A CHEMICAL AND MINERALOGICAL STUDY OF THE
 CELESTITE FROM THE PHOSPHATIC NODULES OF
 THE CRETACEOUS ROCKS OF TRICHY*

By N Jayar aman
Introduction -While working on the phosphatic nodules from the cretaceous rocks of Trichy, the author noticed the presence of a crystalline white mineral which filled up the septaian cracks in the nodules This mineral was also found to occur as fan-like radiating agge egates cven modules which were fice fiom the septarian ciacks On examunation it was identified to be celestite

The occunence of celestite in the cictaceous nocks of Tuchinopoly was first repoited by Ramaswami Sivan ${ }^{1}$ Except for the following remark with a photogiaph, which is repioduced in this paper for the sake of reference, he gives no fuither detalls He says, "Crystalline gypsum in flakes is abundant and characteristic of the locality, and celestine, chalk and belemnutes arc also found associated with the phosphatic nodules" Though Sivan remarks that celestme occurs in association with the phosphatic nodules, he does not, however, mention that it occurs within the nodules, and his photograph also indicates only lumps of celestite and not the mineral occuring in the nodule 1iself

Even though celestite is present in the nodules in farly large quantities it has been very often wiongly considered as gypsum Blanford ${ }^{2}$ of the Geological Survey of India on superficial exammation considered the minetal to be selemte and he says that it occurs as nucleit and as mfiltation-matter filling up ciacks in the nodules. Rama Rao in his paper on the phosphatic nodules from Utatur also regarded this mineral as gypsum Contiany to these findings, it can now be said that gypsum is found only occasionally in the body of the nodules, it is more often met with in the calcaneous than in the phosphatic nodules Occasionally, gypsum is present in the nodules filling up the wide cracks

 surfiee coverme on the nuter bled of the moduk

 tramparent to tamsluscent with a vitienms to subvitreous lustre. It albo occurs is seattered grams and bladen or \&roups of 1 adiating crystals yread out in a fan-like manes thoughout the entic mash of the
 it is found concentrated in the centre of the nodulen, sugresting so to
 strontrum minltration product appean to have iephaced the orignal nuclen of the phopphatic modulo The celestik is amost completely absent an nodulen of very low phopplow ens content Thus muneral in found asbocated with gybum, aldete, dolomite, quats and also an yellownh-hrown muerat, collophanke or komuchate on a phophate
 now in progrese The typuall sepharian type of notales hold only a very smatl cunutity of the moned al

 mases and shapeless gans When exammed marke the muthsoupe this celatite presented fou sets if cleavages in whin thase were perfect and the tounth was rather mpertest Two of these thee perfect sets were tomal to tee parallel to the panm lace and these were found to sut extis othe it in angle of 76° Tha thand me was parallel to. (001) and the fourth was parallel to b (010 (1) binden the merom
 vellow mmeral an mulusoms, cether matated of an anmps Theere grams
 In many cases spherical malushan of ghartan the celestate were tound wered hy a thell of thin hrowwinh-yellow mumal

> (irystallography - Thouth perfectly devehoped watath ine
not usually met with, a few good crystals were obtaned from a small cavity in a nodule These ciystals were of three definte habits which were as follows -
(a) Poorly developed ciystals which weic tabulat paralled to (011) and elongated parallel to the ciystallogiaphic axis a Five forms are obseived on these crystals and they are as follows - m (110), $b(010), c(001), o(011)$ and d (102) These crystals vary in length hom 1 mm to nearly 12 mm and in thickness from 05 mm to 1 mm (Fig 1) Photograph 1, Fig 6

The mterfactal angles are as follows $110 \wedge 110=75^{\circ} 56^{\prime}, \quad 110 \wedge 010=51^{\circ} 55^{\prime}, \quad 001 \wedge 011=52^{\circ}, \quad 010 \wedge 011=$ $38^{\circ}, 001 \wedge 102=39^{\circ} 20^{\prime}, 102 \wedge 102=78^{\circ} 40^{\prime}$

Axal 1atio $=a \quad b \quad c=07803 \quad 112799$
Refiactive incices (sodium light) $u=16219$,

$$
\begin{aligned}
& \beta=16239 \text { and } \gamma=1.6311 \\
& \gamma-a=00092
\end{aligned}
$$

Specific glavity (powde1) $=39853$.
Very often the values for the interfacial angles of these crystals were found to valy from crystal to crystal So for the purpose of calculating the axial iatio, ten measuements weic made on different uystals and the average value wis taken As these crystals were of the same chemical composition this variation in the interfacial angles must be due to some abnomality in the crystal structure as pointed out by Thaddeefl' Because, these ciystals always have a tendency to form paallel giowths oir they are arranged in a fan-like manner, the axis of elongation of each ciystal, viz, the a ciystallographic axis forms an angle of 2° to 5° with that of the adjacent crystal Thaddeeff has discussed in detail the vauations in the crystal angles of celestrte and he comes to the conclusion that crybtals of celestite are build up of smaller elements not exactly in a parallel position but in a fan-like arrangement about a particular zone "xis
(b) Very poorly developed crystals, tabulaı parallel to (001) and equally developed in the darections of a and b crystallographic axes These ciystals vay in thukness fiom very thin plates to about 5 mm ,
the kness They an very poon on facs and the puchomment form whe basal pmand Spectic grovity R.978.5 (Ihotogtuht, Fis (i)
(c) Well-developed cryshals with a pabmatu hathit daloned
 ment of only two promment forms, vie, the prisul (110) wim the bulive dome (011) (Fig 2), Only in afew wes weate a pan devolopment of (102) and (010) noticed. The aystals vary in kneth fom 1 man fo
 Fig 6).

The men factal angles are is follown -

$\beta-1(6238, \gamma-1$ ($8: 3$
$-a=00000$
Specifu giavity $=3.9811$.

Fig 1

Hif, 4

Celentite ciystalh

Basal cleavage flakes of these ciystals when exammed undet the micioscope show an clongated hexagonal outline, the longer axis of which concides with the a axis and this is the diection of slow vibiation Z As common in celestrte, the optic axial plane was found to be parallel to (010), the Bx_{0} beng perpendiculan to (001) and Bx_{a} parallel to the crystallographic axis a

A thoooughly puiffied sample of the celestite was subjected to chemical analysis to determine the exact proportions of stiontum, bdium and calcium sulphates present theren

Preparation of the sample fon exammatzon - The phosphatic nodules contaning a lange quantity of celestre weie roughly ciushed and the small lumps of this miseral were picked out These lumps were then treated with dilute hot hydrochlonc acid and then washed with cistilled water It was then dred at 110° till free from moisture At thus stage a small poition of thus mateual was taken out and chemically cualysed The analysis showed 94 per cent of stoontium sulphate, 3 pcr cent of the sulphates of calcuum and bartum and 3 por cent of quante The result of this prelmmany study was fust reported by me and Dr K R Kushnaswamı m" Curient Science," (December 1939) The remanng portion of the material was subpected to heavy liquid (methylene odicle) separation and the concentiate so obtaned was exammed under a low power microscope Traces of mpurities, if present, were removed by prcking The final concentidie was then chemically analysed as follows

Method of analysis - As the mmenal was fornnd to be msoluble in all acids, fusson with sodum carbonate was resorted to The fused mass was digested with hot water and filtered and the residue washed with hot cllute sodum carbonate solution Silica was determmed both in the filtrate and in the rendue after acidifyng with hydrochlonc acid and evaporating the acid solutions to dryness Sulphur as SO_{i} was determined in the filtiate by precipitating it as banum sulphate Phosphorus was determmed in a separate sample by the phosphomolybdate method

 dessolved agan on hydrochlone whl and the whinnt war then tomend
 known amounts of arom.

The tiltrate fion the ron premptaton mow hedd all the cham, strontmon and barmon and the sepadion of these these metals aftered some diffaculty Corred values wese mot ahtaned when the collemm and stiontiom were determmed by the wxate method de weommended by Eullebrand ${ }^{5}$ Secondly, after sepaatmas the bramu at the mital stage by precipatating it as chromate, the stomentum and rakum were at finst precepitated as carbonales mad then conversed moto metrater The mtrates were then treated with 1 I ether alcohol muxture and hiltered Calcium was detemmed in the fillate and strontum the the moluble portion This method also was not lound to be matibitictons So fandly a reversed form of thas method was dopted and it mave relable results

The methodis as follows - The filtate ohtaned alter the mon precoptation was evaporated to diyness and the dmmonmm salle were completely expelled by gation The rossdue left after tha was taken in chlute nilice acid and the solution was agan evaponated to diynuse in a small glass dush The nitrates thus obtaned wene diud lon about an hom at a temperature of $139^{\circ} \mathrm{C}$ and allowed to (00) They were then digested thee or four tames with small quatitues of win ethe akohe mixture (1 I mixture of pure diy ether and aboolute dhohol) and then filtered. The filtrate was evaporated to diyness and the diy rastue war taken m dilute hydrochloric acid and the calcum present in it was preciputated as oxalate and determmed as usual The mobluble resulue after the ether alcohol treatment contamed both strontum und barum and these were separated by precipiating the bainm an chomate in acetic acid solution ${ }^{\text {b }}$ The filtrate fiom the banum chromate preciprtation was evaporated to a small volume and the strontum present m it was precipitated as SrSO_{4} observing the usual precautions.

Tabla I
The chanacal composition of the colestate

Oxides	Per cent	Mol Proportions	Percentage composition of the various components
SiO_{2}	032		
$\mathrm{Fe}_{2} \mathrm{O}$,	015		
CaO	046	$00084\}^{00040}$	$\mathrm{CaSO}_{\mathbf{1}}=060$
BaO	078	00051	$\mathrm{BaSO}_{4}=119$
SiO_{1}	5467	05285	$\mathrm{SrSO}_{1}=9701$
SO_{3}	4304	0.5380	
$\mathrm{P}_{2} \mathrm{O}_{5}$	trace		
Loss	012		
Total	9954		

The results given in table I show clearly that the mineral is sufficiently pure, the total mount of mpurties beng very low If the mineral composition is calculated from the chemical analysis talang the SO , found as the bass, then all the SiO , and BaO and part of the CaO are accounted for as boing present as sulphates. The whole of the BaO is calculated is BaSO_{1}, because, this would be more in keeping with the mode of occunence of this mmeral than it the whole of the CaO is calculated as CaSO_{1} and part of BaO left out The presence of BaSO_{4} in the mincral would be mone in keeping with the crystallographic data As this mmeral occu1s in a calcateous nodule which is mone on less fiee from banm, it is reasonable to assume calcium rather than banum ds du mpunty

Orgin - Nodules holdmg this muneral when broken open, show that the vens of this mmenal are restricted to only the black meteror portion of the nodules and do not extend to the light colouted outer shell The outer shell of the nodule, which is mostly made up of

 core of the nodule is completely wat out from the unt with fin this connection, it is minctostang to note that the whetite ow urs oulv in nodules where the phosphate content is hagh and the nowhle is dath Laght coloured calcareous nodules de ftee hom cotentule fouther, the celestate occurs not only in the septatian and othey itham chath hat also occurs interlammated with the mibstance of the notuk

The above fundings melicate that the celestite munt have formed ether smultaneously with the phosphates under the satue whelduns or subsequent to the Comation of the phosphater As watarentm motules with small cones of calcum phosphate de tomad in larige numbers in the same locality, it can be assumed that the nothles mesmalls formed were strictly calcareous $\left(\mathrm{CaCO}_{i}\right)$ ad that they werc hater iephaced by calcium phosphate This proces of ef phacement must have prouerded vety slowly and was manly confaned to two defmes stuses. The hast stage involved the inflitation of the phonhmon solutem mbe the boxly of the calcareous nodule and the secomel shae mvolved the hambereme of this phesphorus towath the core of the moclule Stomtum wnen pound in solution mast have entered the modales along with the phosphatic matter and got accumalated withan ith borls lated it crystallised as the sulphate celestate ether me the subtame of the nodule or nedssolved and redeponated in the septanan wahe

The stiontum requated for this must have beron demed from the surnoundmes aca whel is tather whe the metal. Adophag Dinger's ${ }^{7}$ vew, it can be suggested that the origm of eeleshte in cansed by the entry of strontum an solutan wito the norlak, pobobly an $\mathrm{Si}\left(\mathrm{IXCO}_{3}\right)$, from whach it is preapotated as sulphate owng to metation with the gypsum already present withe nodule 'The assumpton in supported by the fact that whele the highly calcareoun molulen huve a hugh proportion of gypsum, the nodules ach in phosphonus are dhost entuely free from it and they hold mstend an amost equal yamity of colostale

Stummary-After careful exammation it was established that the white caystallune mmeral, which occurs wathen the booly of the

Her 1 some geolosicil spcemens of the lowility

 nududes thounde 14 syponen (11), celcotan (12) and belemnito (13)
phosphatic nodules，is celcslute and not gypsum or calcite as assumed by earleı workens

A crystallographic study of a few well developed ciystals is given and it is shown that these ciystals exlubit thiee definite habits

A chemical analysis of an average sample mvolving the cat eful separation of calcium，strontium and bauum by sutable methods was carred out and it shows 97 per cent of $\mathrm{SrSO}_{1}, 12$ per cent of BaSO_{4} and 06 per cent CaSO_{1}

Finally it is pointed out that the celestite is of secondary ongin and that the requisile strontrum is denved from the surrounding strata

In conclusion the author wishes to expiess his grateful thanks to Di K R Krishnaswamı，D sc，（London），Fic．，for his keen interest and constant encouragement throughout the course of this woik and also for much helptul caticism His thanks are also due to Sir C．V Raman，Kt．，FRS，NL，of the Physics Department of this Institute， for allowing him to use the varous optical mstiuments in his department

REFERENCES

1 Sivan，Mcm Dept Agn Ind Chem Sci．1，1924，7， 145
2 Blantodd，Mcm Geol Suro Ind，1862，4， 83
3 Runa Rao，Quat Gour Gcol Mu Met Soc Ind，1931，3，50
4 Thaddectl，Leats／Ki yst，1895，25， 38
5 Inilluband，Bull U S Geol Suti＇，1919，700，145
6．Teaclwell and Hall，Analytical Chemusty，Vol II，p99 and 94 （1935）
7 ＂Dingct，Chem Lide，1929，4， 167

PHOTOGRAPHS

Fig 1 －Photogiaph reproduced fiom Sivan＇s paper Specimen No 12 shows the lumps of colestins
Fig 2 －A phosphatic nodule cut actoss and polished showing the picsence of white celcsitite venns－－⿱十又
Fig i－A phosphatic nodule cut acioss showing a group of white radiating platy aggegates of celestrte－$-\frac{1}{1}$ natural swe
Fig 1 －Shows a smulat tadiding group of celestite ciystals as Fig 3，but the centie of cuytallisation is not a single point but it is a cuived line indi－ cating the cliftiug of the centie－－1 natural size
 mante sphereal gran, (hate ponts) of a lmowneh vallow manal
 patallel micols

 to $c(001)$
2 Ceystak elongated pathel to a dith and withome the de whpment of any face
3 Well developed ciyblals elongater pratled to the "thm, and almost equally de veloped alomer bad ast.

Fig 7 -A phosphatic noclule cut actoss slewing the (vpual extathen what and the umost complete absence of calestite

> Dequatment of Pure d Aphlad dhematry, Thatan Instumbe of Scomate, Baturalora'

