SUBJECT INDEX

	*****			F	AGE
Acetate, ethyl, specif	ic heat of the v	apour of	•••		39
Acetone, specific hea	t of the vapour	tof	•••		19
Air, supersonic veloc		**			93
Alcohols, specific hea	ts of the vapou	ırs of			39
Aliphatic diazo com addition of— to	pounds, invest	igations on ble bonded	the nature		263
Barium chromate, Se					111
Benzene, specific hea		r of ,			19
1-isoButyl-cyclopropa			synthesis of		283
Calcium chromate, d					
oxide	•••	•••			232
Calcium chromate, de carbonate	ecomposition of	f the mixtur	e with sodiu		226
Calcium chromate, th	e 95% stage in	the decomi	nosition of		111
Calcium salts of orga	, .			on	
and technical ap			•••		127
Camphane series, syr	nthetical invest	igations in t	he—, Part V	•••	255
Camphorquinone, syn	thesis of Mana	sse's ketoni	c acid from		255
Cane molasses, a dry technical applica		from—, an	nd its possib		139
Cane molasses, prepa		mical applic	ations of mixe	ed	
calcium salts of	organic acids fr	om	•••	•••	127
Cane molasses, resea	rches on the ut	ilisation of-	–, Part II	•••	127
19	1)	,,	$\Pi\Pi$		139
,,	11	,,	IV		149
1)	,,	,,	V		237
Carie molasses, veget	ation experime	nts to deter	mine the fer	ti-	
lising value of th					149
Carbon dioxide supe	rsonic velocity	in			93

	Carbon disulphide, supersonic velocity in			93
	Carbon tetrachloride, specific heat of the va	pour of		59
	Chemical oxidisers, crop response to	•••		171
	Chloroform, specific heat of the vapour of		•••	59
	Chromates, reactions of—, at high temperat	ures. Part	VIII	111
	"	,,		119
	11 11	1)	x	225
	11 11	,,	· XI	287
	,,	"	XII	309
	Chromates of calcium, strontium and barium		stage in	
	the decomposition of the	••••		111
	Chromium chromates, magnetic properties of	of	•••	309
	Chromium chromates, structures of	•••	•••	287
	Chromium trioxide, thermal decomposition	of	•••	119
	Diazomethane, action upon cyclopenta- ar	nd <i>cyclo</i> he	xadienes	
	and their derivatives	•••	•••	263
	Dichloromethane, specific heat of the vapour		•••	59
-	Edible oils and fats, the effect of refinit	ng on the	digesti-	
	bility of	•••	•••	203
	Ethyl acetate, specific heat of the vapour of			39
	Ethyl diazo acetate, action upon <i>cyclope</i> dienes and their derivatives	nta-and og	yctonexa-	263
	Ethyl ether, specific heat of the vapour of	•••	•••	19
	Ethylene dichloride, specific heat of the vap	our of	•••	59
	Fats, edible, the effect of refining on the di		of	203
	Fuller's earth, activation and clarifying prop	٠ .		
	Fuller's earth, adsorption of colouring matte			991
	of oils	i ili deco		331
	cycloHexadienes. See cycloPentadienes			263
	cycloHexane, specific heat of the vapour of	•••	•••	19
	n-Hexane, specific heat of the vapour of	•••	•••	19
	Iodine values and refractive indices (of	oils), the	relation	
	between the	****	- 311111011	219
	Iron salts, influence on the oxidation of o	organic ma	atter and	
	release of plant nutrients			179

Manasse's ketor	nic acid, C ₁₀ H ₁	$_{6}O_{3}$, synthesis	from camph	or-	
quinone		•••		•••	255
Manganese and matter and	iron salts, influe release of plant		dation of orga	nic	179
Methyl ether, sp	•				19
Molasses. See		o vapous of	•••	•••	
Nopinone, furthe	r attempts to sy	nthesise	•••	•••	317
Oils, decolorisati			•••		331
Oils, edible, the	effect of refining	g on the digest	ribility of	•••	203
Oxidation of orga		~ ~		ron	
salts on the	,	•••	•••		179
cycloPenta- and	cyclohexadiene	s and their d	erivatives, act	ion	
	hane and ethyl				268
Phosphoric acid	in solution, the	titrametric n	nethod of est	imat-	
ing		•••	•••	•••	. 79
Piezoelectric qu		measurement	of the absolu	ute	
frequency o				•••	1
Pinane and its d	,	-			155
Pinane group, sy	nthetical experi	iments in the-	•	•••	317
11	11	17 ,	VII	•••	326
Pinenes, a- and	β —, a new total	synthesis of	•••	•••	324
Pinonic acid, further attempts to synthesise				•••	317
Plant nutrients, oxidation of organic matter and release of 1					
1-isoPropyl-1-ca	arboxy– <i>cyclo</i> p <mark>r</mark> c	pane-3-acetic	acid, synthe	sis	
of		•••	•••	•••	
n-Propyl ether,	specific heat of	the vapour of	• • •	•••	19
Refractive indic		e relation bet	ween the iod		
values and-		•••	***		219
Safflower oil, har		•••			219
Solid-lime composition by -	ound (obtained t — in the soil, ar				237
Steam, supersoni	ic velocity in		•••		93
Strontium chromate, the 25% stage in the decomposition of					111
Supersonic velocity in gases and vapours-, Part IV					1
"	,,	,,,	v		19

Supersonic velocity in gases and vapours-, Part VI					• • •	39	
71	11	,,	VII		٠	59	
37	,,	,,	VIII		٠	93	
a-Thuja dicarboxylic acid, synthesis of an isomer of						283	
Thujone, experiments on a total synthesis of .							
Thujone series, sy	nthetical invest	igations in th	ie—, Part	VIII	•••	249	
,,	,,	,,		IX	•••	275	
,,	,,	*1		\mathbf{X}	•••	278	
"	,,	,,		x_{I}	•••	283	
isoThujone, synthe	sis of	•••	•••		• • •	249	
Titrametric method of estimating phosphoric acid in solution, influence of certain anions on the accuracy of 79							
			-			79	
2:2:3-Trimethyl-cyclohexane-4-one-carboxylic acid, synthesis							
	ketonic acid fro		•••		• •	255	
Umbellulonic acid,	a new method	of synthesis	•••		•••	275	
Verbenone, further attempts to synthesise						317	
Verbenone, total sy	ynthesis of	•••	•••		٠.	324	
•							