SUPERSONIC VELOCITY IN GASES AND VAPOURS.

PART VI. SPECIFIC HEATS OF THE VAPOURS OF ALCOHOLS AND ETHYL ACETATE.

By S. K. Kulkarni Jatkar.

INTRODUCTION.

In Part V (This Journal, 1939, 22A, 19-37) the supersonic velocity in vapours of acetone, benzene, cyclohexane, n-hexane, methyl ether, ethyl ether and propyl ether, was measured at 97° and 134°, over a range of 49.5-127 Khz. The specific heats calculated from these measurements were, in most of the cases, in good agreement with the values reported in the literature, and with those calculated from the spectroscopic data. The values at 97° were slightly higher owing to association of the molecules and to the fact that Berthelot's equation of state does not give satisfactory results at this temperature. The slightly lower values for acetone and ethyl ether were ascribed to the influence of the proximity of a dispersive region, which was apparently shown by marked absorption at the higher frequency. In the case of vapours of n-hexane there was a disappearance of the contribution of the deformation oscillations to specific heats and in the case of *n*-propyl ether, there was complete disappearance of both the valence and transverse vibrational heats. In both the cases it was apparent that a range of frequency of about 100 Khz. represented definite transitions in the supersonic velocity. It was therefore interesting to find out whether any other organic vapours behaved in the same way,

In the present paper the results of measurements of velocity in methyl alcohol, ethyl alcohol, *iso*-propyl alcohol, *n*-propyl alcohol, *tert*-butyl alcohol and ethyl acetate, have been presented, and the specific heats derived have been compared with the values given in the literature, and with those calculated from the spectroscopic data, by the method referred to in Part V. It was found that in the case of *iso*-propyl alcohol and *tert*-butyl alcohol, the region of frequency over which the measurements were made, apparently represented one and two transitions, due to disappearance of the share of the transverse, and of both transverse and valence vibrations respectively, from the specific heats, but in the case of other vapours, the agreement was as satisfactory as could be expected on the classical ideas of the equilibrium of different components of the molecular heats.

EXPERIMENTAL.

The apparatus used and the experimental procedure followed was the same as that described in Parts I—V. The results of the wave length measurements are given in detail as before, because there was the usual possibility of miscounting the number of peaks, as in the case of counting bands in the optical interferometer, particularly when the wave lengths were small. No attempt was made to make use of all the readings to get a more accurate value, as the other conditions of the experiments, such as temperature, pressure' and the purity of the substances, were not reproducible to an accuracy better than 1 part in 1,000. All the substances were purified by the usual methods and carefully dried and fractionated. The results of the measurements are given in Tables 1—11 and the velocities of the vapours at different frequencies have been summarised in Table 12.

TABLE 1.

Methyl	Alcohol	97.1°.
--------	---------	--------

	Frequency 49,42 Khz.				Frequency	95.82 Khz.	
12	Screw reading mm	п	Screw reading mm.	n	Screw reading mm.	11	Screw reading mm.
$ \begin{array}{c} 0\\ 1\\ 2\\ 3\\ 4\\ 5\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 31-3\\ \end{array} $	$\begin{array}{c} 6 & 80 \\ 10.35 \\ 13 & 80 \\ 17.00 \\ 20.30 \\ 23.55 \\ 57 & 50 \\ 91.83 \\ 95.30 \\ 98.60 \\ 101.10 \\ 105.50 \\ 102.55 \\ 101.10 \\ 105.50 \\ 112.05 \\ 28 \\ \lambda / 2 \\ 95.15 \\ 95.05 \\ 95.05 \\ \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} 0\\ 1\\ 2\\ 3\\ 4\\ 14\\ 44\\ 54\\ 64\\ 70\\ 11\\ 172\\ 1-71\\ 2-72 \end{array}$	$\begin{array}{c} 130.55\\ 128.60\\ 126.90\\ 125.28\\ 123.45\\ 105.55\\ 88.20\\ 70.90\\ 35.98\\ 58.98\\ 18.49\\ 7.75\\ 5.98\\ 4.88\\ 70\\ \chi/2\\ 122.62\\ 122.52\\ 122.52\\ 122.57\\ \end{array}$	0 1 2 3 4 14 24 36 66 66 66 66 66 70 71 72 70 -0 71 -1 72 -2	$\begin{array}{c} 6.80\\ 8.68\\ 10.45\\ 12.08\\ 13.98\\ 70.10\\ 87.30\\ 122.30\\ 129.30\\ 131.03\\ 132.85\\ 70\ \lambda/2\\ 122\ 50\\ 122\ 35\\ 122.40\\ 122.40\\ 122.12\\ \end{array}$
$\lambda/2 = 3.3967 \text{ mm.}$ $\lambda/2 = 3.3967 \text{ mm.}$			λ/2 =	1751 mm.	$\lambda/2 = 1$.749 mm.	
mean $\lambda/2 = 3.3967$ mm.			r	nean $\lambda/2 =$	1.750 mm.		
$Velocity = n \lambda = 335.7 m./sec.$			Velocity	= n入 = 335.4 m /se	2 C .	<u> </u>	

There is apparently no dispersion in methyl alcohol vapour. The values for the velocity, however, are quite different from those given in the literature. The average value of the velocity at 97.1° is 335.4 m./sec. and at 134° , 352.5 m./sec.

In ethyl alcohol the average value of the velocity at 97° is 269.5 m./sec., and at 134° , 284.4 m./sec. and the result is in agreement with the Jaeger's (1889) and Dixon's values, the other results reported in literature being too high.

In the case of *iso*-propyl alcohol the velocity at 126.5 Khz., is less by 1.2 meters than the value 255.4 m./sec. at 97° , at 49 and 94 Khz.

TABLE 2.

Methyl Alcohol 97.1°

п	Screw reading mm.	n	Screw reading mm.				
0 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3	$\begin{array}{c} 124.10\\ 122.75\\ 120.92\\ 119.08\\ 101.43\\ 65.65\\ 47.90\\ 30.20\\ 12.15\\ 10.50\\ 8.63\\ 6.85\\ 5.20\\ 64\\ \lambda / 2\\ 114.12\\ 114.07\\ 113.88\\ 144.02 \end{array}$	0 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	$\begin{array}{c} 5 \ 90 \\ 7.73 \\ 9.40 \\ 11.45 \\ 29.00 \\ 46.80 \\ 64.65 \\ 82.20 \\ 100 \ 05 \\ 132.80 \\ 133.80 \\ 135.67 \\ 70 \ \chi/2 \\ 124.62 \\ 124.62 \\ 124.45 \\ 124.51 \end{array}$				
$\lambda/2 = 1.7815 \text{ mm}$ $\lambda/2 = 1.7778 \text{ mm}.$							
Mean. $\chi/2 = 1.780$ mm,							
Velocity = $n \lambda$ = 335.23 m./sec.							

Frequency 94.16 Khz.

At 134°, measurements could be obtained only at 94 Khz., at which .the velocity is 270.2 m./sec. Measurements at 126 Khz. at 134° could not be obtained owing to absorption.

In the case of *n*-propyl alcohol, the average value for the velocity at 134° is 244.5 m./sec. The absorption in n-propyl alcohol was not so marked as in *iso*-propyl alcohol.

The velocity in *tert*-butyl alcohol is 225.6 m/sec. at 134° , at 93.889 Kbz., no measurements being possible at the higher frequency owing to absorption.

TABLE 3.

Methyl Alcohol 134.°

	Frequency 93.889 Khz.				Frequency	126.264 Kh:	2.
H	Screw reading mm	11	Screw reading mm.	п	Screw reading mm.	11	Screw reading mm.
0	133.05	0	- 4.47	0	134.00	0	4.55
1	131.45	1	6.47	1	132.65	1	6-15
2	129,40	2	8.03	2	131,30	2	7.44
3	127.55	3	13.17	 4	128.45	3	9.00
4	125.42	4	11.85	12	117.55	14	24.48
5	123 95	5	13 55	22	103.53	24	38.53
6	122.12	6	15.55	32	89.40	35	53.75
16	103.10	7	17.60	45	71.55	45	67.78
2 6	84.45	17	36.33	55	57.50	55	81.68
36	65.75	· 27	55.22	65	43.20	65	95.50
46	46.92	37	73.65	75	29.65	75	109.80
56	28.95	47	92.55	85	15.75	85	123.58
66	9.35	57	11 1 2 7	86	14.15	86	125.10
68	5-68	67	130.12	87	12'83	87	126.50
69	3.65	68	132.10	89	10.20	86	128.00
	50 X/2		. 62 λ/2	85 λ/2-			$85 \lambda/2$
066	123.70	675	116.57	085	118.25	85-0	119.03
2-68	123.72	68—6	116.56	1	118,50	86-1	118.95
3—69	123.70		1	2-87	118.47	872	119.06
				489	118 25	883	119-00
	123.70		116.56		118.3 7	t	119.01
$\lambda/2 = 1.874$ mm. $\lambda/2 = 1.880$ mm.			$\lambda/2 = 1$	1.393 mm.	$\lambda/2 = 1$.400 mm.	
	Mean $\lambda/2=1$	l•877 mm.			Mean $\lambda/2$	= 1.396 mm	
$\begin{array}{l} \text{relocity} = \varkappa \lambda \\ = 352.46 \text{ m./sec.} \end{array}$			Í	Velocity	= n \ = 352.6 m,/see	 5.	

Ethul	Alcohol	97.1°

	Frequency 49.42 Khz,			Frequency 95.82 Khz.			
n	Screw reading mm	n	Screw reading mm.	н	Screw reading tnm.	11	Screw reading mm
0 1 2 3 4 5 5 25 5 36 37 38 36 37 38 36 -3	$\begin{array}{c} 1.70\\ 4.70\\ 7.20\\ 10.10\\ 12.70\\ 15.55\\ 42.70\\ 70.20\\ 92.28\\ 94.95\\ 97.70\\ 100.34\\ 103.18\\ 105.75\\ 35\\ \chi \right) (2\\ 95.66\\ 95.65\\ 95.662\\ \end{array}$	0 1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	$\begin{array}{c} 1.60\\ 4.70\\ 7.35\\ 10.08\\ 13.57\\ 15.60\\ 43.15\\ 70.30\\ 97.75\\ 100.48\\ 103.20\\ 106.00\\ 106.60\\ 104.8\\ 111.30\\ 35\chi (2\\ 95.78\\ 95.85\\ 95.92\\ 95.70\\ 95.81\\ \end{array}$	0 1 2 3 16 26 36 47 57 68 79 90 91 92 1	$\begin{array}{c} 133.93\\ 132.55\\ 131.05\\ 129.63\\ 111.75\\ 97.42\\ 83.25\\ 68,10\\ 53.85\\ 38.25\\ 23.30\\ 8.93\\ 7.43\\ 6.10\\ 4.78\\ 123.62\\ 123.62\\ 123.62\\ 123.62\\ 123.53\\ 123.59\end{array}$	$\begin{array}{c} 0 \\ 2 \\ 3 \\ 4 \\ 14 \\ 24 \\ 36 \\ 57 \\ 67 \\ 77 \\ 89 \\ 90 \\ 91 \\ 92 \\ 90 \\ 92 \\ 90 \\ -2 \\ 91 \\ -3 \\ 92 \\ -4 \end{array}$	$\begin{array}{c} 5.40\\ 8.06\\ 9.50\\ 10.96\\ 25.32\\ 40.06\\ 55.98\\ 70.28\\ 86.35\\ 99.48\\ 114.00\\ 130.12\\ 131.70\\ 133.03\\ 134.50\\ 88\\ \lambda \left[2\\ 123.64\\ 123.53\\ 123.54\\ 125.57\\ \end{array}\right.$
$\lambda/2 =$	$\lambda/2 = 2.732 \text{ mm}.$ $\lambda/2 = 2.7347 \text{ mm}.$			$\lambda/2 = 14043$ mm. $\lambda/2 = 1.4043$ mm.			1.4043 mm.
	mean $\lambda/2 = 1.7374$ mm.			mean $\chi/2 = 1.4043$ mm.			
Velocity	Velocity = $n \lambda$ = 270.26 m./sec.			Velocity	$= n \lambda$ $= 269.12 m/$	sec.	

In the case of ethyl acetate at 97° and 96 Khz., the value of the velocity is 189.3 m./sec., the value at 134° being 198.8 m./sec. No measurements were possible at higher frequencies on account of absorption. The value at 76° reported by Lechner (1909) is too high.

Calculation of Specific Heats from the Velocity of Sound.

The specific heats have been calculated from the values of the velocity of sound in the various organic vapours, by the same procedure which was adopted in Part V. The results are shown in Table 13.

TABLE 5

	Ethyl	Alcohol	97.1°
--	-------	---------	----------------

94	16 Khz.		126 648 Khz.				
п	Screw reading mm.	12	Screw reading mm.	17	Screw reading mm.		
$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 14 \\ 24 \\ 34 \\ 44 \\ 44 \\ 54 \\ 64 \\ 85 \\ 86 \\ 87 \\ 88 \\ 0 - 84 \\ 1 - 85 \\ 2 - 86 \\ 3 - 87 \end{array}$	$\begin{array}{c} 132.75\\ 131 35\\ 129.93\\ 128 46\\ 127.00\\ 112.75\\ 98.35\\ 84.15\\ 69.90\\ 55.45\\ 41.20\\ 26.85\\ 12 53\\ 141.15\\ 9.63\\ 8.20\\ 6.72\\ 120.22\\ 120.20\\ 120.30\\ 120.26\\ 120.25\\ \end{array}$	$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 14 \\ 45 \\ 55 \\ 85 \\ 85 \\ 96 \\ 106 \\ 116 \\ 118 \\ 119 \\ 0-116 \\ 1-117 \\ 12-118 \\ 4-119 \\ \end{array}$	$\begin{matrix} 134 & 30 \\ 133, 24 \\ 132, 15 \\ 131, 08 \\ 130, 01 \\ 19, 40 \\ 98, 05 \\ 86 & 45 \\ 75 & 66 \\ 86 & 43 \\ 90 \\ 32, 28 \\ 21 \\ 55 \\ 11, 22 \\ 9, 93 \\ 8 & 66 \\ 7 & 85 \\ 16 \\ 1, 22 \\ 123 \\ 28 \\ 123 \\ 21 \\ 31 \\ 123, 20 \\ 123 \\ 23 \\ 123, 23 \\ 723, 28 \\ 723$	$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 14 \\ 34 \\ 84 \\ 84 \\ 94 \\ 94 \\ 104 \\ 119 \\ 120 \\ 121 \\ 122 \\ 122 - 2 \\ 122 - 2 \\ \end{array}$	$\begin{array}{c} 5.20\\ 6 \ 18\\ 7.23\\ 8 \ 38\\ 9.44\\ 20.02\\ 41.25\\ 51.74\\ 62.58\\ 94.32\\ 103.00\\ 115.65\\ 126.13\\ 131.53\\ 132.52\\ 133.62\\ 134.70\\ 120\ \lambda/2\\ 127.32\\ 127.42\\ 127.47\\ 127.41\end{array}$		
$\lambda/2=1,4315$ mm.		$\chi/2=1,0627 \text{ mm}$		$\chi/2=1,0617 \text{ mm}$			
	$y = n \lambda = m./sec.$		$\frac{\text{Mean } \chi/2 =}{\text{Yelocity} =} = 269.$				

The specific heats have also been calculated from the spectroscopic data by the method of Bennewitz and Rossner (vide infra) at different temperatures, and the calculated values have been compared with those observed in the present investigation, and also with those which are given in Landolt Bornstein and International Critical Tables. The results are given in Table 14.

The accuracy of the results obtained in the present investigation may be illustrated by the fact that a difference of 0.5% in the value of

	Frequency 9	3+889 Khz.			Frequency 1	26.264 Khz	
n	Screw reading mm	14	Screw n Screw : reading nm. mm.		n reading		Screw reading mm.
0 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3	$\begin{array}{c} 7.23\\ 8.68\\ 10.20\\ 11.70\\ 27.10\\ 42.23\\ 57.25\\ 72.38\\ 87.50\\ 102.62\\ 122.37\\ 122.87\\ 123.88\\ 123.88\\ 123.53\\ 126.85\\ 126.85\\ 126.85\\ 126.85\\ 116.55\\ 116.55\\ 116.55\\ 116.55\\ \end{array}$	$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 14 \\ 24 \\ 44 \\ 54 \\ 64 \\ 79 \\ 80 \\ 81 \\ 82 \\ 83 \\ 84 \\ 0 - 80 \\ 1 - 81 \\ 2 - 82 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} 133\cdot 15\\ 131\cdot 96\\ 130\cdot 80\\ 129\cdot 65\\ 118\cdot 50\\ 106\cdot 10\\ 94\cdot 90\\ 83\cdot 48\\ 72\cdot 30\\ 61\cdot 00\\ 48\cdot 60\\ 37\cdot 35\\ 14\cdot 75\\ 13\cdot 60\\ 12\cdot 43\\ 11\cdot 35\\ 104\\ \lambda / 2\\ 117\cdot 21\\ 117\cdot 22\\ 117\cdot 21\\ \end{array}$	0 1 2 3 14 4 45 55 65 75 85 106 105 106 107 107 107 3	$\begin{array}{c} 5.38\\ 6.42\\ 7.36\\ 8.48\\ 21-12\\ 32-25\\ 4.3.60\\ 55.80\\ 67.30\\ 78.35\\ 89.75\\ 101-12\\ 123.37\\ 124.50\\ 125.57\\ 126.68\\ 104-\lambda/2\\ 117.09\\ 117.12\\ 117.09\\ 177.10\end{array}$
$\lambda/2 = 1.5149 \mathrm{mm}, \qquad \lambda/2 = 1.5141 \mathrm{mm},$		$\lambda/2 = 1.127 \text{ mm}, \qquad \lambda/2 = 1.126$		•126 mm.			
	mean $\lambda/2 = 1.5145$ mm.		mean $\lambda/2 = 1.1265$ mm.			m.	
Velocity = $n \lambda$ $\approx 284.38 \text{ m}$, [sec.			Velocity	$= n \lambda$ = 284.47 m.	Bec.	2	

Ethyl Alcohol 134°

 ϕ (the correction for the compressibility) will account for 1.4 cal, difference between the observed and the calculated value for the molecular heats of *n*-propyl alcohol, and that a difference of 1 part in 2000 in the velocity of sound in ethyl acetate vapour, will cause a change of 0.5 cal. in the molecular heat. The maximum deviations observed in the case of most of the vapours are within the above two limits, the probable error being of the order of 0.5 calorie. It is therefore obvious that Berthelots' equation of state holds very well for all the substances under the conditions of the experiment. In order to obtain

TABLE	7
I ABLE	- 6

	Frequency 49.42 Khz.			Frequency 95 82 Khz			
n	Screw reading mm	n	Screw reading mm	n	Screw reading mm.	11	Screw reading mm.
0 1 2 3 4 14 24 34 44 45 46 45 46 3	$\begin{array}{c} 10\ 55\\ 13.35\\ 16\ 00\\ 18.35\\ 21.10\\ 45\ 00\\ 72\ 25\\ 57\ 30\\ 124\ 85\\ 127.23\\ 129.85\\ 43\ \chi/2\\ 111.50\\ 111.23\\ 111.50\\ 111.50\\ \end{array}$	0 1 2 4 5 5 5 5 5 5 5 5 4 5 4 5 4 5 4 5 4 5	$\begin{array}{c} 129\ 25\\ 126\ 65\\ 124\ 05\\ 120\ 20\\ 102\ 75\\ 77.75\\ 52\ 90\\ 27\ 85\\ 13\ 10\\ 10\ 60\\ 8\ 05\\ 45\ \chi/2\\ 116\ 15\\ 116.05\\ 116.05\\ 116.05\\ \end{array}$	0 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3	$\begin{array}{c} 134\ 00\\ 132\ 75\\ 131\ 58\\ 130\ 10\\ 116\ 80\\ 90.10\\ 76.63\\ 63\ 55\\ 50\ 05\\ 36.90\\ 10.18\\ 9\ 03\\ 7.28\\ 6\ 35\\ 5\ 00\\ 94\ \lambda\ /2\\ 125\ 47\\ 125\ 23\\ 125\ 12\\ 125\ 10\\ \end{array}$	0 1 2 3 4 14 24 34 44 54 94 94 95 96 97 98 94 -0 95 -1 96 -2 97 -3 98 -4	$\begin{array}{c} 548\\ 7,00\\ 835\\ 9,54\\ 10.98\\ 2425\\ 5103\\ 64,28\\ 77,57\\ 104,34\\ 130,94\\ 132,30\\ 133,492\\ 136,26\\ 94\lambda,12\\ 136,26\\ 94\lambda,12\\ 12546\\ 12538\\ 125202\\ 125,28\\ 125202\\ 125,28\\ 125229\end{array}$
λ/2=2-	$\lambda/2 = 2.591 \text{ mm}$ $\lambda/2 = 2.579 \text{ mm}.$		$\lambda/2 = 1.3326 \text{ mm}, \qquad \lambda/2 = 1.33$				
	mean $\lambda/2 = 2.585$ mm.			mean $\lambda/2 = 1$	1.3327 mm.		
-	Velocity=n =2	λ 55.5 m /sec.			Velocity = $n \lambda$ = 255	4 m./sec.	

Iso-Propyl Alcohol 97.1°

more accurate molecular heats, it is essential to attain a still higher accuracy, which the supersonic interferometer is capable of, and pay special attention to purity of compounds and define other physical conditions such as uniformity of temperature, pressure, etc., very closely. The author has already demonstrated the possibility of obtaining a high accuracy in the measurement of the absolute frequency of the quartz oscillators by means of a simple and inexpensive apparatus in Part IV

TABLE 8.

Iso-Propul Alcohol

97.1

134 .

94.10	• Khz.	126 6-	18 Khz		Frequency 9	3-889 Kbz	
n	Screw reading mm.	п	Screw reading mm	11	Screw reading mm.	н	Screw reading mm
0 1 2 3 4 4 5 5 5 5 5 5 5 9 2 9 3 9 9 9 9 9 9 9 9 9 9 9 9 9	$\begin{array}{c} 5.97\\ 7.31\\ 8.65\\ 10.34\\ 11.15\\ 39.92\\ 67.15\\ 80.70\\ 93.90\\ 107.80\\ 121.20\\ 132.06\\ 133.41\\ 134.81\\ 92\\ \lambda/2\\ 124.66\\ 124.75\\ 124.76\\ 124.76\\ \end{array}$	$\begin{array}{c} 0\\ 1\\ 2\\ 3\\ 4\\ 4\\ 44\\ 64\\ 104\\ 124\\ 124\\ 126\\ 127\\ 128\\ 129\\ 0-126\\ 1-127\\ 2-128\\ 3-129\\ \end{array}$	$\begin{array}{c} 13^{+1.16} \\ 13^{-3.19} \\ 132.27 \\ 131.05 \\ 130.10 \\ 90.00 \\ 90.00 \\ 90.55 \\ 7.62 \\ 6.85 \\ 5.85 \\ 5.85 \\ 4.65 \\ 126.34 \\ 126.34 \\ 126.34 \\ 126.36 \\ 126.42 \\ 126.42 \\ 126.42 \\ 126.42 \\ 126.42 \end{array}$	0 1 2 3 14 24 34 44 4 4 4 4 4 4 4 4 4 4 4 4 54 64 74 85 85 85 85 85 85 88 85 -0 85-0 85-0 85	$\begin{array}{c} 7.78\\ 9.15\\ 10.52\\ 11.94\\ 27.85\\ 42.15\\ 56.48\\ 70.98\\ 85.50\\ 98.80\\ 114.30\\ 128.64\\ 130.10\\ 132.95\\ 134.37\\ 84\\ \lambda/2\\ 120.86\\ 120.95\\ 121.01\\ \end{array}$	0 1 2 3 3 3 3 4 3 5 3 6 3 7 3 8 5 5 8 5 8 5 8 5 8 5 8 7 3 8 8 5 9 5 8 8 7 3 8 8 5 9 5 8 7 3 8 8 5 9 5 8 7 3 8 8 5 9 5 8 5 7 3 8 5 7 3 8 5 7 3 8 5 7 3 8 5 7 3 8 5 7 3 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 7 8	$\begin{array}{c} 132.50\\ 131.05\\ 129.65\\ 128.20\\ 113.77\\ 99.35\\ 85.00\\ 70.58\\ 56.05\\ 41.81\\ 27.37\\ 11.64\\ 10.22\\ 8.85\\ 7.42\\ 6.00\\ 8.85\\ 120.83\\ 120.83\\ 120.80\\ 120.78\\ \end{array}$
<u>λ</u> -2 ∞	1•356 mm.	$\lambda/2 = 1$	-0033 mm	$\lambda/2 = 1$	•4399 mm.	$\lambda/2 = 1.4383 \text{ mm}.$	
Velocity = 255.36 m	- <i>n</i> λ = - . sec.	Velocity 254.13	$= n \lambda = m \lambda$		mean $\lambda/2 =$	1.4391 mm.	
			,		Velocity ⇒ n ≓2	2 λ 270.23 m./see	3.

of this series. It is also possible to attain a higher accuracy in the values of the wave lenghts by a more elaborate method than averaging.

It will be seen that the observed and the calculated values are in agreement within the limits of experimental error, except in the case of *iso*-propyl alcohol and *tert*-butyl alcohol. In the case of the former,

n-Propyl Alcohal 134°.

	Frequency	93.889 Kh	z.		Frequecy 12	86•264 Khz.	
11	Screw reading mm.	17	Screw reading mm.	н	Screw reading mm.) н	Screw reading mm.
0 1 2 3 4 4 34 64 64 86 87 88 89 0-86 1-87 2-88 3-89	$\begin{array}{c} 131.10\\ 130.00\\ 128.65\\ 127.40\\ 126.18\\ 85.53\\ 59.35\\ 46.55\\ 16.50\\ 15.30\\ 15.30\\ 15.30\\ 15.30\\ 13.95\\ 86\\ \lambda/2\\ 113.45\\ 113.45\\ \end{array}$	0 1 2 3 4 44 64 84 93 94 95 930 930 952	$\begin{array}{c} 8.10\\ 9.40\\ 16^{-38}\\ 12.05\\ 13.30\\ 39.50\\ 65.40\\ 91.40\\ 117.48\\ 129.10\\ 130.45\\ 131.60\\ 93\\ \lambda 2\\ 121.00\\ 121.05\\ 121.22\\ \end{array}$	0 13 61 63 65 65 67 67 (7) /2 66 	88-30 76-30 29-25 28-15 27-55 26-50 23-35 24-50 23-55 24-50 23-55 24-50 23-55 24-50 23-55 24-50 23-55 24-50 9656 99656	0 9 18 48 70 91 113 116 117 113 \[2] , 107	15-30 23-95 52-20 83-80 103-30 124-85 127-70 128-70 λ/2 0.9694 -9696
	113.35		121-09		(1.9070		0.9095
λ/2=1	-303 mm.	$\lambda/2 = 1$	•302 mm.	λ/2=0.9	870 mm.	$\lambda/2=0$	9695 mm,
•	mean $\lambda/2=$	1•3025 mm	n .		mean $\lambda/2=0$.9683 mm.	
	Velocity = n 24	4.53 m /sec.			Velocity = n = 24	λ 14.52 mm	

the specific heat observed is very nearly that due to translational, rotational and valence vibrational energy, and indicates the complete disappearance of all the transverse vibrational energy. Tert-butyl alcohol seems to have lost the contribution to the specific heats from the deformational frequencies. It is interesting to point out that the behaviour of these two substances is similar to that of propyl ether and *n*-hexane reported in the previous part.

The substances exhibiting the abnormally low molecular heats are highly anisotropic like CO_{2n} or possess quasi-tetrahedral structure

TABLE 10

Tert Butyl Alcohol 134°.

п	Screw reading mm.	п	Screw reading mm.		
0 1 2 42 63 93 95 96 97 950 961 972	$\begin{array}{c} 8.75\\ 9.90\\ 11\ 20\\ 35.35\\ 59.45\\ 108\ 83\\ 120.85\\ 120.85\\ 123\ 20\\ 124\ 50\\ 125\ 60\\ 95\ \lambda\ /2\\ 114.45\\ 114.60\\ 114\ 40\\ 114\ 48\\ \end{array}$	0 1 2 3 88 89 90 91 92 93 95 95 090 191 293 393	$\begin{array}{c} 128.90\\ 12770\\ 12660\\ 12345\\ 2355\\ 2240\\ 21.15\\ 1990\\ 1870\\ 17.60\\ 17.60\\ 10775\\ 10775\\ 10775\\ 10780\\ 10780\\ 10783\\ 407.83\end{array}$		
λ	2=1 205 mm	$\lambda/2 = 1.198 \text{ mm}.$			
	Mean $\lambda/2$	= 1 2015 t	nm.		
	Velocity≃n ≖22	λ 5.61 m /se	20, .		

Frequency 93.889 Khz.

of the type AXB_s. It will be shown in the next part that chloroform, which comes under the latter category, also shows diminution of specific heat. It appears therefore that most of the rotational energy is utilised in 'spinning the top' under the high frequency compressional waves, thus producing the remarkably high absorption of sound energy.

Supersonics in relation to molecular structure.

The remarkable divergence in the values of the specific heats deduced from the supersonic velocity, and those obtained by the calorimetric method or by calculations from spectroscopic data, in the case of some of the vapours, can now be explained on the basis of failure

\mathbf{T}_{AH}	3le 11
Ethyl	Acetate

.

			4	97.1°			1		134	0	
	49.42	Khz.			95-82	Khz.	1		93-889	Khz.	
n	Screw reading mm.	n	Screw reading mm.	n	Screw reading mm.	11	Screw reading mm.	n	Screw reading mm,	n	Screw reading mm
0 1 2 3 14 24 34 44 54 65 65 65 56	130-45 128-45 122-40 124-60 101-60 85-05 46-95 46-95 8-89 6-95 4-95	$ \begin{array}{c} 0\\ 1\\ 2\\ 12\\ 22\\ 32\\ 42\\ 52\\ 62\\ 64\\ 65\\ 65\\ 65\\ \end{array} $	7.C0 9.C0 10.25 29.55 49.05 68.05 87.35 106.30 125.50 129.60 131.10 133.00	0 2 3 4 5 6 16 26 46 86 126 130 131 132 133	$\begin{array}{c} 135 \cdot 30 \\ 133 \cdot 40 \\ 132 \cdot 45 \\ 131 \cdot 58 \\ 130 \cdot 48 \\ 129 \cdot 47 \\ 119 \cdot 50 \\ 10 \cdot 67 \\ 90 \cdot C0 \\ 50 \cdot 45 \\ 10 \cdot 91 \\ 7 \cdot 10 \\ 6 \cdot 10 \\ 5 \cdot 12 \\ 4 \cdot 15 \end{array}$	0 1 2 3 4 5 5 6 26 46 86 126 130 131 132 133	4.65 5.58 6.66 7.71 8.72 9.72 9.72 10.74 30.60 50.32 89.88 129.22 133.37 134.14 135.12 136.15	0 1 2 4 102 103 104 115 116 117 118	132.10 131.05 130.15 128.10 24.25 23.18 21.10 1: 45 * 36 8.40 7_0	0 1 2 4 111 112 113 113 114 115	11.50 12.70 13.90 15 30 128.00 130.45 131.40 182.45 133.35
064 165 266	64 λ /2 121-65 121-55 121-45 121-45	64-0 63-1 66-2	$\begin{array}{c} (4 \ \lambda)/2 \\ 122.60 \\ 122.10 \\ 122.05 \end{array}$	0	130 $\lambda/2$ 128-20 128-28 128-30 128-26	130-0 131-1 132-2 133-3	$\begin{array}{c} 130 \ \lambda / 2 \\ 128 \cdot 42 \\ 128 \ 56 \\ 128 \cdot 56 \\ 128 \ 44 \\ 128 \cdot 50 \end{array}$	0	116 人/2 122.74 122.65 122.85 122.85	113-0 114-1 115-2	113 λ/ 119.90 119.75 119.45 <i>119.70</i>
$\lambda/2 =$	1.899 mm.	$\lambda/2 =$	1.907 mm.	$\lambda/2 =$	0.987 mm.	$\lambda/3 = 0$).988 mm.	$\lambda/2 = 1$	1.0582 mm.	$\lambda/2 =$	1.0593 mm.
	Mean $\lambda/2 =$	= 1.903 mi	n		Mean $\lambda/2$	= 0.9875 mr	n,		Mean $\lambda/2 =$	1.0588 mm.	
	Velocity = n) = 18	8.1 m./sec			Velocity = n = 18	∖ 19.25 m./sec			Velocity = n = 19	λ 8,82 m./sec	

<u>Cr</u>

TABLE 12.

Dispersion of Supersonic Velocity in Organic Vapours.

	ł			97•1°				134°	
•	-	49.42 Khz.	94•16 Khz	95-82 Khz.	126-648 Khz.	Average	93-889 Khz.	126-264 Khz.	Average
Methyl Alcohol		335-7	335·2 ₈	335-4		335-44	352.4 ₆	352.6	352-5
Ethyl Alcohol		270-26	269+6	269·12	269.1	269-5 ₂	28 4- 3 ₈	284.47	284+42
Iso-Propyl Alcohol		255-5	255-3 ₆	255-4	254•1 ₈	255-1	270•2 ₃		270-2
n-Propyl Alcohol			•••				244•5 ₈	244•5⊻	244.5;
Tert-Butyl Alcohol							325+61	•···	225-61
Ethyl Acetate		188-1		189•2 ₈		189-25	198-82		198-8,

of a part of the heat capacity to follow the adiabatic cycle of the supersonic wave. Although further speculation must be reserved until the measurements are extended over a larger frequency range, some *ad hoc* explanation might be given on the basis of the theories on the number of vibration and rotation states in the molecules. Speculations of this type are now possible because of a knowledge of the contribution of different components of the molecule to the specific heat.

Bennewitz and Rossner (Z. Physik Chem. 1938, **B.39**, 126-44) in a comprehensive research on specific heats of organic vapours, developed a semi-empirical formula for calculating C_p at different temperatures, based on valence and deformation frequencies determined from vibrational infra-red or Raman Spectra. The results of such calculations were in good agreement with their own measurements by the streaming method. The contribution of deformation oscillation to specific heat were deduced empirically.

TABLE 13.

Specific Heats from the Velocity of Sound in Organic Vapours.

	;					°1.7e							134 ⁰		
	M	 افتر		>	V ² M RT	ø	~	Y Co-Cy Co	Ĵ	>	V ³ M RT	Ð	~	$\gamma = \begin{vmatrix} c_{p} - c_{v} \end{vmatrix} c_{p}$	ථ
Methyl Alcohol 32-04	32-04	78+5	240.0	335+3	210-0 335-3 1-1700 1-0235 1-1975 2-0920 12-68	1.0235	1-1975	2-0920	12.68	352+5	1 • 1763	1.0174	1.1568	352-5 1.1763 1.0174 1.1568 2.0656 12.56	12,56
Ethyl Alcohol 46-06 62-96 243-1	46-06	62-96	243-1	269-3	200-3 1-0554 1-0300 1-1179 2-1187 20-08 281-12 1-10091-0209 1-1239 2-0848 18.91	1.0300	6211-I	2-1187	20.08	284-42	1.1009	1.0209	1.1239	2 0848	16.81
Iso-Propyl Alcohol	60-08	53.1	234-6	255.4	53-1 24-6 255-4 1.2733 1.0336 1.3159 2.1349	1-0336	1.3159	2.1349	8.89	270-23	1.2963	1.0248	1.3285	270-23 1 2963 1.0248 1.3285 2.0997	8.49
#-Propyl Alcohold 60-08 50-16 263-7	60-08	50-16	263•7	:	:	:	÷	÷	:	244.55	1.0613	1.0314	1.0946	244·55] •0613[•0314] •0946 2·1272 24.61	24-61
Tert-Butyl Alcohol	74-10	31-7	234-9	:	:	:	:	÷	:	225-6	1.1143	1.0416	1.1607	225-6 1-11431.0416 1.1607 2.1722 15-69	15-69
Ethyl Acetate 88-08 38-0	88.08	38-0	250-1	189-25	250-1 189-23 1-0250 1-0496 1-0758 2-2116 31-39 198-8 1-0287 1.0382 1.0680 2-1595	1•0496	1.0758	2-2116	31.39	198.8	1 -0287	1.0382	1.0680	2.1595	9-55

TABLE 14.

Comparison of the Specific Heats C_{v} with those calculated from Spectroscopic data.

	Temp.		C,			Temp.		C _p	
Substance	°C	Obs	Cal.	Devi- ation	Substance	°C	Obs	Cal.	Devi- ation
Methyl Alcohol	77	12•5	13-1	-0.6	# Propyl Alcohhl	134	24•6	26•0	- 1•4
	97-1	12.7	13•4	-0.7		137	26-9	26-5	+ 044
	134	12.6	14-1	- 1-5	Iso Propyl Alcohhl	97-1	8.9	24.2	- 15-3
	137	14-0	14-1	- 0-1	Alcount	134	8.5	26-0	- 17.5
	162	14-7	14-5	- 0-2		137	26+6	26•1	+0.5
Ethyl Alcohol	90	18-7	18-4	+0.3	Tert Butyl Alcohol	134	15.7	30+0	- 14.3
	97.1	20.1	18-6	+1.5	Ethyl	73	29-7-	29.5	+ 0-2
	134	18-9	19-9	- 1-0	Acetete	97-1	31.4	30+9	+0.5
	137	19-8	20-1	-0-3		112	32.7	31-8	+ 0+9
	164	20-9	31.0	- 0-1		134	33.9	33-1	+ 0.8
	350	28-2	27-1	+1-1		137	33.7	33+3	+0.4
						167	35.3	35-2	+0-1
						ł			-
									i.
·	1	{	<u> </u>	<u> </u>	<u> </u>				

The molecular heats of polyatomic gases are given by the expression.

 $-C^{\circ}v = \frac{3}{2}R \text{ (translation)} + \frac{3}{2}R \text{ (rotation)} + R \text{ (for } C_{p} - C_{v}, \text{)}$

 $+\Sigma q_i C_{v_i}$ (valence vibration) $+\Sigma q_i C_{\delta_i}$ (deformation vibration) where Cv_i and C_{δ_i} are Einstein functions with the characteristic temperatures θ .

55

In order to illustrate the method, the heat capacity of the vapours of *iso*-propyl alcohol at 97.1° will be calculated. The structural formula for *iso*-propyl alcohol shows twelve atoms (n = 12) and eleven bonds $(\Sigma_{q_i} = 11)$ which are of the type, (7) C - H, (2) C - C, (1) C - O and (1) O - H. Taking the values for the valence and deformation vibrations which are given in Part VI, the following summations are obtained:—

54

	Valence vibrations	Deformation vibrations
(7) C-H	7 × 0.0031 = 0.0217	7×0.317=2.219
(2); C-C	2×0.660 =1.320	2 × 1.647 = 3.294
(1) C-O	1×0.606 =0.606	1 × 1.884 = 1.884
(1) O-H	1 × 0,0006 = 0,0006	$1 \times 0.469 = 0.469$
· ·	$\sum_{i} E_{v_i} E_{v_i} = 1.948$	$\sum_{i} q_i E_{\delta_i} = 7.886$
	(3n	$\frac{1}{\Sigma_{q_i}} \sum_{i=1}^{i} \sum_{j=1}^{i} \Sigma_{q_j} E_{\delta_i} = \frac{19}{11} \times 7.886$
		$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$
		= 10.00.

On the basis of complete equilibrium in the various degrees of freedom in the molecule, the molecular heat at atmospheric pressure at 97° comes to 24.2 calories, as against 8.9 observed.

For rotational heat capacity, it is usual to assume the classical values. It will be shown presently that this does not hold in supersonic waves in molecules of AXB_8 type such as in the case of *iso*-propyl alcohols $H-C-OH(CH_3)_2$. The rotation of the molecules along the CH axis, owing to the high moment of inertia, will cause the disappearance of two degrees of rotation equivalent to R calories, as the molecule is approximately equally loaded. Such a rotation of the molecule will diminish the contribution of the transverse vibrations of all the linkages except that of the CH group of the secondary alcohol. The observed specific heat of *iso*-propyl alcohol on this

basis is made up of, $\frac{8}{8}$ (translation), $\frac{1}{2}$ R (rotation), R for $C_p - C_s$, 1.948 for valence vibrations and 0.547 for C-H deformation. The total value at 97° (along with 0.16 calorie for change to atmospheric pressure) comes to 8.77 calories as compared with 8.99 observed, the agreement being remarkably good. It must be mentioned that the numerical value of the contribution of valence vibration is nearly the same as that of the two rotational states. It is, however, more plausible to assume the disappearance of the two rotational states from adiabatic supersonic waves, to account for the partial loss of the share of transverse oscillations. Similar conclusions apply to the value at 134°.

The observed diminution in specific heat, is constant over a range of frequencies from 49 to 127 Khz. at both 97° and 134° and is not due, therefore, to the dispersive region, but to a definite transition in the supersonic velocity.

In the case of tertiary butyl alcohol, as the molecule is not symmetrically loaded, the rotational specific heat will degrade to $\frac{3}{2}$ R. The following calculations show the contribution of various oscillations to the specific heat at 134.° (n = 15, $\Sigma_{q_1} = 14$).

	Valence Vibrations	Deformation Vibr	ations
9 C-H 3 C-C 1 C-O 1 O-H	$9 \times 0.0074 = 0.0666$ $3 \times 0.7860 = 2.3580$ $1 \times 0.7320 = 0.7320$ $1 \times 0.0017 = 0.0017$	$9 \times 0.420 = 3.780$ $3 \times 1.700 = 5.100$ $1 \times 1.900 = 1.900$ $1 \times 0.588 = 0.588$	
	$\Sigma_{q_1} E v_1 \approx 3.1580$	$\frac{(3n-6-\Sigma q_i)}{\sum_{i} q_i} \Sigma q_i E_{\delta i}$	$= 11.368$ $= \frac{25}{14} \times 11.368$ $= 20.3$

The contribution of the deformation vibrations to specific heat is thus 20.3 calories at 134°. But as the transverse vibrations in the three sets of groups will be inoperative when the molecule is rotating on each of the axis C-OH, C-CH₃, etc., the contribution of these oscillations to specific heat will be only one-fourth of the calculated, namely, 5.1 calories. The observed specific heat of *tert*-butyl alcohol, is thus composed of, $\frac{3}{2}$ R (translation), $\frac{4}{2}$ R (rotation), R (2.172) for C_p-C_v , 3.16 for the valence vibration, and only 5.1 calories, the share of the deformation oscillation; total (along with 0.28 calories as the correction for atmospheric pressure) comes to 15.68 calories as compared with 15.7 calories deduced from the supersonic velocity. The agreement is remarkably good and fortuitous, considering the various assumptions made.

In the *n*-hexane investigated in Part V, the share of the transverse oscillations to the specific heat is 26.7 calories, while the discrepancy is 23.4 calories. It is therefore obvious that a part of the transverse oscillations participate in the specific heat. If the six end C-H groups, which are most free to vibrate, remain active, they will absorb 4.7 calories. As the molecule is highly anisotropic, it may remain oriented with its length in the direction of the supersonic radiation, and it will lose one degree of rotational freedom corresponding to $\frac{R}{2}$. The calculated specific heat then; comes to 16.2 calories as compared with 15.7 calories derived from supersonic velocity.

In the case of propyl ether it is obvious that even a frequency of 50 Khz. is too high for any of the vibrations to participate in the specific heat. The observed value is therefore due to translation and rotation only.

SUMMARY.

The supersonic velocity in the vapours of methyl alcohol, ethyl alcohol, *iso*-propyl alcohol, *n*-propyl alcohol, *tert*-butyl alcohol and that of ethyl acetate have been measured at 97 and 134° over a frequency range of 49-127 Khz. There was apparently no dispersion over this frequency range, although in the case of *iso*-propyl alcohol and tert-butyl alcohol, there was a strong absorption evident at the higher frequency and higher temperature.

The specific heats deduced from the observed velocities have been compared with those calculated from the spectroscopic data and were found to be in fair agreement, except in the case of *iso*-propyl alcohol and tert-butyl alcohol. It is interesting to note that both these molecules are of AXB₃ type. The discrepancy in the molecular heats in the above compounds and in *n*-hexane has been quantitatively accounted for on the basis of partial disappearance of the share of rotational and deformation oscillations.

Berthelot's equation of state has been found to hold very well in the case of the vapours.

The results of the present investigation are summarised in the following table :---

		97.1°			134°.				
	v		0	Cp	v		0	Сp	
	v .	γ	obs.	eal.		γ	obs.	cal.	
Methyl Alcohol	335-3	1-1975	12.7	13-4	35.2-5	1.1968	12.6	14.1	
Ethyl Alcohol	269-1	1•1137	20-1	1 8- 6	284.4	1.1200	18.9	19-9	
Iso-Propyl Alcohol	255+44	1-3159	8.9	8.77	270.23	1.3285	8-5	(26-0)	
n-Propyl Alcohol					244.5 ₅	1-0946	24-6	26.0	
Tert-Butyl Alcohol					225.6	1-1607	15-7	15.68 (3 3.1)	
Ethyl Acetate	189-25	1.0758	31-4	30-9	198-8	1.0484	33.9	33-1	

Department of General Chemistry, Indian Institute of Science. Bangalore (India).

[Received, 19-1-1939.]

Printed at the Hosali Power Press, "Clarendon Hall," Ulsoor, Bangalore.