $

426

A	0	۰.,
4	-2	7

TABLE II. Data for the titration

First Equivalent of Sodium Hydroxide.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Calomel temp.	0.0718 N NaOH	E.M.F.	\mathbf{H}_{q}	$C_{\rm H} \times 10^{n}$	n	$K_1^c imes 10^5$	$\mu imes 10^4$	$K_1^{\ lpha} imes 10^5$
4-85	28.1 28.4 28.6 28.8 28.9 29.0 29.2 29.4 29.5 29.5 29.6 29.7	$\begin{array}{c} 0 \cdot 0 \\ 1 \cdot 4 \\ 2 \cdot 1 \\ 3 \cdot 2 \\ 4 \cdot 48 \\ 5 \cdot 2 \\ 6 \cdot 5 \\ 8 \cdot 3 \\ 8 \cdot 88 \\ 9 \cdot 49 \\ 10 \cdot 1 \\ 11 \cdot 05 \\ 11 \cdot 37 \\ 11 \cdot 78 \\ 12 \cdot 2 \\ 12 \cdot 5 \\ 12 \cdot 6 \end{array}$	$\begin{array}{c} 0.4359\\ -4.545\\ -4.634\\ -4.756\\ -4.868\\ -4.926\\ -5033\\ -5191\\ -5246\\ -5313\\ -5392\\ -5561\\ -5638\\ -5783\\ -6034\\ -6387\\ -6533\\ \end{array}$	$\begin{array}{c} 3 \cdot 23 \\ 3 \cdot 54 \\ 3 \cdot 69 \\ 3 \cdot 90 \\ 4 \cdot 19 \\ 4 \cdot 36 \\ 4 \cdot 63 \\ \\ 4 \cdot 84 \\ 4 \cdot 97 \\ 5 \cdot 25 \\ \\ 5 \cdot 62 \\ \\ 6 \cdot 65 \\ \end{array}$	$\begin{array}{c} 5\cdot888\\ 2\cdot884\\ 2\cdot042\\ 1\cdot259\\ 8\cdot128\\ 6\cdot457\\ 4\cdot365\\ 2\cdot344\\\\ 1\cdot445\\ 1\cdot072\\ 5\cdot623\\\\ 2\cdot399\\\\ 2\cdot239\\\\ \end{array}$	444455553;556.6.7.	6.15 5.53 4.98 4.88 4.88 4.88 4.88 4.68 5.3 4.40 4.18 5.3 4.40 4.18 5.3 4.40 4.18 5.3 4.40 4.10 5.3 4.40 5.3 5.3 5.3 5.3 5.33 5.33 5.33 5.33 5.	7.87 9.50 12.57 16.54 18.84 23.04 28.84 32.66 34.62 37.63 	$\begin{array}{c} \cdot \cdot \\ \cdot \cdot \\ \cdot \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ $

Second Equivalent of Sodium Hydroxide.

						$K_2^c \times 10^9$		$K_2^a \times 10^9$
29.9	12.8	-6699				••		••
77	13.0	•6829	7.37	4.266	8	1.53	45-29	• -
	13.5	•7019	7.68	2.089	8	1.67	48-53	1.33
30.0	14.0	 7127 	7.86	1.380	8	1.80	51+83	1.42
·	14.5	$\cdot 7218$	8.01	9.772	9	1-73	54-84	1.36
	15.5	 7339 	8.21	6.166	9	1.88	61-40	1 - 46
,,	16.5	•7446	8-39	4 - 074	9	1.85	67.72	1-42
30.2	18.0	 7574 	8-61	2.455	9	1-86	77.12	1.41
· · ·	20 • 1	·7739	8.88	1.318	9	I -95	90.01	1.44
,,	22.0	•7904	9-16	6.918	10	2.02	101.42	1-49
,,	23.0	·8018	9.35	4.467	10	2.04	107.23	1.50
"	24-1	·8172	9.58	2.630	10			
,,	24.8	·8295						
"	25.0	-8328						
"	25.2	+8369	9.91	1.230	10			
,,	25.6	-8435						
,,	~0.0	0.00						1-41
		1	ł					

(5) CATECHOL.

		and the second se		and the second se	the second se	and the second se
0 · 1017 N NaOH	Moles NaOH per mole catechol	J = cquiv. cone of Na salts $\times 10^4$	${ m M_{H_3An} \over imes 10^4}$	$\begin{array}{c} M_{\rm H_2An}=0\\ \times 10^4 \end{array}$	$rac{M_{ m NaHAn}}{ imes 10^4}$	${ m M_{Na_2An}} imes 10^4$
$\begin{array}{c} 0 \cdot 0 \\ 2 \cdot 0 \\ 3 \cdot 0 \\ 5 \cdot 0 \\ 6 \cdot 0 \\ 7 \cdot 0 \\ 8 \cdot 0 \\ 11 \cdot 0 \\ 11 \cdot 0 \\ 13 \cdot 0 \\ 14 \cdot 0 \\ 15 \cdot 0 \\ 13 \cdot 0 \\ 14 \cdot 0 \\ 15 \cdot 0 \\ 19 \cdot 0 \\ 21 \cdot 0 \\ 22 \cdot 0 \\ 23 \cdot 0 \\ 23 \cdot 0 \\ 25 \cdot 0 \\ 25 \cdot 0 \\ 28 \cdot 0 \\ 28 \cdot 0 \\ 28 \cdot 0 \\ 28 \cdot 0 \\ 29 \cdot 0 \\ 29 \cdot 0 \\ \end{array}$	$\begin{array}{c} 00000\\ -1268\\ -1901\\ -2535\\ -3169\\ -3803\\ -4437\\ -5704\\ -6734\\ -6774\\ -6338\\ -6972\\ -7606\\ -8239\\ -8239\\ -8873\\ -9507\\ 1.0141\\ 1.0775\\ -11408\\ 1.2042\\ 1.2676\\ 1.3310\\ -1.3944\\ 1.4577\\ 1.5211\\ -5845\\ -1.6479\\ 1.5211\\ -5845\\ -1.746\\ -1.746\\ -1.746\\ -1.8380\\ -1.2683\\ -1.2676\\ -1.2676\\ -1.3944\\ -1.4577\\ -1.5211\\ -5845\\ -1.746\\ -1.746\\ -1.746\\ -1.8380\\ -1.2683\\ -1.2$	$\begin{array}{c} 0.00\\ 10.07\\ 15.03\\ 19.94\\ 24.80\\ 24.80\\ 24.81\\ 39.12\\ 43.79\\ 43.79\\ 43.79\\ 43.79\\ 45.43\\ 65.02\\ 67.57\\ 62.07\\ 62.07\\ 62.07\\ 66.53\\ 70.95\\ 75.33\\ 70.95\\ 75.33\\ 79.67\\ 83.98\\ 88.23\\ 92.45\\ 96.64\\ 100.78\\ 104.89\\ 108.96\\ 113.00\\ 117.00\\ 117.00\\ 120.96\\ 128.79\\ 128.79\\ \end{array}$	$\begin{array}{c} 80.23\\ 79.43\\ 79.03\\ 78.62\\ 77.100\\ 77.10\\ 76.70\\ 76.70\\ 76.75\\ 75.66\\ 75.26\\ 75.26\\ 74.61\\ 74.29\\ 73.25\\ 72.96\\ 72.26\\ 72.29\\ 72.61\\ 72.29\\ 72.61\\ 72.29\\ 71.65\\ 71.97\\ 71.65\\ 71.90\\ 70.68\\ 70.92\\ 9$	50 - 23 69 - 36 64 - 00 58 - 69 58 - 69 12 - 95 22 - 96 13 - 19 3 - 66 	$\begin{array}{c} 0.00\\ 10.07\\ 15.03\\ 19.94\\ 24.80\\ 29.62\\ 34.39\\ 39.12\\ 33.99\\ 43.43\\ 53.02\\ 55.02\\ 57.57\\ 62.07\\ 62.07\\ 62.07\\ 62.07\\ 63.16\\ 58.27\\ 73.25\\ 68.11\\ 63.16\\ 58.27\\ 73.43\\ 43.80\\ 39.05\\ 53.41\\ 48.58\\ 39.05\\ 34.34\\ 29.64\\ 29.64\\ 29.64\\ 29.64\\ 29.64\\ 29.64\\ 29.64\\ 11.29\\ \end{array}$	$\begin{array}{c} & & & & & \\ & & & & & & \\ & & & & & & $
31-0	1.9648	136.48	69-48		2.48	67.00

 TABLE J
 Stoichiometrical concentrations prevailing in the titration of 200 c.c. of 0.008023 N catechol by 0.1017 M sodium hydroxide.

TABLE II. Data for the titration.

First Equivalent of Sodium Hydro:	xide
-----------------------------------	------

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Calomel temp.	0.1017 N NaOH	E.M.F.	рH	$C_H \times 10^{#}$	n	$K_1^c \times 10^{10}$	$\mu imes 10^4$	$K_1^{\alpha} \times 10^{10}$
,, 10.0 .8008	25-4 25-5 " 25-6 25-7 "	$\begin{array}{c} 0 \cdot 0 \\ 2 \cdot 0 \\ 3 \cdot 0 \\ 4 \cdot 0 \\ 5 \cdot 0 \\ 6 \cdot 0 \\ 7 \cdot 0 \\ 8 \cdot 0 \\ 9 \cdot 0 \\ 10 \cdot 0 \\ 11 \cdot 0 \\ 12 \cdot 0 \\ 18 \cdot 0 \\ 14 \cdot 0 \\ 15 \cdot 2 \\ 15 \cdot 5 \end{array}$	$\begin{array}{c} 0.5475\\ -7367\\ -7507\\ -7507\\ -7624\\ -7711\\ -7789\\ -7926\\ -7989\\ -8057\\ -8128\\ -8288\\ -8387\\ -8502\\ -8524\\ -8568\\ \end{array}$	5-03 8-17 8-41 8-60 8-75 8-89 9-11 9-21 9-31 9-44 9-57 9-71 	$\begin{array}{c} 9 \cdot 333 \\ 6 \cdot 761 \\ 3 \cdot 890 \\ 2 \cdot 512 \\ 1 \cdot 778 \\ 1 \cdot 318 \\ 1 \cdot 023 \\ 7 \cdot 762 \\ 6 \cdot 166 \\ 4 \cdot 677 \\ 3 \cdot 631 \\ 2 \cdot 692 \\ 1 \cdot 950 \\ \cdot \\ $	6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9-78 9-10 8-48 8-21 8-02 8-10 7-90 8-07 7-92 8-15 8-42 	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	 8.08 7.78 7.61 7.39 7.54 1.36 7.52 7.52 7.52 7.52

,

428

٨	~	
4	4	У

Calomel temp.	0 • 1017 N NaOH	E.M.F.	pH	$C_{\rm H} \times 10^{n}$	n	$\mathrm{K}_{2}{}^{c}\times10^{13}$	$\mu imes 10^4$	$\mathrm{K_2}^{a} \times \ \mathrm{I0^{13}}$
25.8	15.8	-8607						
$25 \cdot 9$	16.0	 8628 						
,,	17-0	 8746 	10.47	3.388	11	1.33	79.96	
,,	18.0	 8855 	10.66	2.188	11	5.80	85-88	
,,	19-0	·8926	10.77	1.698	11	9.86	92.25	7.31
26.0	20.0	•8996	10.89	1.288	11	9.64	97.53	7.10
,,	21.0	 9045 	10.97	1.072	11	10.81	103-29	7.90
$25 \cdot 8$	22.0	·9088	11.04	9.120	12	11.46	108.85	8.30
,,	23.0	•9124	11.10	7.943	12	12.05	114.34	8.67
••	24.0	 •9156 	11.16	6.918	12	11.73	119.35	8.38
$26 \cdot 1$	25.0	-9197	11.23	5+888	12	19.67	123.06	6.88
26.0	26.0	-9224	11-27	5.370	12	10.20	128.33	7-21
,,	27.0	·9247	11.31	4.898	12	10.28	133.22	7.22
,,	28.0	 •9266 	11.34	4.571	12	11.14	138.68	7.78
$25 \cdot 9$	29.0	·9284	11-37	4.266	12	11.72	143.89	8.13
,,	30.0	·9305			1			
$25 \cdot 8$	31.0	· 9328		1				
,,	31.2	•9333						
,,	31.4	9342	1				• •	
,,	31.8	9347				• • •		
								8.37
	E							

(6) Resorcinol.

TABLE I.	Stoichiometrical concentrations prevailing in the titration of 200 c.c.
	of 0.006724 M resorcinol by 0.1057 N sodium hydroxide.

0 • 1057 N NaOH	Moles NaOH per mole resoremol	$ \begin{array}{l} {\mathbb J} = {\operatorname{equiv}}, \\ {\operatorname{conc. of}} \\ {\operatorname{Na \ salts}} \\ \times \ 10^4 \end{array} $	${ ext{M}_{ ext{H}_2 ext{An}}} imes 10^4$	${f M}_{{f H}_{2}{f A}n}={f U}\ imes 10^4$	${ m M_{NaHAn}} imes 10^4$	${M_{ m Ns_2An}\over imes 10^4}$
$\begin{array}{c} 0 \cdot 0 \\ 1 \cdot 0 \\ 2 \cdot 0 \\ 2 \cdot 0 \\ 3 \cdot 0 \\ 4 \cdot 0 \\ 5 \cdot 0 \\ 5 \cdot 0 \\ 6 \cdot 0 \\ 7 \cdot 0 \\ 8 \cdot 0 \\ 10 \cdot 0 \\ 20 \cdot 0 \\ 22 \cdot 0 \\ 22 \cdot 0 \\ 22 \cdot 0 \\ 22 \cdot 0 \\ 23 \cdot 0 $	$\begin{array}{c} 00000\\ -0.786\\ -1.572\\ -2.353\\ -3.144\\ -3.930\\ -4.716\\ -5502\\ -6288\\ -7074\\ -7860\\ -8648\\ -9432\\ 1.0218\\ 1.0218\\ 1.0218\\ 1.0218\\ 1.2576\\ 1.2362\\ 1.4148\\ 1.4934\\ 1.5726\\ 1.6506\\ 1.7292\\ 1.8078\\ 1.8078\\ 1.8864\end{array}$	$\begin{array}{c} 0.00\\ 5.26\\ 10.47\\ 15.62\\ 20.73\\ 35.74\\ 40.65\\ 50.33\\ 55.10\\ 59.83\\ 64.51\\ 64.51\\ 64.51\\ 73.74\\ 78.30\\ 82.81\\ 87.28\\ 96.09\\ 100.44\\ 104.75\\ 109.62\\ 113.25\\ \end{array}$	$\begin{array}{c} 67\cdot 24\\ 66\cdot 90\\ 66\cdot 57\\ 66\cdot 23\\ 65\cdot 90\\ 65\cdot 29\\ 64\cdot 82\\ 64\cdot 23\\ 61\cdot 93\\ 61\cdot 93\\ 61\cdot 93\\ 61\cdot 12\\ 60\cdot 85\\ 60\cdot 53\\ 60\cdot 53\\ 60\cdot 31\\ 60\cdot 03\\ 10\cdot 23\\ 20\cdot 20\cdot 23\\ 20\cdot 20\cdot 20\\ 20\cdot 20\cdot 20 \\ 20\cdot 20\cdot 20\\ 20\cdot 20\cdot 20- 20\\ 20\cdot 20\cdot 20\cdot 20\\ 20\cdot 20\cdot 20\cdot 20- 20\cdot 20- 20\cdot 20- 20- 20- 20- 20- 20- 20- 20- 20- 20-$	67-24 61-64 566-10 50-61 45-17 39-78 34-50 29-15 23-97 13-68 8-53 3-53 3-53 3-53 	$\begin{array}{c} 0.00\\ 5.36\\ 10.47\\ 10.47\\ 16.62\\ 25.78\\ 30.79\\ 35.74\\ 40.65\\ 55.10\\ 55.8\\ 55.10\\ 59.83\\ 55.10\\ 59.83\\ 61.63\\ 56.45\\ 51.82\\ 46.92\\ 41.05\\ 36.04\\ 31.08\\ 26.15\\ 21.26\\ 16.41\\ 11.66\\ 6.85\\ 91.22\\ 6.15\\ 16.41\\ 11.66\\ 9.85\\ 9.82\\ 1.26\\ 10.42\\ 10.68\\ 10.42\\ 10.68\\ 10.42\\ 10.68\\ 10.42\\ 10.68\\ 10.42\\ 10.68\\ 10.42\\ 10.68\\ 10.42\\ 10.68\\ 10.42\\ 10.68\\ 10.42\\ 10.68\\ 10.42\\ 10.68\\ 10.42\\ 10.68\\ 10.42\\ 10.68\\ 10.42\\ 10.68\\ 10.42\\ 10.68\\ 10.42\\ 10.68\\ 10.42\\ 10.68\\ 10.42\\ 10.68\\ 10.42\\ 10.68\\ 10.$	$ \begin{array}{c} $
25.0	T+9090	111.44	00-10			01.00

430

TABLE II. Data for the titration.

First Equivalent of Sodium Hydroxide.

Calomel temp,	0 • 1057 N NaOH	E.M.F.	pH	$C_{\mu} \times 10^{\mu}$	n	$K_1^c \times 10^{10}$	$\mu imes 10^4$	$K_1^a \times 10^{10}$
28.8 28.9 29.0 ,, 29.3 29.4 29.3 29.4 29.5	$ \begin{array}{c} 0.0\\ 1.0\\ 2.0\\ 3.0\\ 4.0\\ 5.0\\ 6.0\\ 7.0\\ 8.0\\ 9.0\\ 10.0\\ 11.0\\ \end{array} $	0.5223 .7059 .7382 .7549 .7695 .7793 .7881 .7987 .8045 .8136 .8226 .8239	4.65 7.71 8.24 8.53 8.77 8.93 9.07 9.22 9.35 9.51 9.65 9.82	$2 \cdot 239$ $1 \cdot 950$ $5 \cdot 754$ $2 \cdot 951$ $1 \cdot 698$ $1 \cdot 175$ $8 \cdot 511$ $6 \cdot 026$ $4 \cdot 467$ $3 \cdot 090$ $2 \cdot 239$ $1 \cdot 514$	5 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\begin{array}{c} 16 \cdot 61 \\ 10 \cdot 70 \\ 9 \cdot 06 \\ 7 \cdot 73 \\ 7 \cdot 54 \\ 7 \cdot 49 \\ 7 \cdot 25 \\ 7 \cdot 37 \\ 7 \cdot 17 \\ 7 \cdot 64 \\ 8 \cdot 30 \end{array}$	$5 \cdot 26 \\ 10 - 47 \\ 15 \cdot 62 \\ 20 \cdot 73 \\ 25 \cdot 78 \\ 30 \cdot 79 \\ 35 \cdot 74 \\ 40 \cdot 65 \\ 45 \cdot 52 \\ 50 \cdot 33 \\ 55 \cdot 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	7.36 7.14 7.06 6.89 6.68 7.08 7.67
" 29.7 29.8	12.0 12.4 12.6 12.8	•8322 •8423 •8464 •8479 •8506	9.92 9.98	1.014	10 	11-35 	59-83 •• ••	7.67 7.11

Second Equivalent of Sodium Hydroxide.

	([1	1	1	$ K_2^c \times 10^{12}$		$K_2^a \times 10^{12}$
20.8 29.3 29.5 29.5 29.8	13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0	+8533 -8677 -8740 -8807 -8872 -8913 -8956 -8095	10.18 10.40 10.50 10.62 10.72 10.80 10.87 10.95	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11 11 11 11 11 11 11 11	$K_2^{-} \times 10^{-1}$ 4.64 6.16 6.45 6.59 6.95 7.15 6.91	80 - 17 88 - 45 95 - 93 103 - 13 1 10 - 46 1 17 - 26 1 17 - 26	4-59 4-75 4-81 5-03 5-12
30 0	22.0	+9033	11.00	9.772	12	6.92	129.87	4.88
"	24.0 25.0	+9098 +9121	11.11	7.762	12	7.35	142-46	5-11
,, ,,	25·4 25·6	•9129 •9145	••					
;; ;;	$25.8 \\ 26.0$	 •9152 •9155 	••• ••	 				4.70
								1 110

.

.

431

(7) HYDROQUINONE.

 TABLE I.
 Stoichnometrical concentrations prevailing in the titration of 200 c.e. of 0.007522 M hydroquinone by 0.1057 N sodium hydroxide.

0 • 1057 N NaOH	Moles NaOH per mole hydro- quinone	J = equiv. conc. of Na salts $\times 10^4$	${}^{\mathrm{M}_{\mathrm{H}_{2}\mathrm{An}}}_{ imes 10^{4}}$	$egin{array}{c} \mathrm{M}_{\mathrm{H_{2}An}} = \mathrm{U} \ imes 10^4 \end{array}$	${ m M_{NaHAn} \over imes 10^4}$	${ m M_{Na_2Au}} imes 10^4$
0.0	0.0000	0.00	75.99	75.90	0.00	
1.0	+0703	5+26	74.84	80.50	U.00	••
2.0	•1405	10.47	74.47	64-00	0.20	••
3.0	-2108	15.62	74.09	58.47	10.47	••
4.0	-2810	20.73	73.72	52.00	20.72	••
5.0	·3513	25.78	73.34	47.56	20110	••
6.0	•4216	30.79	73.04	49.95	20.70	••
7.0	5918	35-74	72.59	36-95	35.74	••
8.0	5620	40.65	72.29	31.64	40.65	••
9.0	·6323	45.52	71.91	26.39	45.52	
10.0	-7026	50-33	71.61	21.28	50+33	••
11.0	·7728	55-10	71.23	16.13	55-10	••
12.0	·8431	59+83	70.93	11.10	59-83	
13.0	· 9133	64-51	70.56	6.05	64.51	
14.0	 9836 	69+15	70.26	1.11	69-15	
15.0	1.0538	73.74	69.95		66-16	3.79
16.0	1.1240	78+30	69.65		61.00	8.65
17 - 0	1.1943	82.81	69-28		55.75	13.53
18.0	1.2646	87.28	68.98		50-68	18.30
19.0	1-3348	91-70	68.68		45.66	23.02
20.0	1.4051	96.09	68.37		40.65	27.72
21.0	1.4754	100-44	68.07		35.70	$32 \cdot 37$
22.0	1.5456	104.75	67.77		30 - 79	36-98
23.0	1.6158	109-02	67-47		$25 \cdot 92$	41.55
24.0	1-6861	$113 \cdot 25$	67.17		21.09	46.08
25 - 0	1.7564	117-44	66.87		16.30	50 • 57
26.0	1.8266	121.60	66.57		11.54	55-03
27.0	1.8969	$125 \cdot 72$	66.27		6.82	59.84
28.0	1.9672	129-81	$65 \cdot 97$		$2 \cdot 13$	$53 \cdot 84$

TABLE II. Data for the titration.

First Equivalent of Sodium Hydroxide.

Calemel temp.	0 • 1057 N NaOH	E.M.F.	PH	$C_B \times 10^{n}$	n	$\mathrm{K_{1}^{c} \times 10^{10}}$	$\mu imes 10^4$	$\mathrm{K_1}^a \times 10^{10}$
29.9 30.0 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$\begin{array}{c} 0 \cdot 0 \\ 1 \cdot 0 \\ 2 \cdot 0 \\ 3 \cdot 0 \\ 4 \cdot 0 \\ 5 \cdot 0 \\ 5 \cdot 0 \\ 6 \cdot 0 \\ 7 \cdot 0 \\ 8 \cdot 0 \\ 9 \cdot 0 \\ 10 \cdot 0 \\ 10 \cdot 0 \\ 11 \cdot 0 \\ 12 \cdot 0 \\ 13 \cdot 0 \\ 14 \cdot 0 \\ 14 \cdot 1 \\ 14 \cdot 2 \end{array}$	0 - 5935 -7659 -7659 -7876 -8013 -9111 -8199 -8273 -8337 -8400 -8462 -8528 -8650 -8714 -8770 -8780 -8793	$\begin{array}{c} 5\cdot 84\\ 8\cdot 72\\ 9\cdot 08\\ 9\cdot 30\\ 9\cdot 47\\ 9\cdot 61\\ 9\cdot 75\\ 9\cdot 85\\ 9\cdot 95\\ 10\cdot 0.16\\ 10\cdot 26\\ 10\cdot 37\\ 10\cdot 48\\ 10\cdot 58\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}$	$\begin{array}{c} 1 - 445 \\ 1 - 905 \\ 8 - 318 \\ 5 - 012 \\ 3 - 388 \\ 2 - 455 \\ 1 - 778 \\ 1 - 413 \\ 1 - 122 \\ 8 - 511 \\ 6 - 918 \\ 5 - 4918 \\ 5 - 495 \\ 4 - 266 \\ 3 - 311 \\ 2 - 630 \\ \\ \end{array}$	6 9 10 10 10 10 10 10 10 11 11 11 11 11 11	1.41 1.33 1.30 1.28 1.27 1.27 1.27 1.27 1.31 1.29 1.37 1.46 1.53 1.67 1.99 	$5 \cdot 26$ $10 \cdot 47$ $15 \cdot 62$ $20 \cdot 73$ $35 \cdot 74$ $40 \cdot 65$ $45 \cdot 52$ $50 \cdot 33$ $55 \cdot 10$ $59 \cdot 83$ $64 \cdot 51$ $69 \cdot 15$ 	 1·37 1·28 1·26 1·22 1·20 1·15 1·19 1·22 1·20 1·20 1·20 1·21 1·22 1·20 1·20 1·21 1·22 1·20 1·22 1

- 4	2	っ
4	3	4

Calomel temp.	0 · 1075 N NaOH	E.M.F.	pH	$C_{H} \times 10^{n}$	n	$\mathrm{K_2}^{\mathcal{C}} \times \ \mathrm{l0^{13}}$	$\mu \times 10^{4}$	$\mathrm{K_2}^a \times 10^{13}$
30 · 2 30 · 3 30 · 4 30 · 8 31 · 0 30 · 9 30 · 6 30 · 4 30 · 5 " " "	$\begin{array}{c} 14 \cdot 4 \\ 15 \cdot 0 \\ 16 \cdot 0 \\ 17 \cdot 0 \\ 18 \cdot 0 \\ 20 \cdot 0 \\ 21 \cdot 0 \\ 22 \cdot 0 \\ 23 \cdot 0 \\ 24 \cdot 0 \\ 25 \cdot 0 \\ 25 \cdot 0 \\ 26 \cdot 0 \\ 27 \cdot 0 \\ 28 \cdot 0 \\ 28 \cdot 2 \\ 28 \cdot 4 \end{array}$	- \$806 - \$839 - \$839 - \$941 - \$990 - 9027 - 90661 - 9126 - 9126 - 9126 - 9126 - 9226 - 9226 - 9226 - 92271 - 9276 - 9280	10.68 10.78 10.85 11.00 11.06 11.12 11.16 11.21 11.25 11.30 11.33 11.37 11.47	$\begin{array}{c} 2.089\\ 1.660\\ 1.380\\ 1.380\\ 1.000\\ 8.710\\ 7.586\\ 6.918\\ 6.166\\ 5.623\\ 5.012\\ 4.677\\ 4.266\\ 3.890\\\\\\ \end{array}$	$\begin{array}{c} \\ 11 \\ 11 \\ 11 \\ 11 \\ 12 \\ 12 \\ 12 $	 0.08 2.84 6.85 8.90 9.85 12.06 12.47 13.46 12.58 13.36 13.36 13.36 12.43 	 82-85 88-98 96-10 102-43 108-26 114-81 120-37 130-86 136-82 141-52 141-52 145-79 	 8.70 8.92 9.55 8.88 9.73 9.33 8.59 9.18

Second Equivalent of Sodium Hydroxide.

(8) PYROGALLOL.

 TABLE I.
 Stoichiometrical concentrations prevailing in the titration of 200 c.c., of 0.005441 M pyrogallel by 0.1057 N sodium hydroxide.

0-1057 N NaOH	Moles NaOH per mole pyrogallol	J = equiv, conc. of Na salts $\times 10^4$	$\begin{array}{c} \mathrm{M_{H_{2}An}}\\ \times \ \mathrm{l0^{4}} \end{array}$	$\stackrel{\mathrm{M_{H_{2A0}}=U}}{ imes 10^4}$	${}^{ m M_{ m NaHAn}}_{ m imes 10^4}$	$\stackrel{ m M_{Na_2An}}{ imes 10^4}$
0.0	0.0000	0.00	$54 \cdot 41$	54-41	0.00	••
1.0	-0.971	5.26	$54 \cdot 14$	48-88	5.26	••
2.0	·1943	10.47	53.87	43.40	10.47	
3-0	·2914	15.62	$53 \cdot 59$	$37 \cdot 97$	15 - 62	• •
4.0	 3885 	20.73	$53 \cdot 32$	$32 \cdot 59$	20.73	••
5.0	•4857	25.78	53-05	27-27	25.78	••
6.0	-5828	30.79	$52 \cdot 83$	22.04	30.79	••
7.0	•6799	35.74	$52 \cdot 51$	16.77	35.74	
8-0	-7770	40.65	52.29	11.64	40.65	
9.0	 8742 	45.52	52.02	6.50	$45 \cdot 52$	
10.0	•9713	50.33	$51 \cdot 80$	1-47	50+33	••
11.0	1.0684	55-10	51.53	••	48-06	3-47
12.0	1.1656	59.83	$51 \cdot 31$		42-79	8.52
13.0	1.2627	64.51	51.04		37-57	13.47
14-0	1.3598	69.15	50.82		32-49	18.33
15.0	1.4570	73.74	50.60		27.46	$23 \cdot 14$
16.0	1.5541	78.30	50-38		22-46	27 - 92
17.0	1.6512	82.81	50.11		17-41	$32 \cdot 70$
18.0	1.7483	87.28	49.89		12.50	37.39
19-0	1.8455	91.70	49.68		7.66	42.02
20.0	1.9426	96.09	49-46		2.83	46.63
21.0	2.0397	100.44	49-24			$51 \cdot 20$
	, ,					

	,	~		ratente of 130	uuu	nyuroxide,		
Calomel temp.	0.1057 N NaOH	E.M.F.	рН	С _н × 10 ^{<i>n</i>}	n	$\rm K_1^{ c} \times 10^{9}$	$u \times 10^4$	$\mathbb{K}_1^a \times 10^{10}$
31.1	0.0	0 • 5930	5.85	1.413	6	1		1
	1.0	•7203	7.97	1.072	8	1-15	5.26	11.20
31.0	2.0	·7431	8.35	4.467	9	1.07	10.47	10.30
$31 \cdot 1$	3.0	·7574	8.59	2.570	9	1.05	15.62	10.10
31.2	4.0	•7693	8.80	1.585	9	1.00	20.73	9.53
31.3	5.0	-7797	8.96	1.096	9	1.02	25-78	9.66
,,	6.0	•7897	9.12	7 • 586	10	1.04	30.79	9.80
••	7.0	+8005	9.30	5.012	10	1.03	35.74	9.66
31 - 4	8.0	·8118	9.50	3.162	10	1.04	40.65	0.71
• •	9-0	·8258	9.74	1.820	10	1.08	45+52	1 10-1
31.5	10.0	·8399	9-97	1.072	10	1.62	50.33	15.0
,,	10.2	· 8435					00.00	10.0
31.1	10.3	·8469					· · ·	
			[9.67
,		Se	cond Equ	ivalent of S	odiur	n Hydroxide.		
91.9	10.4	.0408				$K_{2^{e}} \times 10^{12}$		$ K_2^a \times 10^{12}$
31.5	10.5	- 0100	••			••	••	[··
31.9	10.0	·0004	10.02			••		· ·
oi'	10.0	*0000	10.27	5.370	끞			
31.1	12.0	*8/07	10.48	3.311	11	1+98	62.73	
. **	13.0	·8803	10.64	2.291	11	2.68	69-85	
,,	14.0	•00/0	10.76	1.738	11	3.06	76-76	2.33
,,	10.0	.0940	10.87	1.349	11	3.05	83-08	2.29
,,	10.0	0097	10.90	1.090	11	3.04	89.24	2.27
o3' ~	10.0	•9037	11.00	9.333	12	3.19	95-56	2.35
31.0	18.0	•9078	11.10	7.943	12	3.08	101.23	2.25
oi' -	19.0	.9112	11.10	7.079	12	3.28	107.42	2.38
31.7	20.0	·9144	11.21	0.166	12	3.07	112.52	2.21
,,	20.4	.9190	••	••		••	••	
	20+6	•9162	•••	••		••		
31.6	20.8	+9168	11.6	- 10-	•••	••		
31.7	21.0	•9173	11.2	5.495		••		
			1					2.30
			1	1	1			1

TABLE II.	Data for the titration.	
First Equival	ent of Sodium Hydroxide	з.

(9) Phloroglucinol.

TABLE I.	Stoichiometrical concentrations prevailing in the titration of 200 c c.
	of 0.004352 N phloroglucinol by 0.1017 N NaOH.

0.1017 N NaOH	Moles NaOH per mole phloro- glucinol	J = equiv. conc. of Na salts $\times 10^4$	${M_{ m H_2An} \over imes 10^4}$	$\begin{array}{c} \mathrm{M}_{\mathrm{H_{2}An}} = \mathrm{U} \\ \times 10^{4} \end{array}$	$\stackrel{ m M_{ m NaHAm}}{ imes 10^4}$	${}^{ m M_{ m Na_2An}}_{ imes 10^4}$
$\begin{array}{c} 0 \cdot 0 \\ 1 \cdot 0 \\ 2 \cdot 0 \\ 3 \cdot 0 \\ 4 \cdot 0 \\ 5 \cdot 0 \\ 6 \cdot 0 \\ 7 \cdot 0 \\ 8 \cdot 0 \\ 9 \cdot 0 \\ 10 \cdot 0 \\ 11 \cdot 0 \\ 12 \cdot 0 \\ 11 \cdot 0 \\ 12 \cdot 0 \\ 13 \cdot 0 \\ 14 \cdot 0 \\ 15 \cdot 0 \\ 16 \cdot 0 \\ 10 \cdot 0$	0.0000 .1168 .2337 .3505 .4674 .7011 .8199 .9347 1.0516 1.1684 1.2853 1.4021 1.5190 1.6358 1.7526 1.7526 1.8695	$\begin{array}{c} 0.00\\ 5.06\\ 10.07\\ 15.03\\ 19.94\\ 29.62\\ 34.39\\ 39.12\\ 43.79\\ 48.43\\ 53.02\\ 87.57\\ 62.07\\ 66.53\\ 70.95\\ 75.33\\ 70.95\\ 75.83\\ 70.97\\ 90.97\\ \end{array}$	$\begin{array}{c} 43 \cdot 52 \\ 43 \cdot 30 \\ 43 \cdot 08 \\ 42 \cdot 65 \\ 42 \cdot 65 \\ 42 \cdot 43 \\ 42 \cdot 26 \\ 42 \cdot 26 \\ 42 \cdot 20 \\ 41 \cdot 82 \\ 41 \cdot 60 \\ 41 \cdot 43 \\ 41 \cdot 21 \\ 41 \cdot 04 \\ 40 \cdot 82 \\ 40 \cdot 65 \\ 40 \cdot 47 \\ 40 \cdot 30 \\ 40 \cdot 08 \end{array}$	43-62 38-24 33-01 27-84 22-71 17-63 12-64 7-61 2.70 	$\begin{array}{c} 0.00\\ 5.06\\ 10.07\\ 15.03\\ 19.94\\ 24.80\\ 29.62\\ 39.41\\ 39.41\\ 39.41\\ 39.40\\ 24.51\\ 19.57\\ 14.77\\ 9.99\\ 5.27\\ 0.49\end{array}$	

Λ	34	
7	- J - T	

TABLE II. Data for the titration.

First	Eqι	ivalent	of	Sodium	Hyd	froxide.
-------	-----	---------	----	--------	-----	----------

temp.	0.1017 N NaOH	E.M.F.	PH	C _H × 10 [#]	n	$K_1^c \times 10^9$
95.9	0.0	0.5736	5.46	3-467	6	
25.4	1.0	+6950	7.48	3-311	8	4.38
20-1	2.0	+7152	7-82	1.154	8	4.61
••	3.0	-7266	8-01	9.772	9	5.26
,,	4.0	-7353	8+15	7.079	9	6.20
,,	ă.0	-7422	8.27	5-370	9	7.53
,,	6.0	•7483	8.37	4.266	9	9.95
95,5	7.0	•7540	8.46	$3 \cdot 467$	9	15.54
20 0	8.0	•7591	8-55	2.818	9	39.73
	l t	Second Equi	ivalent of Sodi	um Hydroxide.		l de la construcción de la constru
	t i	Second Equi	ivalent of Sodi	um Hydroxide.	(K ₂ ^c × 10 ⁹
25.5		Second Equi	ivalent of Sodi	um Hydroxide.		K₂ ^c × 10 ⁹
25.3	9.0	Second Equi	ivalent of Sodr	um Hydroxide.	9	$K_2^c \times 10^9$ 0.12
25•5	9.0 10.0	Second Equi •7647 •7701	valent of Sodi 8.64 8.73	um Hydroxide.	99	$K_2^c \times 10^9$ 0.12 0.37
25•5 ,,	9.0 10.0 11.0	Second Equi -7647 -7701 -7755	**************************************	um Hydroxide. 2-291 1-862 1-514 1-802	9999	$K_2^c \times 10^9$ 0.12 0.37 0.60
25•5 ., 25•6	9.0 10.0 11.0 12.0	Second Equi -7647 -7701 -7755 -7817 -7817	ivalent of Sodi 8.64 8.73 8.82 8.92 8.92	um Hydroxide. 2-291 1-862 1-514 1-202 0-222	999	$K_2^c \times 10^9$ 0.12 0.37 0.60 0.80
25.5 '' 25.6	9.0 10.0 11.0 12.0 13.0	Second Equi -7647 -7701 -7755 -7817 -7880 -7062	s.64 8.64 8.73 8.82 8.92 9.03 0.17	um Hydroxide. 2 · 291 1 · 862 1 · 514 1 · 202 9 · 333 6 · 761	9 9 9 10	$K_2^c \times 10^9$ 0.12 0.37 0.60 0.80 0.99
25.3 ", 25.6 25.8	9.0 10.0 11.0 12.0 13.0 14.0	-7647 -7647 -7701 -7755 -7817 -7880 -7963 -9965	s.64 8.64 8.73 8.82 8.92 9.03 9.17 9.24	um Hydroxide. 2-291 1-862 1-514 1-202 9-333 6-761 4-571	9 9 9 10 10	$K_2^c \times 10^9$ 0.12 0.37 0.60 0.80 0.99 1.15 1.29
25•5 '' 25•6 23•8 ''	9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0	Second Equi -7647 -7701 -7755 -7817 -7880 -7963 -8065 -8291	s.64 8.64 8.73 8.82 9.03 9.17 9.34 9.00	um Hydroxide. 2 • 291 1 • 862 1 • 514 1 • 202 9 • 333 6 • 761 4 • 571 9 • 512	9 9 9 10 10 10	$K_2^c \times 10^9$ 0.12 0.37 0.60 0.99 1.15 1.32 1.23

TABLE III.	Data for titration of 0.004352 M phloroglucinol
	as a dibasic acid.

0·1017 N NaOH	${}^{\mathrm{C}_{\mathrm{Na_2Au}}}_{ imes \ 10^4}$	$\stackrel{\mathrm{C_{NaHAn}}}{\times 10^4}$	$\stackrel{\mathrm{C_{H_{2}An}}}{\times 10^{4}}$	$\times 10^9$	$\times 10^9$	$\times 10^{4}$	$\left \begin{array}{c} \mathrm{K_1}^a \\ \times 10^9 \end{array} \right $	$\begin{array}{c} \mathrm{K_2}^a \\ imes 10^9 \end{array}$
$3 \cdot 0$ $4 \cdot 0$ $5 \cdot 0$ $6 \cdot 0$	1.87 3.10 4.64 6.35	$11 \cdot 29 \\ 13 \cdot 74 \\ 15 \cdot 52 \\ 16 \cdot 92$	29.71 25.81 22.27 18.99	3 · 71 3 · 77 3 · 74 3 · 80	1-62 1-60 1-61 1-60	16-90 23-09 29-44 35-97	3 - 55 3 - 58 3 - 53 3 - 56 3 - 56 3 - 56	$ \begin{array}{r} 1 \cdot 42 \\ 1 \cdot 37 \\ 1 \cdot 35 \\ 1 \cdot 32 \\ 1 \cdot 32 \\ 1 \cdot 32 \\ 1 \cdot 32 \end{array} $

DISCUSSION.

In Figs. 1 to 4 the E.M.F. titration curves of various acids are shown along with the change of mole fraction of mono sodium salt. Due to the strong hydrolysis after the carboxyl group is neutralized, the change in the composition of the acid during the second half of the titration does not strictly follow the curve given in the figures.

It is seen from the results of dissociation constants that the values of K_1^{α} remain constant from 0.1 mole to 0.85 moles of added alkali and the small variations show that the value of the 'salt coefficient' β is practically zero. The larger variations in the value of K_2^{α} are due

to the large concentrations of salts, to the presence of two salts with unlike valence and to the strong hydrolysis in these regions.

The previous values of the dissociation consonants of the various phenols and the acids, along with those obtained in the present investigation, are given in the following table:—

Acid	K,ª	K2ª	Temp	Method	Author
Benzoic acid .	6.3×10^{-5}	···	25°	Conductivity	(1)
o-Hydroxy benzoic acid	$\begin{array}{c} 1\cdot 76 \times 10^{-3} \\ 1\cdot 06 \times 10^{-3} \\ 3\cdot 8 \times 10^{-4} \end{array}$	$4 \cdot 20 \times 10^{-13}$	$30^{\circ}_{25^{\circ}}_{100^{\circ}}$	pFf titration curve Conductivity Distill.	(2) (3) (4)
m-Hydroxy benzoic acid	$\begin{array}{c} 1\cdot 25 \times 10^{-4} \\ 8\cdot 7 \ \times \ 10^{-5} \\ 6\cdot 9 \ \times \ 10^{-5} \end{array}$	1.65×10^{-10}	30° 25° 25°	pH titration curve Conductivity ,,	(2) (5)
p-Hydroxy benzoic acid	5.15×10^{-5} 2.86×10^{-5}	7.46×10^{-10}	30° 25°	pH titration curve Conductivity	(2) (3)
Gallic acid	4.63×10^{-5} 4.0×10^{-5}	1.41 × 10-9	28.5° 25°	pH istration curve Conductivity	(2) (3)
	$\begin{array}{ccc} 3 \cdot 8 & \times & 10^{-5} \\ 4 \cdot 6 & \times & 10^{-5} \\ 4 \cdot 6 & \times & 10^{-5} \end{array}$	 2•57 × 10 ⁻⁹	 28.5°	,, pH titration curve	(5) (9)
Phenol	$^{1\cdot28\times10^{-10}}_{1\cdot05\times10^{-10}})_{1\cdot30\times10^{-10}})$		25°	". Conductivity	(6) (8)
Catechol	$7.5 \times 10^{-10} \\ 3.3 \times 10^{-10}$	8.37×10^{-13}	30° 18°	pH titration curve Conductivity	(2) (7)
Resorcinol	$\begin{array}{c} 7\cdot11\times10^{-10} \\ 6\cdot4\times10^{-9} \\ 3\cdot6\times10^{-10} \end{array}$	4.78×10^{-12}	30° 25° 18°	pH titration curve Conductivity Do.	(2) (3) (7)
Hydroquinone	1.22×10^{-10} 1.10×10^{-10}	9.18×10^{-13}	30° 18°	pH titration curve Conductivity	(2) (7)
Pyrogallol	9.67×10^{-10}	$2\cdot 30$ $ imes$ 10 ⁻¹²	30°	pH titration curve	(2)
Phloroglucinol	$3\cdot 56 imes 10^{-9}$	$1\cdot 32 \times 10^{-9}$,,	Do.	(2)

(1) Brockman and Kilpatrick (Jour. Amer. Chem. Soc., 1934, 56, 1483).

(2) Abiebandani and Jatkar (1938).

(3) Thiel and Roemer (Z. Physikal Chem., 1908, 63, 731, 744).

(4) Jaulmes (Jour. Chim. Physics, 1933, 30, 556).

(5) Smith and Jones (Amer. Chem. Jour., 1913, 39, 50).

(6) Hahn and Klockman (Z. Physikal Chem., (A), 1931, 157, 206).

(7) Euler and Bolin (Z. Physikal Chem., 1909, 66, 71).

(8) Walker (Ibid., 1900, 32, 137).

(9) Sunthankar and Jatkar (This Journal, 1938, 21 A, 209).

Most of the authors have measured only the first dissociation constant of the carboxylic acids and of di- and tri-hydroxy benzenes, although the nature and influence of the second OH dissociation in phenols and acids has been discussed by Thiel and Roemer from the conductometric titration curves. The values of K^c₁ obtained by various authors do not agree. The differences are mainly due to the neglect of interionic attraction corrections, and the assumption that the sodium salts of these acids are not completely dissociated and possess the same equivalent conductance at equivalent concentrations as do the sodium salts of other dibasic and monobasic acids. The values of Thiel and Roemer are quite divergent from the values obtained in the present paper although the change observed in the order

of dissociation constants due to OH substitution in various positions. is in the same direction.

Fig. 5 shows the E.M.F., c.c. and dE/dc, c.c. curves for the titration of gallic acid. The first dissociation constant calculated is in fair agreement with the values of previous workers. The value of the second dissociation constant obtained by Sunthankar and Jatkar (*loc. cit.*) is too high, as they did not apply the corrections for hydrolysis. The differential curve shows the double inflection for both the first and the second dissociation constants. The distances between the peaks increase at the second stage of titration, which is still more pronounced at the third and the fourth stage, which are not shown in the curve. This phenomena of the double peaks in the differential titration curves has been shown by us to be due partly to hydrolysis and partly to the formation of di-salt, whenever the difference between the two dissociation constants become small (*cf. This Journal*, 1938, **21A**, 363).

Comparing the dissociation constants of hydroxy substituted benzoic acids with that of benzoic acid itself, it is observed that the introduction of OH group in various ortho-, meta- and para-positions increases the strength of the acid in the order ortho \geq meta \geq H \geq para. Dippy and Williams (Jour. Chem. Soc., 1934, 1888) have also observed the same order in methoxy substituted benzoic acids. The resonance between the quinonoid and ordinary structure, which will be expressed by the structure

will tend to reduce the strength of the para-substituted acids (cf. Ingold, Jour. Chem. Soc., 1933, 1120). In ortho- and meta-acids, there being no possibility of a quinonoid structure, the dissociation constants are affected by the dipole effects, which increase the acidity, the influence being maximum in ortho-positions. The increased acidity of the ortho-substituted acid, can also be due to the special proximity of the sustituent group to the functional group, to such an extent that there is a diminished free rotation of the latter as pointed out by Smallwood (Jour. Amer. Chem. Soc., 1932, 54, 3048) and Walde (J. Phys. Chem., 1935, 39, 885).

The effect of OH substitution in various positions on the CO frequency in Raman effect has been studied by Kohlrausch (*loc. cit.*).

		CO frequency	K ₁
Benzoic acid		1715	6.31×10^{-5}
Ortho		1670	1.76×10^{-3}
Meia		1686	1.25×10^{-4}
Para	••	1680	5.15×10^{-5}

It is observed that a decrease in C=O frequency in *ortho-* and *mcta*-positions corresponds to an increase in the dissociation constants. The influence in *para*-position is apparently affected by the resonating structure of the acid.

The character of the OH dissociation in these acids is also interesting. This group is of weakly acidic nature in *ortho*-position, while it is strong in *meta*- and *para*-position, the dissociation constants being in the order, gallic acid > para > meta > ortho. This behaviour can be explained on the consideration of the proximity of the two ionising groups, which tend to depress the ionisation of the second group, because of the negative charge developed on the anion. The strong acid nature of hydroxyl group in gallic acid is due to the promoting effect of the adjacent hydroxyl group.

In phenols, all the OH groups are similar but situated in different positions. The order of K_1° in phenols is, phloroglucinol > pyrogallol > catechol > resorcinol > hydroquinone > phenol. The influence due to proximity of OH groups is thus very marked, except in phloroglucinol in which both OH groups titrate simultaneously as already shown. The second dissociation constants of these phenols follow the order: phloroglucinol > resorcinol > pyrogallol > hydroquinone > catechol. The mutual influence of OH group in various positions can be very well seen from the ratio K_1°/K_2° which decreases from catechol to hydroquinone owing to increasing distance of the two groups.

Pauling (loc. cit.) has pointed out, that in catechol, the attraction of partially shielded proton (hydrogen atom with some positive charge) by a negative atom, stabilizes the configuration, so that O-H axis is directed towards the attracting atom with consequent weakening of the hydrogen bond. This weak character of the 'hydrogen bond in catechol is also evident from its dissociation constant which is more than that of phenol. Pyrogallol also shows a weak O-H bond, because of its resemblance in configuration to catechol (Wulf, Liddel and Hendricks. *Ibid.*, 1936,

58, 2287). An attempt was made to find out if there was any relationship between the log K_{i}^{a}/K_{i}^{a} and the molal adsorption coefficient in the infra-red at 6970 cm.⁻¹ – 7060 cm.⁻¹ for these compounds given by Wulf and Liddel (*loc. cit.*). The results are given below:—

*******	K_1^a/K_2^a		$\begin{bmatrix} \log \\ K_1/K_2 \end{bmatrix}$	Infra red cm1	Molal adsorption coefficient	
Phloroglucinol		2.7	0.4313			
Pyrogallol	••	420 149	2.6232	6980 7050	3.9	
Hydroquinone		133	2.1239	7060	5-7	

The adsorption band at 7100 cm.⁻¹ has been identified by Wulf and Liddel to be a harmonic of OH frequency, the fundamental of which occurs at 3500 cm.⁻¹ It has been shown by these authors that the formation of a strong hydrogen bond leads to the extinction of the absorption in 7000 cm.⁻¹ region, thus this extinction providing an important evidence of strong hydrogen bond.

It may however be pointed out that the disappearance of absorption peak at 7050 cm.⁻¹ in catechol and pyrogallol is accompanied by the appearance of a peak at 6970 cm.⁻¹ which is due to the weakness of the OH bond in these compounds and which is responsible for the higher values of the first dissociation constants.

If log K_1^* / K_2^* is plotted against the absorption coefficient of the prominent absorption frequency, a straight line relationship is obtained. From this it can be said that the height of the infra-red absorption peak is a function of the distance and dipole effects of two hydroxyl groups which are directly measured by the ratio of the two dissociation constants. If this relationship is taken into account, the infra-red molal absorption coefficient for phloroglucinol ought to be very high in the region, 7000 cm.⁻¹ The absorption data for phloroglucinol is however not available.

SUMMARY.

The potentiometric titrations of *ortho-*, *meta-* and *para-*hydroxy benzoic acids, gallic acid and various di- and tri-hydroxy benzenes by 0.1 N sodium hydroxide have been carried out at 30° and the primary and secondary dissociation constants calculated. Correction

for interionic attractions have been applied with the help of Debye-Hückel theory. The values of the first dissociation constants for some of the phenols are of the same order as obtained by Euler and Bolin. The second dissociation constants for all the substances have been determined for the first time. In the case of phloroglucinol both the OH groups titrate simultaneously, as the two dissociation constants of pyrogallol and phloroglucinol have been determined for the first time.

The effect of distance between the two ionising groups on the dissociation constants is shown, not only by the marked changes in the first dissociation constants but also more prominently by the ratio K_1^* / K_2^* . The order of the first dissociation constants is $o > m > H > \phi$ in the benzoic acids, and phloroglucinol > pyrogallol > catechol > resorcinol > hydroquinone in hydroxy benzenes. The order of the second dissociation constants of the enzoic acids is the reverse of the first dissociation constants.

A straight line relationship has been shown to exist between the log K_1^* / K_2^* and the molal absorption coefficient in the infra-red region at 7000 cm.⁻¹, for phenols. In catechol and pyrogallol the extinction of the band at 7050 cm.⁻¹ is accompanied by the appearance of a decreased frequency at 6970 cm.⁻¹ which is due to the weak OH bond responsible for the increased first dissociation constant.

Department of General Chemistry, Indian Institute of Science, Bangalore (India).

[Received, 19-10-1938.]

1772-33-Printed at The Bangalore Press, Bangalore Cuy, by G. Supervised Rao, Superintendent