SUPERSONIC VELOCITY IN GASES AND VAPOURS.

PART V. SPECIFIC HEATS OF VAPOURS OF ACETONE, BENZENE, CYCLOHEXANE, *n*-HEXANE, METHYL, ETHYL, AND *n*-PROPYL ETHERS.

By S. K. Kulkarni Jatkar.

INTRODUCTION.

In Parts I, II, III and IV (This Journal, 1938, 2/A, 245, 455, 477 and 1939, 22A, 1), the author has given an account of the difficulties encountered in the measurement of supersonic velocity in gases and vapours. As a result of numerous preliminary experiments, it was found essential to work in narrow tubes. It was also found necessary to measure the frequencies accurately on the spot. In the present paper, the author has presented the results of measurements of the wave lengths in vapours of acetone, benzene, cyclohexane, μ -hexane, methyl ether, ethyl ether and propyl ether, superheated to 97.1° and 184°, at 685 mm. pressure, and also the values of the specific heats calculated from the supersonic velocity. The results are compared with the values obtained from spectroscopic data.

EXPERIMENTAL.

The apparatus used was the same as described in Fig. 1, Part I. Water was used in the boiler for maintaining a constant temperature, 97.1° in the jacket, and meta-xylene, for 134^{*}. As already mentioned, a slow stream of the vapour was maintained in the apparatus to avoid leaks at the gland packing for the piston rod. Acetone was purified by the sodium iodide method, and benzene, by crystallisation. Methyl ether was prepared by passing methyl alcohol vapour through sulphuric acid at 125[°], and absorbing the gas in sulphuric acid. The gas was liberated by adding water and dried over barium oxide. *n*-Propyl ether was prepared from *n*-propyl alcohol by catalytic dehydration over alum. (cf. Gajendragad and Jatkar, Jour. Ind. Chem. Soc. 1935, **12**, 486). All the liquids were purified by fractionation.

The details of the wave length measurements are given in the following tables (1-11).

Acetone	97.1
	and the second division of the second divisio

Frequency 49.42 Khz.								
$\psi n \lambda/2$	Screw reading mm.	? # λ'2	Screw reading mm.	$\psi n \lambda'^2$	Screw reading mm	$\uparrow n \chi^2$.	Screw reading mm.	
0	7,25	52	6.32	O	7.15	52	6 15	
1	9.70	51.	8 70	I	9.50	51	8 65	
2	12,25	50	11 40	2	12.05	50	11.25	
12	36.25	49	13.55	3	14.50	49	13.50	
22	60.55	48	15 05	4	16.98	48	15.85	
32	84.50	47	18 <i>3</i> 5	5	19 15	47	18.45	
42	108 80	46	20 85	15	43.35	46	20 80	
43	110.95	45	23 30	25 -	67.50	45	23,10	
44	113 35	35	47.55	35	91,60	44	25.30	
45	116.95	25	71.50	45	11570	34	49.75	
46	118.15	15	95.60	46	118.05	24	73 85	
47	120.55	5	119.70	47	120.45	14	97.93	
48	122.95	4	122.25	48	122 85	4	122.10	
49	125 45	3	124 70	49	125.40	3	124.65	
50	127.95	2	127.05	50	127.88	2	126.90	
51	130,45	1	129.55	51	130 30	1	129 35	
52	132 90	0	132.15	52	132.75	0	132 05	
	50 X /2		50 $\chi/2$	}	50 $\lambda/2$		50 X/2	
50—2	120.70	ļ	120.75	{	120.73		120.80	
511	120.75	{	120.85		120,80		120.70	
52-2	120.65		120.73		120.70		120.75	
	120,70		120.78	l	120.73		120,75	
	Mean 50 $\lambda/2 = 120.74$ mm. $\lambda/2 = 2.4148$ mm.				Mean	$ \begin{array}{c} 50 \lambda 2 = 1 \\ \lambda 2 = 2 \end{array} $	20.74 mm. 2.4148 mm.	
Velocity = =	elocity = $n \lambda$ = 238.68 meters per sec.			Velocity	= n λ = 238.68 me	ters per see	2.	

Acetone 97.1°

Frequency 95.822 Kh4.					Frequenc	y 94.159 k	úhz.	126.6	548 Khz,
n N/2	Screw reading mm.	n N/2	Screw reading mm.	n N/2	Screw reading mm	n N/2	Screw reading num.	n λ/2	Screw reading mm,
0 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4	5.70 6.88 8.25 9.50 10.70 23.30 35.65 85.30 97.83 110.2275 123.05 122.75 123.05 122.75 123.05 122.73 124.33 132.70 133.27 130.22 131.23 132.75 132.45 132.45 124.45 124.45	102 101 100 99 95 95 94 93 83 73 63 53 43 33 23 13 23 13 2 1 0	$\begin{array}{c} 5.15\\ 6.40\\ 7.75\\ 9.00\\ 1022\\ 11,45\\ 12,80\\ 1453\\ 1533\\ 1535\\ 28,55\\ 28,55\\ 28,55\\ 28,55\\ 15,55\\ 10,55\\ 10,595\\ 128,48\\ 129,78\\ 132,50\\ 132,50\\ 132,55\\ 132,56\\ 132$	0 1 2 3 4 4 4 4 4 4 4 4 4 4 97 97 98 99 100 101 102	5.90 7.15 8.43 9.78 11.10 61.68 87.05 112.25 112.25 124.95 124.95 124.95 124.95 131.23 132.49 133.05 132.49 133.05 126.59 126.65	101 100 99 95 95 94 84 61 44 24 2 1 0 100-0 101-1	6.47 7 85 9.18 10.31 11.01 13.05 14.28 15.43 28 12 53.45 78 93 28 12 53.45 78 93 104.25 104.25 132.10 133.36 134.67 134.67 134.68 134.68 126 89 126 89	0 1 1 15 17 18 22 24 44 67 78 88 98 108 132 133 132 133 132 133 132 133 132 133 133	5.28 6.15 6.85 19.45 20.960 21.85 26.000 26.00 26.00 26.00 27.90 26.00 26.00 27.90 26.00 27.90 26.00 27.90 26.00 27.90 26.00 27.90 26.00 27.90 26.00 27.00 27.80 27.
Mean 100 $\lambda/2 = 124.48 \text{ mm}$. $\lambda/2 = 1.2448 \text{ mm}$.			Mean 100 $\lambda/2 = 126.73$ mm. $\lambda/2 = 1.2673$ mm.			6.73 mm. 2673 mm.	$\lambda/2 = mr$	= 0.9396 2.	
Velocity = $n \lambda$ = 238.56 meters per sec.			Velocity $= n \lambda$ = 238 6 meters per sec.			Velocity	$= n \lambda$ = 238.0 m./ sec.		

The method used to measure the wave length was, to record the screw readings corresponding to the positions of the reflector for a few consecutive peaks, as the reflector was advanced towards the crystal oscillator, after which, readings were taken at intervals of 10 $\lambda/2$. Finally, measurements were again taken for consecutive peaks. The middle sets of readings helped to check the

Acetone 134°

Frequency 93.887 Khz.				Frequency 126.283 Khz.			
$n \lambda/2$	Screw reading mm	n X/2	Screw reading mm.	n X/2	Screw reading mm.	n X/2	Screw reading mm.
0 1 2 3 4 14 24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6,44 7,65 8,94 10,39 11,65 24,88 38,13 51,75 65,08 78,50 91,98 105,27 118 53 132,00 133,35 134,65 223,70 123,56 123,70	97 96 94 93 83 83 63 53 15 3 2 1 0 94-0 95-0 97-3	$\begin{array}{c} 4.38\\ 5.77\\ 7.15\\ 8.47\\ 9.82\\ 23.05\\ 3.6\ 422\\ 49.82\\ 63.24\\ 90.15\\ 103.45\\ 116\ 62\\ 130\ 08\\ 131.50\\ 132.77\\ 134.13\\ 94\ \lambda_1^2\\ 125.62\\ 125.62\\ 125.70\\ \end{array}$	0 1 1 1 1 1 2 7 3 8 5 9 9 9 0 0 100 120 126 127 128 129 130 129 130 130 130 145 145 105 105 105 105 105 105 105 10	7.50 8.35 13.38 23.38 33.68 44.30 34.26 65.24 75.08 85.35 96.10 106.00 115.85 125.88 131.78 132.88 133.70 134.70 134.70 134.70 127.35 127.27	126 123 124 124 123 122 112 102 92 82 72 62 52 42 32 22 2 2 2 2 2 2 1 0 0 124-0 0 125-1 126-2	$\begin{array}{c} 8.95\\ 10.05\\ 10.90\\ 12.00\\ 22.85\\ 33.00\\ 42.70\\ 52.77\\ 62.65\\ 72.58\\ 82.56\\ 92.55\\ 102.45\\ 112.62\\ 122.28\\ 132.40\\ 133.28\\ 134.28\\ 124\\ \lambda/2\\ 123.38\\ 123.23\\ 123.45\\ 723.36\end{array}$
Mean 94 $\chi/2 = 125.68 \text{ mm}$ $\chi/2 = 1.3370 \text{ mm}.$					$\lambda/2 = 0$.9948 mm.	
Velocity = $n \lambda$ = 251.05 maters per sec.			Velocity	$ = n \lambda = 251.15 me $	ters per sec	,	

total number of half wave lengths measured, and the average for successive intervals for, say, 50 to 100 wave lengths, was found out by making use of the first and the last set of readings in each table. In the same manner, sets of readings were taken when the reflector was moved away from the crystal oscillator. The mean of these two sets of readings was utilized in measuring the velocity. It was found

```
TABLE 4(a)
```

Benzene 97.1°

Freque	ency 94.16 Khz.	Frequency 127 Khz.			
n \/2	λ/2 Screw reading mm.		Screw reading mm.		
$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 4 \\ 6 \\ 6 \\ 4 \\ 104 \\ 114 \\ 115 \\ 114 \\ 117 \\ 117 \\ 117 \\ 119 \\ 0 \\ -115 \\ 1 \\ -116 \\ 2 \\ -117 \\ 3 \\ -118 \\ 4 \\ -119 \\ \end{array}$	$\begin{array}{c} 133,70\\ 132,64\\ 131,56\\ 130,47\\ 129,39\\ 108,05\\ 86,56\\ 65,15\\ 43,68\\ 22,20\\ 11,46\\ 10,45\\ 9,35\\ 8,30\\ 7,18\\ 6,12\\ \end{array}$	0 1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	$\begin{array}{c} 134.67\\ 133.93\\ 133.13\\ 133.03\\ 134.53\\ 150.72\\ 122.75\\ 122.75\\ 122.75\\ 106.90\\ 98.92\\ 90.88\\ 75.00\\ 67.05\\ 59.08\\ 51.10\\ 42.38\\ 41.45\\ 40.82\\ 115\\ \lambda/2\\ 91.47\\ 91.55\\ 91.58\\ 91.48\\ 97.475\end{array}$		
Mean 115	$\lambda/2 = 123.27$ mm $\lambda/2 = 1.0719$ mm	Mean 115	$\lambda/2 = 91.475$ mm $\lambda/2 = 0.7954$ mm.		
Velocity	= n \ = 201.9 meters per sec.	Velocity	=n λ = 202.05 meters per sec.		

at the wave lengths were systematically 1 part in a 1,000 smaller ien the piston was moved towards the crystal than when it was oved away from the crystal. This was obviously due to the temrature coefficient of expansion of the pyrex glass reflector. The actual ve length was correctly represented by the mean of the two sets readings, when the reflector was moved in and when it was moved t respectively.

TABLE 4(b)

Benzene	97.1°
	~ ~

	Frequency	Frequency 95.82 Khz.			
n \]2	Screw reading mm.	$n \lambda/2$	Screw reading mm.	n X/2	Screw reading mm.
0 1 2 3 4 5 6 7 8 10 12 13 15 16 17 18 19 21	$\begin{array}{c} 2.00\\ 4\ 00\\ 6.10\\ 8\ 35\\ 10.25\\ 12\ 40\\ 14\ 35\\ 16.20\\ 18\ 30\\ 22.50\\ 26\ 65\\ 29\ 00\\ 32\ 90\\ 35\ 25\\ 37.00\\ 35\ 41\ 70\\ 41\ 70\\ 41\ 70\\ \end{array}$	1 2 3 4 5 6 7 8 9 10 11 13 23 33 +3 53	$\begin{array}{c} 1.90\\ 4.00\\ 5.95\\ 7.95\\ 10.00\\ 12.05\\ 14.05\\ 16.00\\ 18.80\\ 20.08\\ 22.20\\ 24.24\\ 26.30\\ 46.65\\ 67.50\\ 87.85\\ 108.10\\ 110.25\\ \end{array}$	0 1 2 3 4 24 44 64 84 104 118 120 121 122	$\begin{array}{c} 133.92\\ 132.88\\ 131.79\\ 130.73\\ 129.65\\ 108.68\\ 87.60\\ 6u.45\\ 45.38\\ 24.30\\ 9.50\\ 7.50\\ 6.43\\ 5.40\\ \end{array}$
$ \begin{array}{r} 31 \\ 41 \\ 52 \\ 53 \\ 51 -1 \\ 52 -2 \\ 53 -3 \\ \end{array} $	65.50 85.65 106 15 108 40 110 48 50 λ /2 102 15 102.30 102.13	55 56 57 58 59 $56-157-2258-359-460-561-6$	$\begin{array}{c} 112.35\\ 114.42\\ 116.48\\ 118.53\\ 120.60\\ 55\\ 1/2\\ 112.32\\ 112.48\\ 112.58\\ 112.65\\ 112.73\\ 112.73\\ 112.73\\ 1/2.58\end{array}$	0-120 0-121	120 入/2 126.42 126.45 J26.44
50 λ/2= Mean λ/2:	=102 20 mm, = 2 044 mm	120 $\lambda/2$ Mean $\lambda/2$	2=126.44 mm. 2=1.054 mm.		
Mean Velocity	$\frac{\lambda}{2} = 2 \ 0455$ $= n \ \lambda = 202,$	Mean $\lambda / Velocity=$	2=1054 mm = $n \lambda = 202.0$ eters per sec.		

The crystal oscillators used were those used in Part IV, where the details of the measurements of their absolute frequencies are given.

Tables 1 and 2 show the results for the measurement of velocity in acetone vapour at 97.1°. Table 3 shows the readings at 134° in the same vapour. These results show that there is no dispersion of

.

	Frequency	Freque	ncy 127 Khz.		
n \\/2	Screw reading mm.	n \ [2	Screw reading mm.	п Д.2	Screw reading mm.
$\begin{array}{c} 0\\ 1\\ 2\\ 2\\ 3\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 5\\ 4\\ 6\\ 4\\ 7\\ 4\\ 8\\ 5\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 9\\ 9\\ 0\\ 0\\ -86\\ 1\\ -87\\ 2\\ -88\\ 3\\ -89\\ 4\\ -90\\ \end{array}$	$\begin{array}{c} 108.00\\ 106.87\\ 106.87\\ 104.57\\ 103.48\\ 92.22\\ 80.80\\ 69.55\\ 58.10\\ 46.83\\ 35.45\\ 24.20\\ 12.76\\ 11.58\\ 10.48\\ 9.38\\ 8.30\\ 7.20\\ 6.05\\ 860\\ \chi \\ 12.76\\ 11.58\\ 10.48\\ 9.38\\ 8.30\\ 7.20\\ 6.05\\ 8.60\\ \chi \\ 12.76\\ 1.78$	$ \begin{vmatrix} 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4$	$\begin{array}{c} 7 \ 62\\ 8.77\\ 9 \ 55\\ 10 \ 98\\ 12 \ 14\\ 23.55\\ 34.86\\ 46 \ 27\\ 57.48\\ 80.22\\ 91.60\\ 102.80\\ 114.20\\ 126 \ 58\\ 128.80\\ 122.50\\ 124.68\\ 128.80\\ 128.90\\ 131.12\\ 132 \ 23\\ 105 \ \lambda/2\\ 118 \ 96\\ 118.96\\ 11$	0 1 2 3 4 5 5 5 5 5 5 10 70 70 70 80 90 00 115 126 133 134 0133 1134	$\begin{array}{c} 131.40\\ 13058\\ 129.74\\ 128.92\\ 128.92\\ 128.92\\ 127.20\\ 11868\\ 97.75\\ 8933\\ 80.86\\ 7243\\ 8933\\ 80.86\\ 7243\\ 8933\\ 80.86\\ 7243\\ 18,50\\ 15,55\\ 47,35\\ 3445\\ 19,34\\ 18,50\\ 19,34\\ 18,50\\ 112,06\\ 11208\\ 112.06\\ 112.08\\ 112.07\\ 1$
$\begin{array}{c} 86 \ \lambda/2 = \\ \lambda/2 = \end{array}$	- = 97.44 mm. = 1.133 mm	$\begin{array}{c} 133 \ \lambda \ 2 = \ \lambda \ 2 = \ \lambda \ 2 = \ \end{array}$	= 112.07 mm = 0.8426 mm.		
Velocity = =	ル入 212.60 meter	Velocity me	$= n \lambda$ = 212.71 ters per sec.		

Benzene 134'

velocity from 49 Khz. to 126 Khz., the mean value for the velocity being 238.4 ± 0.1 m./sec. at 97.1°. The velocity increases to 251.1 ± 0.05 m./sec. at 134°.

Tables 4 and 5 show the details of the wave length measurements in benzene vapour at different frequencies at 97.1° and 134° respectively. There is no dispersion of velocity in the present

TABLE 6.

Ethyl Ether 97.1°

	Frequency	49,42 Kbz		Frequency 127 Khz			
-> <i>μ</i> χ 2	Screw reading mm.	$\langle \gamma \mu \lambda \rangle^2$	Screw reading inm.	$\psi = \lambda/2$	Screw reading mm.	$\uparrow n \lambda/2$	Screw reading mm
$\begin{array}{c} 0 \\ 1 \\ 2 \\ 33 \\ 44 \\ 54 \\ 57 \\ 57 \\ 56 - 1 \\ 57 - 1 \end{array}$	7 90 10.15 12.30 35 05 55.85 77.00 100.00 120.75 124.85 127.20 55 λ 2 114.70 114.90	59 58 57 53 33 23 13 22 0	7.10 9.30 11 43 20 85 40 73 61,48 52,32 103 20 124,16 126 43 128 50 130 55 57 χ /2 119,12 119 20 119,23	0 1 2 3 4 5 6 7 8 99 95 135 135 135 135 135 157 158 157-2 158-3	$\begin{array}{c} 6.10\\ 6.85\\ 7.70\\ 8.48\\ 9.28\\ 10.24\\ 10.96\\ 11.74\\ 12.60\\ 39,73\\ 46.18\\ 64.82\\ 83.42\\ 99.80\\ 115.85\\ 1.33.98\\ 1.34.80\\ 155 \ \chi/2\\ 126.28\\ 126.32\\ 126.32\\ 126.30\\ \end{array}$	$\begin{array}{c} 150\\ 149\\ 148\\ 147\\ 146\\ 144\\ 124\\ 124\\ 103\\ 80\\ 58\\ 5\\ 5\\ 4\\ 33\\ 2\\ 1\\ 0\\ 0-145\\ 1-146\\ 2-147\\ 3-148\\ 4-149\\ 5-150\\ \end{array}$	4 85 5.68 6.50 7.25 8 10 8.85 9.73 26 0.5 43.22 42.203 80.00 97.00 97.00 97.00 97.00 123.85 122.96 123.62 124.62 1
$\chi 2 = 2.087 \text{ mm.}$ $\chi/2 = 2.091 \text{ mm.}$			$\lambda/2 = 0.8148 \text{ mm.}$ $\lambda/2 = 0.815 \text{ mm.}$				
mean $\lambda/2=2.039$ mm.			r	mean $\lambda/2 =$	0.8149 mm.		
Velocity $= n $ = 206.46 meters per sec.			Ve'ocity =	= n λ = 207.09 met	ers per sec.		

frequency range, and the average velocity is 202.0 ± 0.05 m./sec. at 97.1, and 212.6 ± 0.05 m./sec., at 134°. The values given in the International Critical Tables are only up to 100° , at which temperature the value given is too high by about 2 meters. Further experiments will be necessary to establish whether there is any dispersion of velocity at lower and higher frequencies at different temperatures.

Ethyl Ether 97.1°

	Frequency	95 822 Khz			Frequency	94 16 Kh4	
n <u>)</u> ,2	Screw reading mm	$ \gamma n \chi/2 $	Screw reading mm.	n X/2	Screw reading mm	'\rn \λ.2.	Screw reading mm.
$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 17 \\ 27 \\ 108 \\ 114 \\ 115 \\ 116 \\ 117 \\ 118 \\ 116 \\ 117 \\ 118 \\ 116 \\ -2 \\ 117 \\ -3 \\ 118 \\ -4 \end{array}$	$\begin{array}{c} 7.00\\ 8.07\\ 9.13\\ 10.27\\ 11.37\\ 25.47\\ 123.52\\ 129.77\\ 130.82\\ 131.92\\ 133.03\\ 134.17\\ 114.\lambda/2\\ 122.75\\ 122.76\\ 122.80\\ \end{array}$	118 117 116 115 114 94 74 34 34 4 4 3 2 1 0	$\begin{array}{c} 6\ 60\\ 7\ 72\\ 8\ 78\\ 9\ 85\\ 10.93\\ 32\ 50\\ 9\ 7.10\\ 9\ 7.10\\ 129\ 32\\ 130\ 43\\ 131\ 53\\ 132\ 62\\ 133\ 70\\ 14\ \lambda/2\\ 122\ 77\\ 122\ 77\\ 122\ 77\\ 122\ 71\\ 122\ 72\\ 122\ 71\\ 122\ 72\\ 122\ 74\\ 4\end{array}$	$\begin{array}{c} 0\\ 1\\ 2\\ 3\\ 4\\ 14\\ 24\\ 34\\ 34\\ 44\\ 44\\ 44\\ 44\\ 84\\ 94\\ 104\\ 114\\ 115\\ 116\\ 115\\ 116\\ 115\\ 116-3\\ 187-4\\ 187-4\\ \end{array}$	$\begin{array}{c} 5\ 05\\ 6\ 18\\ 7\ 32\\ 8\ 42\\ 9\ 55\\ 20, 44\\ 31, 43\\ 42, 48\\ 53\ 35\\ 57\ 530\\ 86, 39\\ 97, 35\\ 108\ 28\\ 119, 10\\ 130, 15\\ 131\ 19\\ 132\ 28\\ 133\ 43\\ 113\ \lambda/2\\ 123\ 87\\ 123\ 87\\ 123\ 86\\ 123\ 88\\ 723, 89\\ ,\end{array}$	$\begin{array}{c} 118\\ 117\\ 116\\ 115\\ 184\\ 104\\ 94\\ 74\\ 64\\ 54\\ 44\\ 44\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 1$	$\begin{array}{c} 4\ 60\\ 5.76\\ 6\ 80\\ 0\\ 9.12\\ 20\ 00\\ 31\ 04\\ 42\ 04\\ 52\ 95\\ 63\ 90\\ 74.88\\ 85.95\\ 96.80\\ 118\ 70\\ 129\ 75\\ 130\ 85\\ 131.95\\ 130\ 85\\ 131.95\\ 132.86\\ 124.05\\ 124.05\\ 124\ 01\\ 724.00\\ \end{array}$
$\lambda_{1,2} = 1.0769 \text{ mm}.$ $\lambda_{1/2} = 1.0767 \text{ mm}.$		$\chi/2 = 1.0964 \text{ mm}$ $\chi/2 = 1.0973 \text{ mm}.$					
mean $\lambda/2 = 1.0768$ mm.				mean $\chi/2$ =	= 1 0968 mm	l .	
Velocity = $n \lambda$ = 206.6 meters per sec.			Velocity	$= n \lambda$ = 205.94 me	ters per sec	ir	

Tables 6, 7 and 8 show the measurements of supersonic velocity in the ethyl ether. Apparently there is no dispersion, the average velocity being 206.6 ± 0.1 at 97.1° and 217.4 ± 0.01 m/sec. at 134° . The values calculated from the formula given in the I.C.T. at these two temperatures are 210.4 and 221.4 m/sec. respectively. The lower values observed in the present investigation cannot be due to dispersion.

Ethyl Ether 134°

Frequency 93-887 Khz			Frequency 126-238 Khz.				
n X/2	Screw reading mm.	n X/2	Screw reading mm.	n \ /2	Screw reading mm.	n X/2	Screw reading mm.
0 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3	13-48 14-65 15-78 16-90 28-55 40-10 51-70 63-28 74-87 86-42 98-00 109-50 121-15 132-65	$\begin{array}{c} 100\\ 99\\ 98\\ 97\\ 96\\ 86\\ 76\\ 66\\ 55\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 3\\ 21\\ 1\\ 0\\ 0\\ 2-96\\ 3-97\\ 4-99\\ 5-99\\ 91\\ 5-99\\ 91\\ 5-99\\ 92\\ 5-99\\ 5-$	$\begin{array}{c} 12{\text{-}}08\\ 13{\text{-}}18\\ 14{\text{-}}38\\ 15{\text{-}}48\\ 16{\text{-}}55\\ 28{\text{-}}55\\ 39{\text{-}}80\\ 51{\text{-}}00\\ 52{\text{-}}60\\ 64{\text{-}}18\\ 75{\text{-}}70\\ 87{\text{-}}27\\ 98{\text{-}}90\\ 110{\text{-}}43\\ 122{\text{-}}05\\ 123{\text{-}}20\\ 124{\text{-}}30\\ 125{\text{-}}50\\ 123{\text{-}}20\\ 125{\text{-}}50\\ 125{\text{-}}50$	0 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3	$\begin{array}{c} 11.85\\ 12.60\\ 13.40\\ 14.30\\ 22.95\\ 31.55\\ 40.23\\ 86.75\\ 57.38\\ 66.05\\ 74.60\\ 83.23\\ 91.85\\ 100.43\\ 109.08\\ 17.57\\ 126.28\\ 127.05\\ 125.84\\ 129.70\\ 130.60\\ 135\\ \lambda/2\\ 116.24\\ \end{array}$	132 131 130 129 125 127 117 107 97 77 77 77 77 77 77 65 6 6 6 6 6 6 6 6 6	$\begin{array}{c} 12\text{-}35\\ 13\text{-}20\\ 14\text{-}03\\ 14\text{-}90\\ 25\text{-}23\\ 33\text{-}90\\ 42\text{-}45\\ 59\text{-}70\\ 68\text{-}35\\ 59\text{-}70\\ 68\text{-}35\\ 59\text{-}70\\ 68\text{-}35\\ 77\text{-}80\\ 86\text{-}35\\ 77\text{-}80\\ 86\text{-}35\\ 122\text{-}50\\ 122\text{-}50\\$
103—3	115-75		108-86	137—2 138—3	116-30 116-30 116-28	1-129 2-130 3-131 4-132	110-17 110-17 110-20 110-15 770-17
$\lambda/2 = 1.1575 \text{ mm}, \qquad \lambda/2 = 1.158 \text{ mm}.$			$\lambda/2 = 0.8613 \text{ mm.}$ $\lambda/2 = 0.8607 \text{ mm.}$				
	mean $\lambda/2 = 1.15775$ mm.				mean $\chi/2$ =	0•8610 mp	Ω,
$\stackrel{\text{?elocity}}{=} n \lambda$ $= 217.44 \text{ meters per sec.}$			Velocity	$= n \lambda$ = 217.45 me	ters per sec		

The values for methyl ether (Table 9) were obtained previously in Part II (This Journal, Vol. 21A, Part XL, pp. 455-465), after correcting for the possible change in frequency difference, which was systematically 1.008 times that assumed.

m		0
×.	AREE	м.
- Al-	21122012	• • •

					معدوبوب فلسطون ويويون	<u> </u>	<u></u>		<u></u>	
n-Pro	pyl Ether		Methyl Ether. "Anternational and							
5	97•1°	1		25°			97	•1°		
n	Screw reading mm.	п	Srew reading mm.	n	Screw reading mm.	n	Screw reading mm.	n	Screw reading mm	
$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 67 \\ 68 \\ 70 \\ -10 \\ 20 \\ -30 \\ 30 \\ -40 \\ 50 \\ 60 \\ -70 \end{array}$	$\begin{array}{c} 4.90\\ 7.10\\ 8.80\\ 10.85\\ 12.70\\ 14.70\\ 14.70\\ 62.20\\ 82.85\\ 102.43, 75\\ 62.20\\ 135.95\\ 141.25\\ 10.121, 70\\ 135.95\\ 141.25\\ 10.45\\ 19.45\\ 19.45\\ 19.45\\ 19.45\\ 19.57\\ 19.75$	$1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 35 \\ 40 \\ 51 \\ 52 \\ 53 \\ 56 \\ 52 \\ -1 \\ 53 \\ -2 \\ 56 \\ -5 \\ 56 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5$	$\begin{array}{c} 2.55\\ 5.05\\ 7.15\\ 10.00\\ 12.30\\ 24.90\\ 37.15\\ 49.80\\ 62.00\\ 88.90\\ 126.10\\ 128.70\\ 138.75\\ 131.60\\ 138.75\\ 131.65\\ 126.15\\ 126.15\\ 126.55\\ 126.45\\ \end{array}$	1 2 3 4 5 5 6 7 9 9 10 11 12 20 30 36 41 30-1 41-12	$\begin{array}{c} 135\cdot75\\ 133\cdot50\\ 131\cdot10\\ 128\cdot45\\ 128\cdot45\\ 128\cdot45\\ 128\cdot45\\ 128\cdot45\\ 113\cdot25\\ 110\cdot45\\ 90\cdot95\\ 64\cdot40\\ 49\cdot30\\ 39\cdot25\\ 29\;\lambda/2\\ 29\;\lambda/2\\ 71\cdot35\\ 71\cdot40\\ 71\cdot20\\ \end{array}$	$\begin{array}{c} 0 \\ + \\ 5 \\ 7 \\ 8 \\ 25 \\ 300 \\ 355 \\ 40 \\ + \\ + \\ 5 \\ 44 \\ - \\ 45 \\ - \\ 5 \\ 46 \\ - \\ 6 \\ 47 \\ - \\ 7 \\ 48 \\ - \\ 8 \end{array}$	$\begin{array}{c} 12.85\\ 23.85\\ 26.79\\ 92.75\\ 32.35\\ 35.85\\ 35.85\\ 35.85\\ 35.85\\ 134.65\\ 137.40\\ 139.70\\ 142.60\\ 139.70\\ 142.60\\ 145.10\\ 142.60\\ 145.10\\ 142.60\\ 145.10\\ 109.25\\ 109.25\\ 109.25\\ \end{array}$	$1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 10 \\ 15 \\ 25 \\ 35 \\ 46 \\ 47 \\ 48 \\ 49 \\ 50 \\ 46 \\ -1 \\ 47 \\ -2 \\ 48 \\ -3 \\ 49 \\ -4 \\ 50 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5$	$\begin{array}{c} 141.65\\ 138.75\\ 136.05\\ 133.35\\ 130.35\\ 130.35\\ 130.35\\ 130.35\\ 130.35\\ 120.59\\ 00\\ 102.85\\ 00\\ 102.85\\ 00\\ 15.05\\ 12.40\\ 15.05\\ 12.55\\ 0.95\\ 0.95\\ 123.65\\ 123.65\\ 123.60\\ 123.80\\ 123.40\\ 123.40\\ \end{array}$	
	19-48		126.38		71.32		110-06		723.63	
λ/2=1	•948 mm,	λ/2 me	=2.478 mm an $\lambda/2=2$	$\lambda 2=2$.478 mm.	•459 mm.	λ/2=	= 2.751 mm. ean $\lambda/2 =$	$\lambda/2 = 2.749 \text{ m}$	2.747 mm.	
Velocity = = 19	=n λ 4-1m./sec,	Velo	city = $n \lambda$ = 244.2	2 m /sec.		Veloc	Velocity = $n \lambda$ = 271.7 m./sec.			
×1.008 == 195.6			246.2			2	73.9			

The measurements for normal propyl ether at 97.1° (Table 9) were carried out under the same conditions as the results given in Part II. The velocity is 195.6 m./sec. at 49.42 Khz. in one cm. tube.

Table 10 shows the results of measurements of the velocity in cyclohexane. The average value for the velocity is 191.5 ± 0.3 m./sec. at 97.1° and 202.0 ± 0.3 m./sec. at 134° .

	97	·.1°		134°					
95.8	2 Khz.	94-1	5 Khz.	93-88	9 Khz.	126-264 Khz.			
$n \chi/2$	Screw reading mm.	n \/2	Screw reading mm.	n X/2	Screw reading mm.	» λ/2	Screw reading mm.		
$\begin{array}{c} 0\\ 1\\ 2\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\$	$\begin{array}{c} 133.78\\ 132.82\\ 131.76\\ 130.75\\ 100.79\\ 100.80\\ 90.79\\ 80.83\\ 50.79\\ 40.73\\ 50.79\\ 40.73\\ 30.80\\ 20.78\\ 10.73\\ 30.80\\ 20.78\\ 10.73\\ 30.80\\ 20.78\\ 10.73\\ 125.73\\ 125\\ \lambda/2\\ 125.03\\ 125.03\\ 125.04\\ 125.03\end{array}$	$\begin{array}{c} 0\\ 1\\ 2\\ 3\\ 4\\ 5\\ 15\\ 35\\ 55\\ 55\\ 123\\ 123\\ 124\\ 125\\ 126\\ 127\\ 127\\ 127\\ 127\\ 126\\ 127\\ 127\\ 127\\ 126\\ 127\\ 127\\ 126\\ 127\\ 126\\ 127\\ 126\\ 127\\ 126\\ 126\\ 127\\ 126\\ 126\\ 127\\ 126\\ 126\\ 126\\ 126\\ 126\\ 126\\ 126\\ 126$	$\begin{array}{c} 133.45\\ 132.48\\ 131.50\\ 129.47\\ 128.42\\ 118.23\\ 97.90\\ 77.65\\ 57.38\\ 37.09\\ 16.75\\ 8.65\\ 7.72\\ 6.73\\ 5.72\\ 4.65\\ 124.80\\ 124.76\\ 124.76\\ 124.78\\ 124.78\\ \end{array}$	0 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	$\begin{array}{c} 123.82\\ 121.85\\ 120.70\\ 119.70\\ 119.70\\ 119.70\\ 119.70\\ 119.70\\ 119.70\\ 107.85\\ 97.05\\ 86.20\\ 75.55\\ 97.05\\ 86.20\\ 21.60\\ 21.60\\ 22.75\\ 19.55\\ 18.45\\ 17.38\\ 16.28\\ 15.25\\ 96\\ \chi \\ 12\\ 103.40\\ 103.32\\ 103.40\\ 103.30\\ 103.30\\ 103.30\\ 103.30\\ 103.30\\ \end{array}$	0 1 2 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6	$\begin{array}{c} 115.70\\ 114.88\\ 114.10\\ 112.48\\ 111.75\\ 10.90\\ 103.00\\ 94.96\\ 86.95\\ 78.98\\ 70.96\\ 62.93\\ 54.97\\ 46.90\\ 39.03\\ 31.05\\ 30.23\\ 29.35\\ 28.50\\ 27.80\\ 106\\ \chi_{12}\\ 84.65\\ 84.65\\ 84.68\\ 84.68\\ \end{array}$		
$\lambda/2 \approx 1.0002 \text{ mm}.$		$\lambda/2 = 1.0145 \text{ mm}.$		$\lambda_1^2 = 1$	•0766 mm.	$\chi/2 = 0.7889 \mathrm{mm}$			
Velocity = 191.58 m.	$n\lambda = $	Velocity = $n \lambda' =$ 191.05 m./sec.		Velocity 202.16	$= n \lambda =$ m./sec.	Velocity = $n \lambda$ = 201.73 m./sec.			

Cyclohexane

Table 11 shows the measurements in normal hexane vapour, the average velocity being 191.5 m./sec. at 97.1° and 202.0 m./sec. at 184°.

There are no values reported in the literature for the velocity in acetone, methyl ether, propyl ether, cyclohexane and normal hexane.

TABLE 11.

		Frequency	93-889 Khz.		ĺ	126-264 Khz.		
n	Screw reading mm.	п	Screw reading mm	n	Screw reading mm.	п	Screw reading mm	
$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 65 \\ 85 \\ 105 \\ 106 \\ 107 \\ 108 \\ 107 \\ 1-105 \\ 2-106 \\ 3-107 \\ 4-108 \\ 5-109 \\ \end{array}$	$\begin{array}{c} 128.90\\ 127.90\\ 126.84\\ 125.75\\ 124.60\\ 125.60\\ 81.15\\ 59.90\\ 38.55\\ 17.30\\ 16.30\\ 15.22\\ 1.4.10\\ 13.03\\ 104\\ \lambda_{12}^{12}\\ 110.60\\ 110.54\\ 110.57\\ 110.57\\ 110.57\\ 110.55\end{array}$	$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ \end{array}$ $\begin{array}{c} 41 \\ 61 \\ 81 \\ 101 \\ 102 \\ 103 \\ 104 \\ 105 \\ \end{array}$ $\begin{array}{c} 104 \\ 105 \\ 104 \\ 0 \\ 10.5 \\ \end{array}$	$\begin{array}{c} 7.00\\ 8.10\\ 9.15\\ 10.17\\ \hline \\ 50.50\\ 71.75\\ 93.15\\ 114.40\\ 115.40\\ 116.45\\ 117.50\\ 118.55\\ 104\\ 10.45\\ 110.50\\ 110.45\\ \hline \\ 110.45\\ \hline \\ 110.45\\ \hline \end{array}$	0 1 2 3 12 23 42 92 92 102 114 115 116 0-114 3-117	$\begin{array}{c} 131.63\\ 130.60\\ 129.50\\ 128.48\\ 118.85\\ 167.20\\ 87.00\\ 23.10\\ 10.40\\ 9.30\\ 8.30\\ 7.25\\ 111\\ \lambda /2\\ 121.23\\ 121.23\\ 121.23\\ 121.23\\ \end{array}$	0 1 2 3 4 25 46 67 91 137 138 139 141 0137 1138 2139	$\begin{array}{c} 131\text{-}45\\ 130\text{-}70\\ 129\text{-}85\\ 129\text{-}03\\ 128\text{-}23\\ 128\text{-}23\\ 111\text{-}58\\ 94\text{-}95\\ 7^{8}\text{-}40\\ 5^{9}\text{-}30\\ 22\text{-}30\\ 22\text{-}30\\ 22\text{-}30\\ 22\text{-}30\\ 22\text{-}30\\ 21\text{-}45\\ 20\text{-}00\\ 137\\ \chi_{1,2}\\ 108\text{-}42\\ 108\text{-}42\\ 108\text{-}42\\ \end{array}$	
$\lambda/2 = 1 \cdot 6$	0630 mm	λ'2=1.	0622 mm.	$\lambda/2=1$	0633 mm.	λ/2=0	$\lambda/2 = 0.7913$ mm,	
mean $\lambda/2 = 1.0626$ mm Velocity = $n \lambda$ = 199.53 m., sec.			Velocity 19 6.66	= 11 Д. = m./sec.	Velocity = n λ = 199.67 m./sec.			

n-Hexane 184".

The values for the velocity of sound in the various vapours are summarised in Table 12.

Calculation of Specific Heats from the Velocity of Sound.

The ratio of specific heats $C_p/C_v = \gamma$ in a gas or vapour is given by the expression $\frac{V^2M}{RT} \phi$, where ϕ is given by $\phi = 1 - \frac{9}{\sqrt{\pi}} \pi \tau (1 - 6\tau^2)$ in which $\pi = p/p_e$ = actual pressure/critical pressure,

 $\tau = T_c/T = critical temperature/actual temperature,$

TABLE 12.

Dispersion of Supersonic Velocity in Organic Vapours.

i			134°					
1	49-42 Khz.	94-16 Khz.	95-82 Khz	126-648 Khz,	A verage	93+889 Khz.	126-264 Khz.	Average
Acetone	238-60	238.60	238-56	238-C0	238.6	251.05	251.15	251 10
Benzene	202-18	201-90	202.00	202-05	202-32	221.60	212-71	212-65
Ethyl Ether	206+48	206-60	206+60	207-09	206+68	217+44	217-4 ₅	217-4,
Methyl Ether	273 9 246- #					•••		
Propyl Ether	195-6							
Cyclohevane		191-05	191-68		191-36	202-16	201-73	201-9
n-Hexane						199+5 ₉	199-6 ₇	199-0,
• •••••••••••••••••••••••••••••••••••••			*	25 ⁰				

M is the molecular weight, R is the gas constant expressed in ergs per degree Centigrade (8.3156×10^{7}) if V is given in cm./sec. The corresponding value of $(C_v - C_v)$ is

 $C_{p} - C_{s} = R (1 + 27/16 \pi T^{3}).$

The derivation of the above factors is given by the Berthelot's equation of state. The value of γ for the various vapours was determined from the absolute measurements of the velocity of sound given in Table 12, importance being given to measurements at 95 Khz. These measurements were carried out in a 5 mm. diameter tube, which was many times the wave length, and therefore there was no tube correction required for determining the velocity in the unconfined gas or vapour.

.....

The details of the calculations of the specific heats from the various factors are given in Table 13, and the comparison of the values given in literature, (Landolt Bornstein and International Critical Tables), with those calculated by the method of Bennewitz and Rossner (Z. Phys. Chem. 1938, **B39**, 126 – 44) from the spectroscopic data of the various substances, is given in Table 14. These authors found that the experimental results for specific heats of organic vapours.

TABLE 13.

Specific Heats from the Velocity of Sound in Organic Vapours.

			a	n				97	.1°					1	34 ⁰		
		м	k	k	v	V ² M RT	φ	γ	Cp - C ₉	C _p	v	V ⁸ M RT	ø	γ	Cp - C	, c	
Acetone		58.06	60-0	237-0	238-6	1.0740	1.0303	1.1065	2.1187	22.01	251.16	1.0840	1.0223	1.1062	2.0851	21.7	
Benzene	•••	78•08	47-89	288-5	202+0	1.0362	1.0513	1.0894	2•2084	26-92	212.65	1.0444	1.0380	1.0842	2.1528	27.7	
Ethyl Ether	•••	74.10	35-61	193-8	206+ 54	1.0271	1.0383	1.0665	2.1595	34.61	217.45	1.0352	1.0288	1.0650	2,1194	34.7	
Methyl Ether		46-03 	53-0	127-1	246-2* 273.9	1.1266* 1.1227	1.0315* 1.0155	1•162* 1•1401	2.1257* 2.0604	15.2* 16-8	·	 	 	 			
Propyl Ether		102.14	31•7.	273-0	195-6	1.2 491	1.0711	1.3378	2.0716	7.99		•••		 •••			
Cyclohexane		84•13	40•57	281.0	191.36	1.0010	1.0583	1.0596	2-2401	39.83	201.95	1.0143	1.0430	1.0579	2 1760	39.7	
*-Hexane		80-14	30.0	234.5	,				 		199•6	1.1176	1.0439	1 1677	2.1838	15.2	
		ł	 		<u>.</u>		<u> </u>		-	-	<u> </u>				l	l	

of non-linear molecules containing carbon, hydrogen and oxygen, could be expressed by the equation

$$(\mathbf{C}_{\mathbf{v}})_{\mathbf{p}=\mathbf{0}} = 3\mathbf{R} + \sum_{i} \mathbf{q}_{i} \mathbf{E} \boldsymbol{v}_{i} + \frac{(3n - 6 - \Sigma_{\mathbf{q}_{1}})}{\Sigma_{\mathbf{q}_{1}} + \Sigma_{\mathbf{q}_{1}} \mathbf{E}_{\delta_{1}}}$$

where $\sum_{q_i} = no.$ of valence bonds in molecule, n = total no. of atoms in molecule, Ev_i and $E_{0i} = Einstein's functions for a given bond with$ $characteristic vibration frequencies, <math>v_i$ and E_i . The numerical value of v for each bond was determined from infra red or light scattering data. The values for δ , were determined empirically from the experimental values of molecular heats for some known substances by a step by step calculation. This equation yielded results in excellent agreement with their own experimental data obtained by the method of continuous flow calorimeter, and with that of other investigators,

	U V	Absolute Temperature.								
Bond Mol ec ule	δ -1 cm.	T = 290	330	370	410	450	490			
C-C (H _a C-CH _a)	990 390	0.362	0.513	0.660 1.647	0.796 1.704	0.921 1.746	1.031 1.784			
C - O	1031	0.320	0.463	0.606	0.742	0.867	0.979			
(Alcohol)	205	1.824	1.859	1.884	1.902		1.927			
$C \approx C$ $(H_2 = CH_2)$	1620 845	0.0426 0.549	1.0867 0.718	1.148 0.871	0-223 1-005	0-308	0•397 1•222			
C=0	1700	0.320	0.0677	0.119	0-186	0.262	0•345			
(Ketone)	390	1.470	1.572	1.647	1-704		1•784			
C - H	2920	0.0002	0.0010	0-0031	0+0077	0-0157	0-2628			
(aliphatic)	132	0.125	0.213	0-317	0+427	0-540	0-651			
C – H	3 0 50	0.0002	0.0006	• 0•0021	0+0053	0-0112	0.0214			
(aromatic)	1320	0.125	0.213	0-317	0+427	0-540	0.651			
$\begin{array}{c} O-H\\ (H_2O) \end{array}$	3419	0.0001	0.0002	0-0006	0-0018	0.0043	0-0089			
	1150	0.220	0.340	0-469	0-598	0.721	0-835			

The values of the Einstein's functions are given below :---

It is found that in the case of ethyl ether the contribution of C-O frequencies is one and half times that in alcohol, as determined experimentally from the various values given in the literature, that in methyl ether is the same as in alcohol.

The use of the above table and equation yields $(C_v)_{p==0}$ as a function of temperature. In order to calculate $(C_v)_{p==0}$ the conversion of the two specific heats is made by using the Berthelot's equation of state and the following equation :-

$$(C_{p})_{p=p} = (C_{v})_{p=0} + R \left[1 + \frac{81}{32} \times \frac{p}{p_{c}} \times \left(\frac{T_{c}}{T}\right)^{3}\right]$$

The results given in Table 14 show the excellence of this formula for finding out the temperature coefficient of specific heats. More elaborate calculations are possible through the work of Mecke and Kohlrausch on the molecular structure, from the eigen frequencies, with the help of Frank Einstein formula. This method, however, leads to very complicated calculations and sometimes the arrangement of the frequencies is not clear in absence of experimental values for the specific heat of the vapour.

TABLE 14.

	Temp.	C _p		Substants	Temp.		C _p			
Substance	°C	Obs	Cal		Substance	°C	Obs.	Cal.	Δ	
Acetone	68 97•1 103 134 137 181	20-1 22-0 21-7 21-7 22-5 23-9	19.8 21.2 21.3 22.7 22.8 24.6	+0.3 +0.4 -1.0 -0.3 -0.7	Propyl Ether Methyl Ether Ethyl Ether	97.1 25 97.1 35 35 68	8-0 15-2 16-8 33-0 27-8 31-7	43.8 16.3 17.0 29.2 29.2 31.4	$ \begin{array}{c} 7 \\ -1.1 \\ +0.2 \\ +3.8 \\ -1.4 \\ +0.3 \end{array} $	
Benzene	20 74-5 80 90 97-1 100 107 134 137 167 350	20-1 23-3 20-3 25-4 25-9 25-8 25-9 27-7 27-5 29-3 38-9	30.2 23.6 23.9 24.6 25.0 25.2 25.5 27.1 27.3 29.1 38.3	$\begin{array}{c} -0.1 \\ -0.3 \\ -3.6 \\ \div 0.8 \\ +1.9 \\ \div 0.6 \\ +0.4 \\ \pm 0.6 \\ \pm 0.2 \\ \pm 0.6 \end{array}$		97-1 100 103 134 137 146 185 200 250 300 350	34.6 35.2 34.2 34.7 35.6 40.5 41.0 39.5 44.0 44.5	33.4 33.5 33.7 35.8 36.0 36.7 39.2 40.3 43.0 46.4 49.8	+1.2 +1.7 +0.5 -1.1 +1.3 +0.7 -3.5 -2.4 -5.3	
Cyclohexane	97-1 100 134 137	39•8 34•8 39•7 37•5	35•4 35•5 39•6' 39•7	+ 4-4 - 0-7 - 0-1 - 2-2						
n.Hexane	134 137	15-7 39-4	39•1 39•2	? +0•2			1			

Comparison of the Specific Heats C_v, with those calculated from Spectroscopic data.

The results at 97° for the various vapours differ appreciably from those calculated, owing to the fact that Berthelot's equation of state does not hold very well for vapours which are not far removed from the saturation point. It is significant to note that the values of specific heats at 97° are systematically higher, as expected. At 134° the specific heats for the vapours of ethyl ether and acetone, are less by 3.5 and 5% respectively than those calculated from the spectroscopic data, which seems to indicate that we are near the dispersion region. This fact was also confirmed by the marked absorption observed at higher frequencies. When allowance is made for these factors, the values of specific heats calculated from supersonic velocity are in very good agreement with those obtained by the spectroscopic method.

Attention is, however, drawn to the serious discrepancy between the calculated and the observed values for *n*-hexane. The vapour of this compound showed a fairly strong absorption at 127 Khz. It appears that the frequencies 94-127 Khz., at which the measurements were carried out, represent the dispersion region where the time lag between the rotational and vibrational frequencies occurs.

In the case of n-propyl ether there is a complete disappearance of all the vibrational specific heats even at 50 Khz. and measurements were difficult at higher frequencies and temperatures.

Although further work is necessary to confirm this observation it is significant to point out that in the case of *n*-hexane, the contribution of the deformation frequencies (δ) to the specific heat (the calculated value of which is 26.7 cal., and that observed, 23.4 cal.), has disappeared from the adiabatic elasticity of the vapour traversed by sound waves of frequency 94 and 126 Khz. This phenomena and the anisotropic nature of both *n*-hexane and propyl ether molecules, is similar to the case of carbon dioxide, carbon disulphide and nitrous oxide, in which the dispersion observed is accounted for by time lag in the transfer of the energy between the vibrational and other states of the molecule, and in which the observed rise in sound velocity corresponds to the disappearance of the contribution of the deformation oscillations [cf. Kneser, Ann. Physik, 1911, 11, p. 761. Kneser and Zulke, Zeits, f. Physik 1932, 77, 649]. This point will be briefly discussed in the subsequent parts of this series.

SUMMARY.

Specific heats of the vapours of acetone, benzene, cyclohexane, n-hexane, methyl ether, ethyl ether and n-propyl ether have been determined by the sound velocity method.

No appreciable dispersion was found over the range of 49.5-127 Khz., at 97° and 134°, although a greater increase in sound absorption at higher frequency was observed in some of the vapours.

The values of the molecular heats derived from the observed supersonic velocity, have been compared with those calculated from the spectroscopic data by a semi-empirical formula. In the case of n-hexane, there was an apparent disappearance of the deformation vibrational heats, and in the case of n-propyl ether, there was a complete absence of the contribution of all the vibrational frequencies to the specific heat. For the remaining substances, the specific heats calculated from the velocity of sound at 49-127 Khz., are in agreement with those obtained by the continuous flow calorimeter, especially at 134°, and with those calculated from spectroscopic data, and it appears that the vibrational heats of most of the vapours, reach equilibrium with other components of the molecular heat, in the frequency range studied.

<u></u>		97+1	0			1.340				
			c	p			Cp			
	v	γ	obs.	cal.	v	γ	oba	cal		
Acetone	238-6	1+1065	22-0	21-2	251.16	1+1062	21-7	22.7		
Benzene	202-0	1.0894	26•9	25.0	212-65	1.0842	27•7	27.1		
Ethyl Ether	206-51	1.0665	34.6	33-4	217-45	1-0550	34+7	35-8		
Methyl Ether (25°)	273+9 246+2	1-1401 1-1620	16-8 15-2	17-0 16-3						
Propyl Ether	194-0	1.3378	8-02	43-8						
Cyclohexane	191·3 ₆	1+0596	39-8	35-4	201•9 ₅	1.0579	39-7	39.6		
n-Hexane					199•6	1.1677	15-2?	39+2		

The results of the present investigation are summarised below :-

Department of General Chemistry, Indian Institute of Science,

[Received, 16-1-1939.]

Printed at the Hosali Power Press, "Clarendon Hall," Ulsoor, Bangalore.

Bangalore (India).