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Abstract | Several biological systems comprise of reaction networks where the low number of

molecules makes it inappropriate to completely characterize system behavior using a

continuous approach. Biological systems are also characterized by discrete states (e.g. infected,

dead) that are not amenable to the use of a continuous descriptor. This review discusses the

need for adopting a discrete stochastic modeling approach for analyzing biological reactions

networks. Various stochastic simulation procedures and theoretical studies are presented. The

challenges in the theoretical and computational analysis of discrete stochastic biological

reaction networks are discussed.

Introduction
Biological processes involve a complex set of events
that have to be coordinated in time and space
in order to yield the correct functionality. The
development of an embryo into an adult organism
involves the correct spatio-temporal positioning
and differentiation of nearly 1014 cells in humans.
Members of a species interact with themselves, their
predators and prey species to generate patterns of
disease, population growth and even extinction.
It is increasingly recognized that theoretical and
computational approaches are essential for the
expedited understanding of complex biological
networks1–3. Various modeling formalisms are
adopted based on the degree of accuracy that is
desired, the modeling objective, computational and
time constraints, and the availability of experimental
data against which the model is calibrated and
validated.

In this review, I present an overview of modeling
and simulation methods used for analyzing
biological systems and reactions that view these
processes as being inherently probabilistic in nature.
The review is not intended to be an exhaustive
compilation of all stochastic modeling approaches

and all implementations of the approaches. The goal
is to serve as a useful starting point for stochastic
modeling in biology, with particular reference to
cellular and molecular biology problems. Stochastic
modeling of single molecules, e.g. nucleic acid or
protein conformation predictions, is not included in
this review. Modeling approaches are presented here
from the perspective of the forward-problem, i.e.
modeling systems where the component interactions
are known. Modeling approaches for the inference
of biological networks from experimental data have
been recently reviewed4 and are not included in this
review.

The article is organized as follows: first,
examples illustrating the complexity and inherent
heterogeneity of biological systems are presented.
Next, a summary of various deterministic and
stochastic modeling formalisms used to analyze
biological systems is presented to provide a context
for discrete stochastic modeling methods. Different
methods for stochastic modeling are presented
and Chemical Master Equation based approaches
for simulating biochemical reaction dynamics are
discussed in detail. A discussion of some of the
challenges and issues in this field concludes the
survey.
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Biological processes are stochastic
In this section, I present a few examples to illustrate
the complexity and stochastic nature observed in
most biological systems. These examples span length
scales from a single cell to an ecosystem.

The small size of single cells leads to small
volumes where intracellular reactions occur. Because
of these small sizes, typical protein concentrations
in the nanomolar range imply that there are only
.02 to 20 protein molecules per prokaryotic cell.
Proteins at picomolar concentrations will be present
as a few molecules per eukaryotic cell. A recently
discovered archea species has a volume in the atto-
liter (10−18 liter) range5, and signaling proteins in
this species are likely to be present in amounts in
the 100 molecules/cell range or lower. In all species,
DNA exists as one or two copies and there are a
finite number of promoter and repressor sites on the
DNA where regulatory proteins bind and influence
the transcription process. Several experimental
studies involving tracking of concentrations at a
single-cell level, whether of a particular mRNA or
protein species6, or a large number of species at
the genome/proteome scale7 have shown that the
transcription process is stochastic. Experimental
and theoretical investigations of stochastic gene
expression have been recently reviewed8,9.

An example of a complex biological process
involving a large number of interacting cells is the
development of a mature organism from a single
zygote. In the worm Caenorhabditis elegans, which
is a model organism used for studying development,
the lineage of each of the 959 cells from the zygote
has been identified. Detailed connection maps of
each of the 302 neurons in the nervous system10

have been meticulously constructed. However,
understanding of the functioning of the nervous
system is still unclear. Ageing of these cells is found
to be stochastic11. In the developing retinal of the fly
Drosophila, it has been shown that cell fate decisions
are stochastic processes that are biased by signal
transduction events12,13. It has been proposed that
the concentration gradients of morphogens serve
to control the inherent stochastic behavior of RNA
regulatory networks14. During the development of
the mouse olfactory system, each sensory neuron
expresses only one of the approximately 1000
odorant receptor proteins. It has been proposed that
a stochastic expression process is responsible for
generating this one neuron-one odorant receptor
rule15.

Just as stochasticity in protein production is
believed to generate diversity during development,
it has also been shown to be the mechanism
responsible for imparting different phenotypes to
genetically identical individuals in a population.

Fluctuations in DNA binding have been shown
to be a potential mechanism that accounts for
the induction of competence in a certain fraction
of genetically identical bacterial cells16,17. This
diversity is thought to be the beneficial in a varying
environment18. Stochastic formalisms have also
been used to model interactions between two
populations19,20. Interactions between bacteria
have been studied in biofilms, and it has been
shown that there is heterogeneity in the phenotypes
of neighboring cells21,22. Stochastic sources of
variation in biofilms have been recently reviewed23.

In addition to exploring the structure and
function of existing regulatory mechanisms,
scientists and engineers have developed artificial
‘circuits’ that can be introduced into a suitable
host. Several reviews on the ethical and practical
aspects of the field have been published24,25. These
synthetic biology circuits range from simple three
or four gene constructs26–28 to an entire synthetic
genome29. For small constructs, functioning in vivo
has been reported as being consistent with stochastic
models corresponding to the designed construct26.

Modeling approaches
Different modeling approaches for biological
processes have been reviewed in several
textbooks30–35. Here, I briefly discuss the various
approaches in order to place discrete stochastic
models in the context of other modeling methods.

A class of modeling approaches that is
implicitly adopted for simple systems and can be
formalized for larger systems is a non-quantitative
graphical36 or database approach. Such models, and
various software implementations, are reviewed
elsewhere4,37,38. These models are an essential
starting point in analyzing biological systems.
Modeling approaches for analyzing biological
processes may be divided into four categories4

as shown in Table 1 depending on whether they
model discrete/continuous states and whether the
model output is a defined deterministic value or a
probability distribution. In this survey, one element
of the second row of Table 1, viz. discrete stochastic
modeling approaches, are reviewed, with particular
emphasis on the Chemical Master Equation (CME)
based models. The review by de Jong39 discusses
in detail most of the formalisms that are briefly
mentioned here. Other reviews have a narrower
focus on modeling of metabolic pathways40, cell
biology41,42 developmental biology43, or gene
networks44–46.

For most modeling applications in biology,
the most appropriate formalism is a continuous
deterministic description of the system using mass-
action kinetics47. For each system component,
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Table 1: Classification of mathematical modeling approaches

Continuous Discrete

Deterministic ODE models
PDE models

Boolean models
Petri nets

Stochastic Master equation approximations
(Fokker-Planck, SDE)
Dynamic Bayesian models

Master Equation approaches
Probabilistic Boolean models
Dynamic (discrete) Bayesian

a mass balance between the rates of increase
and decrease in concentration due to production,
degradation and other reactions gives the rate
of change of component concentration. This
set of ordinary or partial differential equations
(ODE or PDE) for all system components can be
solved to predict system behavior. The principal
shortcoming of the continuous deterministic
modeling approach is the requirement for rate
parameters. However the rich body of dynamical
systems work in mathematics allows analysis
of system behavior, such as existence of two
steady states48, independent of knowledge of
exact parameters. Several reviews42,49 present
examples where such mathematical models have
been successfully used to further the understanding
of specific biological systems. In addition to the
dynamics, the steady state behavior of biological
systems can be explored through these models.
The largest class of such steady state models are
metabolic flux models, recently reviewed by Llaneras
and Pico50. A steady-state analysis can also be used
to estimate the range of behaviors exhibited by
the biological system51,52. Steady state analysis
methods have been used to study the behavior
of gene regulatory networks53.

Ordinary and partial differential equations
lead to predictions of system behavior that is
deterministic. Continuous stochastic models have
been developed for predicting the observed variance
in a system. These are almost always in the
form of an additive (weighted) noise term to
the deterministic ODE or PDE formulation. The
form of the additive noise term ranges from
variance-weighted white noise54, to rigorously
derived weighted noise55 based on an approximation
of the CME. In all the cases, the individual
trajectories are (numerically) evaluated and several
such trajectories are used to calculate the moments
of the distribution. For nonlinear reaction kinetics,
continuous stochastic models do not guarantee that
the individual trajectories are exact representations
of the actual trajectories expected from the CME
solution. The advantage of such methods is the
large reduction in computational requirements. The
steady state distributions can be estimated using

continuous stochastic modeling methods. In a linear
chain of reactants with deterministic transitions
but with a stochastically varying input, it can be
shown that the variance of the flux decreases with
chain length at steady state56. Bhat and Venkatesh57

have used a deterministic steady state model to
explore the effect of having a distribution of one of
more pathway components, and used this analysis
to explain certain experimental observations of the
gal operon behavior.

Although a continuous description is adequate
when the number of molecules is large, systems with
discrete phenotypes or small number of molecules
are accurately represented by discrete-state models.
The largest class of discrete deterministic models is
Boolean models, where each variable is assumed
to be capable of taking values from a finite
number of states. The transitions between these
states are governed by a set of rules. Circuits are
constructed that link each network constituent
to its input constituents through these rules. To
completely specify the model, the initial state
and the updating strategy have to be specified.
Typically, a range of initial states is used for
simulation and the trajectory and final state is
simulated. In synchronous updating, the states of
each variable are updated simultaneously based on
the current values of the (input) states. However,
actual interactions occur at different timescales, e.g.,
binding events probably occur at much faster rates
than transcription events58, and so asynchronous
updating should be used. It has been shown that
not only the dynamics, but core network properties
such as the number of attractors changes when the
updating scheme is changed59,60. As such, the utility
of a Boolean dynamics approach for prediction
of system behavior is unclear. As quantitative rate
information is not needed, these models are suitable
for modeling data-poor situations, or for exploring
the robustness of biological systems to changes in
the kinetic rate behavior61–63. Boolean models have
been extended to allow multiple values for each
variable to represent multiple gene activity levels64

or receptor protein levels65.
Another modeling formalism that is capable

of handling multi-valued variables is the Petri-
net approach. This is a directed graph method
consisting of place nodes (reactants) and transit
nodes (reactions) connected with weighted arcs
(rate constant). Each place node has a certain
number of tokens (molecules). In the simplest
situation, a reaction always occurs if sufficient tokens
are present in the input place nodes, making it a
discrete deterministic system. If the weights are
based on the reaction rate constant and transitions
are probabilistic, the approach is exactly equivalent
to the Chemical Master Equation approach.
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Modeling chemical reactions as discrete stochastic
processes
In order to fully capture heterogeneity of states as
well as their discrete nature, biological processes
are modeled as discrete stochastic systems. The
Chemical Master Equation (CME) is the equation
that defines the probability that the system is in a
particular state at a particular time, and describes
the rate of change of this probability with time as a
function of the various reaction rates and system
probabilities. As such it is a fundamental description
of the system, and the stochastic behavior of the
system can be completely understood if the CME
can be accurately solved. The rest of this article will
cover in detail CME based modeling of chemical
reaction systems. This modeling approach is the
predominant method used for discrete stochastic
analysis. A few researchers use other methods
to model discrete stochastic systems. A Bayesian
approach considers the whole system (model
equations, initial conditions, and parameters) in
a probabilisitic sense. One example of the use of
this approach with discrete states to model vulva
development in the worm C elegans is presented
by Sun and Hong66. Another modeling method is
the stochastic Paun systems approach67 which is a
modification of P-systems modeling68 that considers
nested sets (compartments) containing objects
(species, or other compartments). The change in
set composition is specified using sets of rules
representing chemical changes or transport. Akin to
the Boolean rule problem, there are several ways of
defining the sequence in which the rules are applied.
If correctly defined based on the reaction rates,
the simulation can be shown to be similar to the
Gillespie first-reaction method discussed later. These
and other discrete stochastic modeling methods
such as stochastic Petri nets69, which are not widely
used and whose theoretical underpinnings have not
been as exhaustively analyzed, will not be discussed
further. Several reviews70,71 address one or multiple
aspects of the CME-based modeling approaches
discussed here, and the reader is referred to those
for more details on specific aspects.

The Chemical Master Equation
The most exact molecule-level model of chemical
kinetics is the microscopic dynamics model
that tracks the behavior of individual molecules
based on the forces acting upon them, their
collisions with other particles and solvent, and the
chemical transformations resulting from some such
collisions. However, for even a small number of
reacting molecules, this approach is computationally
intractable, and it is convenient to think about
probabilities of transitions, assuming that the system

is well-mixed and the number of reactive collisions
is low.

Given a certain number of chemical
species capable of undergoing a certain set of
transformations, it is possible to define a probability
that the system is at a particular state (i.e. has a
particular number of molecules of each species) at
a certain time. After an infinitesimal amount of
time has passed, so small that at most one reaction
can occur, the probability that the system is at a
particular state is given by (i) the probability that the
system was in one of the precursor states that lead to
this state via a particular reaction, and the specified
reaction does occur; and (ii) the probability that
the system was in the same state and no reaction
occurred. This ‘probability balance equation’ can
be re-written in differential form as the chemical
master equation (CME). The relationship between
the continuous deterministic form and the CME
has been reviewed earlier70–73. The CME describing
the change in the probability P(n;t) that the system
is in a state n at time t is given by

dP(n;t)

dt
=

∑

m1∈S(n)

�(m1 → n)P(m1;t)

−
∑

m2∈�(n)

�(n → m2)P(n;t)

where S(n) and �(n) are the sets of progenitor and
successor states of the state n, i.e., their members are
the states that are one reaction away from the state
characterized by n ≡ (n1,n2, . . .nNS ) molecules of
species M1,M2, . . . ,MNS respectively. The first term
represents the probability of situation (i), i.e. system
being in a precursor state and one reaction occurring
while the second term represents the probability of
situation (ii), i.e. no reaction. This CME completely
defines the distribution of spatially homogeneous
systems. For spatially distributed systems, the CME
can be extended to include changes in state due to
physical transitions or transport processes73.

Solving for the infinite number of possible states
for ‘open’ systems with species introduced into
the system, or species that are ‘born’, or the large
but finite number of states for ‘closed’ systems
where the total mass of the system does not change,
leads to the detailed probability distributions for
all species at all times. However, solving the CME
is not possible even for relatively small systems
as the number of possible states, and hence the
number of coupled differential equations, is very
large. For example, a reaction system of 3 reactants
each having 0–9 molecules will result in a system
of 1000 coupled differential equations. As such,
for most systems being studied, it is impractical
to evaluate the probability distribution through a
direct integration of the CME. Hence analytical and
numerical or computational techniques are used to
estimate the distribution of all the chemical species
as a function of time.
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Analytical methods for calculating the probability
distribution
There is a long history of theoretical approaches
for analyzing the CME by calculating the dynamics
of the moments of the distribution of each
species in the chemical reaction reaction network.
In 1940, Delbruck74 studied a one-component
autocatalytic system and derived an expression for
the distribution of the number of molecules for
the single species. In 1948, Kendall75 formulated a
CME for one species undergoing birth (autocatalytic
production) and death (first-order degradation). In
1949, Siegert76 derived a probability distribution
for the momentum of a gas as a function
of time, and derived a general model which
can be used to represent a system of first-
order conversion reactions without formation
or annihilation, i.e. where the total mass of the
system is conserved. This result was re-derived
in the context of a chemical reaction network
more than a decade later by Krieger and Gans77.
This was the start of a prolific decade of work on
analytical studies of the CME for specific reaction
systems. Bartholomay78,79 showed how to relate
transition rate constants to observed first-order
rate constants. It was shown that a multinomial
distribution characterizes the steady-state80 as well
as the dynamics77 of a first-order closed system
undergoing a transition from one equilibrium
situation to another. Other work on specific
chemical reaction systems including for instance
those with reversible kinetics81,82, bacteriophage
kinetics83, cyclic ternary conversions84 analyzed
the moments of the distribution of the reacting
species using the generating-function approach for
analyzing the CME.

In the generating-function approach85,86,
through an algebraic manipulation, the CME is
recast as a system of equations for the moments
(or mean, variance, kurtosis, skew, etc) of the
distribution. This has been a very profitable line
of analysis and is still used for investigating the
time-dependent behavior of the moments of the
distribution. For systems where the reactions or
transitions are first-order, the resulting set of
equations is tractable in the sense that the equation
for each moment only includes terms for lower
moments, and so the equations can be sequentially
solved. Analytical expressions for the dynamics
of the first two moments have been derived for a
closed system of conversion reactions77 and specific
systems at steady state87 as well as general72 systems
of transient first-order reactions that may be a
combination of conversion and catalytic reactions
that include production and degradation processes.
Recently expressions for the complete probability

distribution for first-order conversion reactions
have been derived88.

Analysis of the dynamics of the probability
distribution of species undergoing second-order
reactions is not as tractable. Even for simple second-
order reactions, the equations for the moments
are coupled, so that for instance the equation
for the mean includes terms for the variance, the
equation for the variance includes terms for the
third moment, and so on. Thus an approximation
has to be adopted in order to avoid a situation
requiring the simultaneous evaluation of an infinite
set of equations. This approximation is called
the “moment closure” approximation, and is used
for analyzing the stochastic behavior of systems
undergoing higher-order reactions. For instance,
Kepler and Elston89 use an approximation for the
third moment to calculate the mean and variance
for a bimolecular reaction.

For general second order systems, Michaelis-
Menten kinetics has been used as a ‘model system’
for analyzing the stochastic dynamics. Because of
the moment closure problem discussed earlier, exact
solutions without any assumptions are available
only for systems that can be reduced to one variable,
or in general closed systems with a small number
of reactions and species. Several such solutions
are available, from initial work considering one
substrate or enzyme molecule90, or the initial
reaction rate where product formation is not
considered91, or restricting the analysis to steady
state92; to more recent results on generic reversible
second order93 and catalytic94 reactions. However,
analytical solutions for systems of second order
reactions, or second-order reactions in open systems
(with production and degradation of one or more
species) are yet not available.

Computational estimation of the probability
distribution
It is clear that there are significant constraints in
obtaining analytical expressions for the probability
distributions of species in a chemical reaction
network for most systems with second-order or
more complex reactions. Several methods have
been devised for using the Master Equation
to numerically estimate the evolution of the
distributions of the number of molecules of each
species. Most methods assume that the initial state
of the system is completely defined, and estimate
the distribution during evolution of the system to a
steady state. These methods may be classified into
two groups: those that are exact representations of
the CME, i.e. individual trajectories calculated using
these methods are consistent with the predicted
behavior based on the CME; and approximate
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methods that sacrifice this individual trajectory
accuracy for achieving reasonable predictions about
the moments at a lower computational cost.

The first exact simulation method was proposed
by Dan Gillespie95 in 1977—long before the
computational power to carry out simulations
for systems of modest size was available. In his
‘direct reaction’ method, two random numbers are
used to pick the time of the next reaction and the
identity of that reaction respectively. These values
are chosen from distributions of times and reaction
identities that are functions of the reaction rate
constants, current number of molecules of each
species, and the system volume. A comprehensive
physical justification of the assumptions involved
regarding the nature of the distributions has also
been presented96. Most current reports on the
numerical evaluation of the probability distribution
use this method (this paper has been cited over 950
times since 1996) for calculating sample trajectories
and hence the moments. Another method called the
first-reaction method97 is also an exact simulation
method, but it involves drawing as many random
numbers at each time as the number of reactions,
and so is computationally inferior to the direct
method when the number of reactions is large.

The main disadvantage of the method is that
time is not discretized, and hence there is no a
priori bound on the number of steps taken by a
particular realization. In particular, in reaction
systems where there are fast reactions possibly
at pseudo-equilibrium, and slower reactions that
influence system response at larger time scales,
the bulk of the computing time is spent in
calculating the fast transitions, leading to the use of
very small time increments. As such, computing
the10,000 or more realizations that are needed to
calculate accurate moments is not feasible with
computational resources that are typically available.
Therefore several algorithms have been developed
to reduce the computing time. These methods
are typically more complicated to implement, but
lead to significant decreases in the computing
time requirement, especially for large systems or
stiff systems. Among such exact methods are the
next reaction method by Gibson and Bruck98,
the optimized direct method99, the logarithmic
direct method100, sorting direct method101, and
the fast kinetic Monte Carlo method102. Of these,
the next reaction method seems to be the most
popular. A comparison of the various methods has
been given in the recent review by Gillespie70. It
should be noted that all these methods represent
improvements in the software or implementation,
and not a conceptual advance in the form of a new
algorithm.

Irrespective of the speed-up procedure adopted,
for the simulation scheme to be exact, it has
to account for every reaction event individually.
This places a natural bound on the decrease
in the computation time that is achievable by
exact simulation methods. Approximate simulation
methods achieve this decrease through an
approximation that results in individual trajectories
no longer being exactly according to the CME.
In the tau-leaping method103, a finite increment
in time (tau) is used. It is assumed that in
this time none of the propensity functions
changes its value significantly, and yet many
reactions occur in this period. Several extensions
to this method have been presented that seek
to avoid some of the problems associated while
implementing this method, including negative
species concentrations104,105. An analysis of the
basic method and its recent improvements has been
given by Li et al 106.

Several approximate methods107–110 achieve
a decrease in computational time by switching
between continuous deterministic calculations and
discrete stochastic computations. Such ‘hybrid’
methods use rules to determine the switching
between the two regimes, and have been shown
to achieve impressive computational efficiency for
specific systems. There are also methods111 that
switch between the tau-leap method and an exact
method such as the next reaction method. However
it is important to note that these algorithms cannot
be guaranteed to provide accurate solutions for a
general reaction network, and so should be used
with caution and at least some of the results cross-
checked using an exact method.

Software implementations of most of these exact
and approximate methods are available. Some of the
more popular packages that are available include
StochKit106, Kinetikit110, BioNetS112, STOCKS113,
and Dizzy114. Several other packages are also
available, though these five should be adequate
for most non-specialized purposes.

Future directions
The convergence of increased computing power
and quantitative high-throughput biological assays
make this a unique period in terms of feasibility
of computational analysis of biological systems.
The field of stochastic analysis, despite the rich
mathematical heritage, is as yet a young and evolving
one in the context of stochastic analysis of biological
systems. In this section, some of the areas that are
not fully explored are presented as an example of
possibly fruitful and relevant lines of research in
this exciting field.

Given the many possible frameworks for
modeling biological systems (Table 1), it is
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important to define the differences in predictions
of the different methods for the same system
with equivalent parameter values. There has been
a great deal of literature on the differences in
the predictions of continuous deterministic and
discrete stochastic approaches. It is generally
expected that the stochastic approach will be
consistent in the mean with the deterministic
approach, i.e. the mean concentrations predicted
by the stochastic model will exactly match the
deterministic model predictions. However, it has
been theoretically115–117 and computationally20,118

shown that this consistency is not observed for
certain systems. In fact, there is a whole class of
systems (with reaction kinetics such that there is
an absorbing or death state) where the predictions
of the mean given by the stochastic model can
be proved to be different from the prediction of
the corresponding deterministic model119. For
these systems, the only stable steady state for the
stochastic model is the absorbing state, which may
be inaccessible to the deterministic model due to
its unstable nature. The calculation of extinction
times as a function of system parameters and initial
state conditions is an open problem that will serve
to quantify the expected differences in the mean for
particular systems.

It is important to include all sources of
heterogeneity (fluctuations in environmental
conditions, fluctuations due to unequal partitioning,
and inherent fluctuations due to stochastic
reaction kinetics) while analyzing biological
systems. There have been a few efforts at
identifying the contribution to heterogeneity due
to inherent stochastic kinetics and fluctuations
in the environment120–122. Population balance
modeling123 is a well-established method that
models the cell heterogeneity arising from unequal
partitioning of cellular contents during cell division.
Recently a framework for incorporating stochastic
kinetics in the population balance modeling
framework has been developed124,125, which will
account for the contributions of inherent stochastic
kinetics and unequal partitioning to the overall
heterogeneity. A modeling framework that includes
all three sources of heterogeneity has not yet been
developed.

Several problems in developmental biology
involve patterning resulting from transport of
morphogens and their reactions at various locations.
This is deterministically modeled using a system of
partial differential equations. However, variations
in the concentration gradient require the use
of a stochastic modeling approach to investigate
the effect of noise on the observed pattern. The
intuitive approach126 is to divide the space into

compartments and replicate the reactions in each
compartment. Transport ‘reactions’ account for
movement of species between compartments, with
the transport reaction rate constant being a function
of the species diffusivity. This results in coupling
of the reactions in individual compartments, and
can be analyzed as one large system of stochastic
reactions using any of the methods mentioned
earlier. This approach has also been implemented
in a software package called SmartCell127. If all the
reactions are first-order, a theoretical analysis is also
possible72. There have been several approaches that
extend the Stundzia/Lumsden algorithm128 or use
Smoluchowski models for reaction and diffusion129.
However, there are unresolved issues including
definition of an appropriate compartment size,
and computational cost that will result from the
compartment size being defined on the basis of
the mean free path of the fastest-diffusing species.
Efficient and accurate simulation of stochastic
reaction-diffusion processes remains an open
problem.

The stochastic behaviors of several specific
systems have been analyzed through numerical
simulations. However it is seen that a generic
understanding of the effect of model components
(number of components in a chain, control motifs)
on stochasticity is not yet fully understood, though
there have been some reports on the positive effects
of negative feedback loops28 and the effects of
positive and negative feedback loops130 on the
noisiness of the controlled species. At a simpler level,
the sensitivity of simulation results to parameter
values is not routinely reported, though there have
been some attempts to provide a framework for
such an analysis131. The problem in using the results
of these simulations is that they seem to be very
specific to the system that is simulated. One of the
more popular systems is the gene transcription
control network58. There are several models that
have been used to understand the contributions of
constituent steps to the noisiness of the regulated
gene transcript, or protein numbers. The Kierzak
model132 and another from the Collins group133

conclude that the transcription step, where mRNA
is formed from the DNA template, is the source of
most of the noise observed in protein numbers. This
conclusion is different from that arising from studies
conducted by the van Oudenaarden group87,134,
which states that the translation step, where mRNA
is converted to protein, is the dominant source of
the noise, with only a weak positive correlation
between the transcription efficiency and the noise.
Both sets of studies are supported by experimental
evidence supporting the conclusions. It should
be noted that different measures of the noisiness

Journal of the Indian Institute of Science VOL 88:1 Jan–Mar 2008 journal.library.iisc.ernet.in 51



REVIEW Chetan Gadgil

(ratio of standard deviation to mean, and ratio of
variance to mean, respectively) are adopted by the
two groups, and this may influence the qualitative
nature of the results. The point is that despite the
fact that gene transcription is the best-studied
system in terms of stochastic dynamics, there is
no definitive model, or a comprehensive model that
is able to explain the differing results in terms of the
model structure, noise measure and the parameter
values. A comparative analysis of different modeling
approaches is also lacking.

The question of the “right” modeling approach,
at least for biological systems, is defined by the
advantages of a particular approach in generating
additional insights about the system. Ultimately, as
has been recognized since the Gillespie method
was developed, the choice of the method is
governed by the following question73: “Given a
particular system of chemical reactions, what level
of microscopic detail is actually required to explain
the macroscopic properties of interest, and how
may the desired information be obtained from a
theoretical formulation of the chemical kinetics at
the required level?”

There is a general consensus in several biology
subareas, e.g. developmental biology1 and cell
biology49, that quantitative models coupled with
experiments are essential for explaining system
behavior. The focus so far has been on deterministic
models. As experiments get more precise, there
will be a need for models that can describe the
variation and not just the average behavior. Besides,
in several systems, stochasticity will also affect
the mean behavior. Therefore it is necessary for
experimentalists to be familiar with stochastic
modeling techniques, and for modelers to adopt
these tools routinely in order to simulate biological
systems. Both these goals are challenging, but
essential for a better understanding of complex
biological systems.
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