A GRAPHICAL TREATMENT OF THE SKIN EFFECT.

By Professor dlfred Hay, D. Sec.

The fact that an alternating current is not uniformly
distributed over the cross-section of a conductor has for along
time been well known to all electrical engineers, and the changes
in the resistance and self-inductance of a cylindrical conductor
arising from this cause hare formed the subject of several analyti-
ca investigations. The contributions of Clerk Maxwell, Oliver
Heaviside, lord Rayleigh, and Lord Kelvin to the solution of
this problem are well known to those interested in the subject,
and the formule and tabulated numerical results given by these
investigators have been frequently referred to by writers on
alternating currents. The most recent and thorough analytical
treatment of this problem we owe to Dr. Alexander Russell *
An elementary explanation of the general nature of the skin
effect has also been given ; but no attempt seems hitherto to have
been made to deal with the subject in a quantitative manner by a
purely elementary method. It is the olject of this paper to
develop such amethod. Aswill be seen, the method has the
great advantage of presenting to the mind in avery vivid manner
the purely physical aspect of the problem.

In what follows, we shall confine our attention to ey-
lindrical conductors so arranged that everything is symmetrical
ahout the axis of the conductor, the lines of magnetic induction
being represented by circles having their centres on the axis of
the conductor. Imagine a long, straight cylindrical conductor
surrounded by a coaxial infinitely thin shell of negligible resis-
tance lying infinitely close to the surface of the conductor but
insulated from it, and let an alternating current he sent through
the conductor, the surrounding shell forming the return path
for the current. We may term the quotient of the potential
difference by the current in such a circuit the “internal imped-
ance’’ of the conductor. This may beregarded as made up of
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the « effective resistance’’ of the conductor (=power dissipated
in conductor divided by square of current) and its "effective
reactance,” these three (nantities forming the well-known im-
pedance triangle. Since the reactance of the conductor in the
case under cousideration arises wholly from magnetic lines
within its substance, we may conveniently term the effective
reactance in this case the “internal reactance ”’ of the conductor

Suppose next that the surrounding shell forming the
return path for the current is made to ¢xpand, so that thereis a
considerable space formed between the outer surface of the c¢y-
lindrical conductor and the shell.  This space becomes filled with
magnetic lines and increases the reactance.  That portion of the
reactance which arises from such lines may be conveniently
termed the ¢ external reactance.”  Since everything remains
symmetrical about the axis, it is evident that the only effeet of
the external reactance 18 to add to the reactance component of
the impressed potential difference, the current distribution
within the conductor not being in any way affected. A similar
result will hold good if for the coaxial shell we substitute any
other form of return conductor, provided always that this return
conductor is sufficiently far from the cylindrical conductor to
prevent any appreciable disturbance of the symmetry of the in-
ternal magnetic field of the conductor. We are thus led to the
following result, on which the method about to be explained is

based :—

So long as the symmetry of the internal magneticfield of a
cylindrical conductor remains unaflected,changes in the mugnetic
flux external to the conductor have no effecton the currént
distribution.

Hence if we suppose our ¢ylindrigal conductor divided
into acentral cylindrical core and a number of coaxia shells
surrounding it, the removal of any number of shells from the
outside of the conductor will notin any way affect the law of
current distribution in the remaining or internal shells, since so
far as these shalls are concerned, the flux contributed by the shells
which have been removed is an external flux. Similarly, the
addition of any shellsto the outside of the conductor so as to
increase its diameter will leave the law of current distribution in
the originally existing shells unaltered.

Making use of this principle, we first approximately
determine the current distribution in the central core, and then
in the successive shells which we imagine to be built up around
the c¢oro, until the desired diameter of conductor is reached.



We begin by assuming a certain current density at the centre of
the conductor, and suppose that the current density in each
successive shedll increases at a uniform rate from its inner to its
outer surface.

In determining the current densities in the consecutive
shells we shall suppose the current density to be split up into
two compouents, which are in quadrature whith each other, one
of these—the a-component—being in phase with the current
density at the centre, and the other—tne y-component—in quad-
rature with it.

The details of the method will be best understood by
considering a numerical example.

Let the conductor be 1,000 metres long, and have a
resistivity at the working temperature of 1:8x107% ohm/cm.
cube. We shall assume the standard frequency of 50, and shall
suppose the conductor to be built up by gradually adding coaxial
shells around a central core of 1 mm, radius, the radial depth of
each shell being also 1 mrn.

Let usassume a current density of 10 amperes/sq. cm. at
the centre of the core. This gives for the resistance drop per
centimetrelength 1'8X107¢x10=1'8x107% volt, and for the
total drop along the 1,000 metres 18 volt. We provisionally
assume that the current density over the central core of 1 mm.
radius is uniform, so that the total current is 17X 0.12Xx10
=0.3142. The value of H at the surface of the core is thus
2x0°03142/0'1=0'6283, and since |l increases at a uniform rate
from the centre—where its value is zero—to the surface, the
mean value of H is 0 3142, and the flux linked with an infinitely
thin filament coincident with the axis of the core is 0-3142 x 104
lines. The reactance potential difference corresponding to this
flux is given by pX flux, where p=27 x frequency=314-2.
Thus the reactance potential difference for the axial lilament is—

814-2x 0-8142x 104X 10 8=0-00988 volt,

and this potential differenceis in quadrature with the current
density at the axis. Now, at the surface of the core, where there
is no internal reactance, the reactance component of the potential
difference will give rise to a current density in quadrature with
that at the axis. This current density is obtained by dividing
the potential gradient of the reactance potential difference by the
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resistivity. Thus y-component of current density at swrface of
core—

—0-00085 x 10 3/L'8X 10 F=00319,

The &-component being 10, we sce that the resultant current
density at tho surface is practically identieal with that nt fhe
axis, but that it is in advance of it as rezards phase by the angle
tan”‘o'{ig—@?-:(}“ 19, Assuming the y-component of the current
density to increase at a uniform rate from a zero value at
the axis to the valuc 0:0549 at the surface of the core, we find
for the total y-component of the current in the core the value
0-00115 ampere. LThis gives for the y-enmponent of H at the

‘ . "
surface é-x—q-g;olon--o:()'%%.

The above results may be tabulated as follows :—

z-vomponent of current density at axis=c," .~10 amperes,/sq. co.
y-component of current density at axis-=d, =0,

y-component of current density at surface=sd, =23 05 ).
z-component of magnetic force at surface -, —0r6243.
g-component of magnetic force at surface==H, -0 0023.
Total a-component of current in core==j, =31 42,

"Total y-component of current in core-=i, =0-001135.

Phase displacement of surface eurrent dengity—-/-0" 11",

We next place around our core a eoaxial shell of 1mm,
radial thickness, and procesl to detcemine the current densities
d. and dy at ifs outer surface, the current densitics at the inner
surface being identical with those at the outer surfuce of the core.
Since the current in the shell will give rise to additional magnetic
lines, it 1s evident that if the current in the core is to remain un-
altered a higher impressed potential difference inust now be pro-
vided, owing to the increased reactance of the axial filament.
The current distribution in the shell may be degermined as follows.

~ We provisionally assume that the rate of change of «,
remains unaltered-—i. e., equal to zero, so that we still have d .=
16 at the outer surface of the shell. The total z-component of
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the current is now ¢, =1257* Hence at the outer surluce of
the shell we have—

H,=2X01257/0'2=1257.

Nince H . as before increases uniformly from zero on the axis to
1-257 at the outer surface of the shell, its mean value is 0 6285,
and the a-component ¥, of the total flux linked with the axial
filament js 0°6285 X 0-2x 10°=1257x 10%. The reactance poten-
tial difference V,, is therefore 8142 %1257 x 104 X 10 8 =0-0395.
isgivesri ity dy=20229X10 ° 0919 a
Thisgivesrise to acurrent density 1= %108 T T a

the outer surface of the shell.

We thus have rf,=0'0549 at the inner, and 0219 at the
outer surface of the shell. Prom this we find for the y-component
of the current in the shell thevalue 0:01376*. Adding this to the
y-ompouent previously found for the core—wviz., 0°00115, we get
for the total y-componcent the value 001491, Hence Il, =2 x
0'001491/0'2==0-01491 at the outer surface of the shell. 1I, now,
we plot the values H, = 00023 and H,=001491 as ordinates
against the values 01 and 0'2 (distances from axis) as abscissee,
and draw a curve through the origin and the two points so
determined, we find for the area of the curve the value 8 X 10—%,
This represents the y-component of the flux per centimetre length
of our conductor, so that the total y-component of the flux linked
with the axial filament is 80. Thecorresponding induced L.M.F,
is—

314x 80 x 10 #=0-000251,

which is negligible in comparsion with the resistance drop (1°8)
alone the axial filament. 1t isto be noted that this E. M. T. is
co-phasal with the axial current density, so that its cffect (if
appreciahle) would be to reduce the z-component of the impressed
potential difference, and hence to reduce d. at the outer surface

of the shell.

*If the current density have the values dy and do a the inner and outer
surfaces respectively of a shell whose inner and outor radii are r1 and re respec-
tively, and if the deusity inercases a a uniform rate from the inner to the outer
surface, then it may be shown (by asimple integration) that the total curventin
the shell is—

area of shell X

As an aternative method. the carrent may be determined by a process of graphi-
cal integration.



The phase displacement of the current density at the
outer surface of the shell relatively to the axia current density

18—

tan—?! Q%?:f 15,

We now place another shell of 1 mm. radial thickness
around our conductor, thereby increasing itsradiusto 3 mm.
We again provisionally assume d, to remain unaltcred, and, pro-
ceeding as before, we find the following values : —

i (total z-component of current in conductor)=2-827.
H, = 1885 at surface.

F, (total z-component of flux) =2'827 X 10*.

V, (reactance potential difference)=0-0888.

d, =04935 at surface.

y~component of current in shell=0"0574.

i, (total y-component of current in conductor)=00723.
o, =00482 at surface.

On plotting the value H, =0'0482 in the diagram con-
necting H, with distance from axis, finding the area of the curve
as before, and multiplying by 10% (length of conductor), we find
for the total y-component F, of the flux linked with the axial
filament the value Fy=366. The corresponding induced E. M. P.
is E.=000115. Since, as already mentioned, this E. M. ¥. isin
phase with the axial current density, the component V, of the
impressed potential difference in phase with the axial current
density is Ve=1:8—000115=1"7988. Hence the assumed value
d. =10 at the surface of the conductor requires asmall correction,
the true value being ] 0x 7 022=0-993,

The phase displacement of the surface current density
relatively to that along the axis is tan™!

We next place anadditional shell of 1 mm. radial thick-
ness around the conductor, thus making its radius equal to 4 mm.
We provisionally assume that the rateof change of /, with dis-
tance from axis changes by the same amount as before—i.c., by
0:007 per millimetre. The new rate of change will thus be 0-014
per millimetre, giving for the value of d, at the new surface
9993 —0014=9979. The work is then continued as before, the
values of the various other quantities heing determined, and a
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correction being applied if necessary to the provisionally assumed
value of d. at the surface.
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By proceeding in this manner we can build up our
conductor to any desired thickness. Table I. contains the results
of the caleulation up to & radius of 3 em.

Some of these results are exhibited graphically in Figs.
1and 2. Referring to Fig. 1, we sce that the w-component of
the current density steadily decreases, passes through a zero
value, and then inereases in the negative direction. Tho y-com-
ponent starts from a zcro value, increascs very slowly at first,
then more rapidly, passes through a maximum value and de-
creases.  Had we extended Table I, to larger distances f{rom the
axis, we should have found that each component of the current
density is ropresented by a wave which passes through a succes-
sion of maxima, zero, and minima values. The total or resultant
current density steadily increases, and so docs its pbase angle of
advance relatively to the current density at the axis. The con-
nection hetween the value of the current density and its phase
ansle of advance is clearly exhibited in the polar diagram of
Fig. 2, in which the radins vector reprosents the current density,
and the vectorial angle the phasc angle of advance of the current
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density relatively to that at the axis. The numbers along the
polar curve (which isthe locus of the current-density vector)
represent distances from the axis.

Knowing the current-density distribution, we can easily
determine from it the total power dissipated in a conductor of
given radius. For this purpose we first plot a curve, asin
Fig. 3, whose ahscissa represents the area of a conductor of given

F16. 2.—Polar Diagram of current Density and Phase Angle.

radius, while its ordinate gives us the rate of dissipation of energy
per square centimetre of conductor cross-section at the surface of
the conductor. In order to obtain points along this curve, we
take the consecutive radii given in Table 1., and find the areas of
the corresponding circles ; this gives us a number of abscisswe fur
our curve.

To find the corresponding ordinates we multiply the square
of the current density din Table I. by 018 (=1'8x10—¢x 105,
the product of the resistivity into the length of the conductor).
‘Wenext proceed to find the area of the curve so obtained, this area
representing, for any given value of the abscissa, the total watts
dissipated in aconductor whose cross-section isgiven by theahscissa.
On dividing the total watts dissipated by the square of the total
current inthe conductor (=i74-i2), we find its resistanceto alter-
nating eurrents of frequency 50, and the quotient of this resis-
tance by the resistance to continuous currents (calculated in the
ordinary way from the resistivity, length and cross-section of the
conductor) gives us the ratio of the two resistances. This ratio is
plotted against the diameter of the conductor inFig. 4. It remains
at avalue not far removed from unity until the diameter of the
conductor exceeds 5 mm., then begins to increase, very slowly at

7
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first, then more rapidly, and after a diameter of 20 mw. has been
reached, it nearly follows a st -ight-line law.
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While the effective resistance of a conductor is increased
by the erowding of the current towards the surface, the cffective
internal self inductance is dezreased by the same effect. Iiiseasy
to understand this vesult from general considerations. For if we
imagine a cylindrical current sheet to start from near the axis
of the conductor and to expand outwards like a ripplec on water,
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i 5.—Relation connecting infernal reactance with diamoter of conductor,

it is obvious that as the sheet expands it becomes linked with less
and less flux. From the data at our disposal we can easily
calculate the values of the internal reactance corrsponding to
various diameters of conductors. For, using Table 1., we have
for the square of the internal impedance the exprossion
(VI4+V /(43 +47). On subtracting from this the square of the
rosistance to currents of frequency 50, we obtain the square of the
resctunce, and so the reactance itself. 1% is to be noted thut for
the smaller sizes of conductors this method does rot yield accurate
results, owing to the smallness of the reactance as compared with
the resistance. But for the smaller sizes the internal self-induc-
tance at 50 cycles per second will be nearly the same as that
corresponding to a uniform current distribution, and this Iatter
self-inductance is known to be (in C.G.8. units) 4 per centimetre
length of conductor, and to be independent of the size of the
conductor. Hence theinternal reactance, in ohms, of a cylindrical
copper counductor of small diameter 1,000 metres long is
2nx 50X $X10-4=0.01571 at a frequency of 50. The difficulty
of finding the value of the internal reactance for small diameters
is thos overcome, and we are in a posifion te plot the curve of
Fig. 5, which shows the gradual drop in the internal reactance
with increasing diameter of conductor.

It is bardly necessary to point out that the method
described is applicable to the case of a long, hollow, eylindrical
conductor or tube, provided its internal field is represouted by



circles concentric with the tube. It may aso be applied to solid
or hollow c¢ylindrical conductors of iron, and the effect of varying
permeability is easily taken into account (we suppose the
permeability to be uniform forany one shell, but to vary from
shell to shell). Although the method may appear to be
somewhat laborious, it hasthe merit of bringing within the reach
of any .engineer possessing a sound knowledge of the elements of
alternate current theory a problem of great COmpleXity, whose
solution could hitherto only be dealt with by the aid of very
advanced mathematics.

R. P, B.—5-1914.—500.
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TABLE |I.
Shell. dx i* I, T, Vy dy iy Iy, I, E, Va 9 d
Millimotros ||
0-—1 10°00 0314 (028 3140 0:0099 | 05500 000115 | 00023 1800 0° 19’ 16700
-2 | 10000 1260 10260 12,570 | 0°0395 | 0-2190 001490 | 0 1400 80 | 000025 1800 1715 1000
23 I{ 900 2830 1885 28,270 0°0888 04935 007230 04820 3 | 0:00115 1799 2° 50/ 1000
34 998 5020 2510 50,240 | 01578 | 08770 0'22500 | 01125 1140 | o-00360 1796 51 1002
Al 995 7°840 3.140 78,470 | 0°2465 | 13700 0°54500 | 02180 2,740 | 0,08CO 1791+ TRy 10704
5—G 9.90 11°270 3760 112,940 | 0°3550 19700 1712500 | 0:3750 5,670 | 0-01780 1782 11° 16 1009
6--7 982 15290 4370 153570 | 04825 | 96800 208000 | 03040 10,518 | 002309 1°767 15" 16' 10017
7-8 J 9C9 ) 1980 4970 200270 | 0:6290 | 84950 354000 | 08850 i 17000 | o-0z620 14 | 10750 10°30 |
89 V47 25°000 5560 252900 | 07950 | 44140 5465000 10570 | 30470 | 009570 00 | B0 1045
910 921 30550 6110 311,230 0-9780 54800 859000 17100 | 45350 | 0-14950 1657 ' 30° g2 10°69
1011 | 881 36500 fi 640 375,000 | 11780 | 65400 | 1254000 | 2.2800 | 6F,160 | 021400 1586 X' 87 10+97
11—12 ! 835 42700 7114 443,800 10040 | 7°7500 1770000 | 29500 | 04820 | 0209600 1°501 42° 54 11°39
1913 | 7 49:000 7°550 517,100 | 1°6250 | 90200 | 24:30000 | 87400 | 127760 | 0-40100 1'899 4° 17 1191
18—14 696 55300 7-900 594,300 18670 | 10'8700 | 3250000 | 46500 | 174,630 | 0'54700 1:953 56° 8' L1249
14—15 606 61.200 84160 674600 | 21200 | 11-7800 | 4260000 | 56800 | 225900 | 0.71000 1-090 62° 47 18:25
1516 497 66600 8330 757,100 2:8E00 | 13°2000 | 54:80000 | 6 &500 288,500 | 0.90%00 00t 0° 28/ 14412
16—17 361 71°100 8360 840,500 26400 | 147000 | 6920000 81400 | 366,200 | 1-15000 0°649 760 10/ 1511
1718 2:06 74:200 8240 928,500 29000 | 161200 | 86-20000 | 95700 | 454,800 | 148000 0371 ’ 82 4 1625
18—19 025 75500 72050 | 1,004,500 | 3.1560 | 175860 | 105°70000 | 11°1800 | 558,3C0 | 173400 0 046 £9° 11 17°53
19—-20 | - 1-83 74550 7450 | 1,079,000 | 33900 | 188300 | 128°00000 | 128000 | 678,000 | 213000 | —0-330 95° 34/ 1892
20—21 | - 422 70°650 G730 | 1,149,000 | 36100 | 2041000 | 153:00000 | 14+6000 | 815000 | 256000 | —0-760 100° 58 20-51
2122 | - 603 63:120 5740 | 1,212,300 | 3'8100 | 21-1600 | 18100000 | 164400 | 970200 | $:05000 | —1-250 108 o 202-27
9123 | - 997 51°200 4450 | 1,263200 39700 | 220500 | 211°40000 | 184000 |1,144,300 |859500 | —1°795 114° 20 21-20
9324 | —13'34 34-000 2:830 | 1,299,600 | 4°0800 | 22-7000 | 244°40000 | 204000 [1,338,000 | 420000 | —2'400 120° 27/ 2630
2425 | —17:08 10°600 0850 | 1318000 | 4:1400 | 23-0000 | 27950000 | 224000 (1,551,600 | 487000 | —3-070 126° 3¢ 28-65
2526 | —2115 20°040 |- U543 | 1314500 | 41300 | 229400 | 316-00000 | 21-3000 |1,785,000 | 561000 | —3810 132° 41/ 31-20
26—27 | ~2557 | - 58900 4370 | 1270900 | 3-9000 | 222000 | $54:00000 | 2062000 (2,027,800 | 610000 | —4'600 139° 4 3414
2728 | —30'30 | —107-200 |- 7660 | 1210800 38000 | 21°1300 | 391-00000 | 27'3000 2,308,600 05000 | —5'450 %5 8694
28—20 | —385'30 | —166:000 |—11'450 | 1,115,200 | 85000 | 10°4600 | 42800000 | 20-5000 (2,505,800 | 816000 | —6360 151y 4032
20—30 | —40'56 | —23G:400 |- 15740 979,400 | $:0800 | 17-1000 | 46100000 | 308000 (2807100 | 910000 | —7'340 Br Yy 44°00




