
Journal of the Indian Institute of Science

A Multidisciplinary Reviews Journal

ISSN: 0970-4140 Coden-JIISAD

© Indian Institute of Science

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in

R
ev

ie
w

s

Empowering Feature Phones to Build Smart Mobile
Networked Systems

Kuldeep Yadav and Vinayak Naik

Abstract | In last two decades, increase in mobile devices coupled with
subscriptions have enabled large proliferation of mobile systems and
applications. Apart from traditional services such as voice calls, SMSes,
today’s mobile phones enable array of other services i.e. location-based
services, multimedia, education, citizen information services for the con-
sumers. However, developing mobile system which can work on all the
mobile devices is still a challenge to solve due to large heterogeneity
among mobile devices and network. Most of mobile systems are built
for smartphones, which constitute of only small percentage of all mobile
devices, rest of devices are feature phones, which have limited capability
in terms of computation or communication.

We need to take special design considerations while building mobile
systems for feature phones. In this paper, we present three of such
mobile systems, which are carefully designed for mobile phones in
resource-constrained environments. First, CBS-based localization pro-
vides a positioning method for feature phones, which works without war-
driving. Second, a system called Unity that enables collaborative download
among co-located mobile users and third, a participatory sensing system
Human Sensors, which enables human-in-loop sensing of city problems
using a mobile phone.

Indraprastha Institute of
Information Technology,
Delhi (IIIT-D), New Delhi,
India.

kuldeep@iiitd.ac.in

naik@iiitd.ac.in

1 Introduction
The total number of mobile phone subscriptions
were nearly 6.8 billion in early 2013 covering more
than 95% of world population.16 At the same time,
mobile devices shipments continue to rise every
year. According to Gartner, 1.75 billion handsets
were sold in 2012 and it is predicted that in 2013,
shipments will grow to 1.90 billion.15 Similarly,
mobile networks have evolved from 1G to 4G
in last two decades. Increase in mobile devices
coupled with subscriptions have enabled large
proliferation of mobile systems/applications.
Apart from traditional services such as voice
calls, SMSes, today’s mobile phones enable array
of other services such as location-based services,
multimedia, education, mobile payment, social
media, gaming, and citizen information services
for the consumers.

Till now, most of the research has focussed
on building services for smartphones which
are equipped with powerful set of sensors such
as compass, accelerometer, GPS, WiFi etc., and
also, have access to high speed data connection
(LTE/HSPA/HSDPA). However, there are large
number of phones which do not have access to
these sensors popularly called as feature phones.
As an estimate from Gartner, number of fea-
ture phones are nearly 75% percent of the total
4.3 billion phones in 2012. Many of these serv-
ices do not work on feature phones due to lack
of sufficient hardware and limited bandwidth
data connection (GPRS/EDGE).48 We need to
take special design considerations for designing
mobile systems for feature phones. In this paper,
we describe design and development of mobile
systems, which will empower feature phones in

Kuldeep Yadav and Vinayak Naik

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in522

three aspects, namely, Localization, Communi-
cation, and Sensing.

Current user location has been an integral part
of user context and an enabler of many services
like navigation, activity recognition, local business
search, and friend finder services. Interestingly, all
context aware services do not require same level of
accuracy for current location. For instance, navi-
gation applications require high level of accuracy
(~10 meter) whereas if one has to share location
with online social networks, even location accu-
racy of hundreds of meter will suffice. There are
mainly three localization technologies which can
be used to get user’s current location on mobile
phone i.e. Global Positioning System (GPS),28,38
WiFi-based19 and GSM-based.24,40

Among these technologies, GPS is highly accu-
rate (~10–100 meter) and works with the help
of at least four satellites. However, it consumes
high energy, requires special hardware, and only
works outdoors.50 It is predicted that for the next
five years, over 50% of the phones will not have
GPS.43 WiFi-based localization requires an already
established WiFi infrastructure and a perceptual
map of wireless APs identifiers with respective sig-
nal strengths.26 The process of creating perceptual
map is called as war-driving. WiFi-infrastructure
does not exist at a city-scale in many countries
and war-driving is a cost intensive process.47 Con-
tinuous use of GPS and WiFi drains mobile phone
battery very quickly,30 many studies have found
that power consumption is one of the biggest
barrier in large scale adoption of location-based
services.33 For the class of applications that do
not require fine grained location accuracy, GSM-
based localization is better suited due to its wide
availability and low power consumption. In fact,
for low-end phones (without GPS/Wi-Fi capabil-
ity) this is best suited.43

As per recent statistics, number of 3G subscrib-
ers in China are only 14% of the total 1 billion cel-
lular subscribers,1 while in India, it is only 2% of
over 893.8 million subscribers.2 Low penetration
of 3G/4G networks is attributed to higher setup
cost, limited number of supporting handsets, and
expensive data plans. As a result, many people still
use 2G based data connection which is widely
deployed and accessible on most of the phones. In
countries like India and Egypt, over 50% of users
have access to Internet from mobile phones only.14
Data consumption rate of the mobile phones is
increasing every day due to requirements posed
by mobile applications/services such as multime-
dia. Recent Opera report showsa that, mobile users

a Opera Mini is a widely used browser in mobiles.

download content (mostly multimedia) from the
Internet using 2G network and the top handsets
used were found to be feature phones.

To enable faster downloading of content
(workload), we present Unity, a system that ena-
bles collaboration between multiple co-located
phones (peers). In Unity, co-located peers partici-
pate to individually download different parts of
the desired workload and then share their down-
loaded part with each other such that everyone
gets the complete content at the end. Mobile phone
users are typically expected to be part of several
social gatherings during the day at different places
i.e. home, workplace, and even while commut-
ing.44 The key idea of Unity is to use these social
meetings to provide a collaborative environment
with a usable interface to enable faster downloads
of content desired by all (or most) of the partici-
pating peers. Almost all the phones, including fea-
ture phones, have one or more small range radio
technologies, such as WiFi, Bluetooth, NFC. Unity
leverages one of the available short range technol-
ogies for coordinating and local sharing of work-
load parts amongst peers while each of the part is
downloaded by individual peer from the Internet
using cellular connection.

Many developed countries have city-wide
deployment of sensing infrastructure to collect
data about day-to-day city events, the collected data
is then analyzed online or offline to take a prompt
action based on those events. For instance, USA
have deployed traffic sensors across major high-
ways to monitor the health of roads and to detect
timely events such as traffic congestion. Data col-
lected from these sensors is useful to make broad
city development decisions. This kind of sensing
infrastructure does not exist or have limited cov-
erage in many countries due to lack of resources,
cost, and bigger scale of deployment. Being an
integrated computing, storage, and communica-
tion device, mobile phones can be efficiently used
for sensing tasks.34 There has been several efforts
to use smartphone sensors for variety of purposes
such as to estimate pollution exposure,36 pothole
detection27 and traffic conditions.35 All of these
work expects people to participate, collect appro-
priate sensor data using their smartphones and
contribute it for a common purpose.23 We have
designed a participatory sensing system to collect
information about city events with the help of citi-
zens while offering different submission interfaces
i.e Android-based mobile application, SMSes,
and a web based tool. Multimodal interface of the
system allows citizens to sense and submit events
using their preferred mode which can minimize
cost. Findings from processed events data can be

Empowering Feature Phones to Build Smart Mobile Networked Systems

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in 523

used to multiple purposes i.e. citizens informa-
tion, city planning etc.

The paper is organized as follows, Section 2
presents design goals which needs to be take care
of, while building system for feature phones.
Section 3 describes a GSM-based localization
system which works on feature phoneswithout any
extra infrastructure. Section 4 presents a system
Unity that enables collaboration between multiple
co-located peers to download a mutually desired
content using low bandwidth EDGE connections.
Finally, we have described a city-scale sensing sys-
tem Human Sensors in Section 5 and discuss our
findings and experiences in Section 6.

2 Design Goals
Feature phones have limited capabilities as com-
pared to smart phones, system designers have to
take special consideration while building system
for these phones. Following are some of design
goals which needs to be taken care of while design-
ing such systems.

• Low Cost: Mobile users especially in develop-
ing countries are cost-constrained. A mobile
system should perform its functions with min-
imal cost. For instance, most of participatory
sensing systems are voluntary,34 they should
be designed to minimize user cost as much as
possible.

• Low Energy: One of the main concern with
mobile devices is limited battery. A mobile
system design should try to maximize battery
life of the device. For example, services which
uses network connection very frequently tend
to drain battery very quickly. There have been
approaches which leverage delay tolerance of
web traffic to schedule them in same data con-
nection session which can potentially mini-
mize energy.21,20 Similarly, low RSSI results in
less throughput and more energy consump-
tion.39 Hence, a data connection should be ini-
tiated only when RSSI is good.

• Limited Hardware and Programming Sup-
port: A mobile system has to work with lim-
ited hardware and programming support to
provide smartphone like service to feature
phones. For instance, GPS and WiFi chip does
not exist on low cost phones.43 A mobile sys-
tem should use GSM-based location interfaces
as much as possible which are available on
most of the phones.47

• Utilizing Available Resources: A mobile sys-
tem should be designed to utilize available
resources to fullest. Almost all the phones,
including feature phones, have one or more

small range radio technologies, such as WiFi,
Bluetooth, NFC. Short range radio technologies
can be used intelligently to share content or
resources locally.46

While above design goals are described keep-
ing feature phones and developing countries as a
focus, they are general in nature and hold true for
any community or mobile phones.

3 Localization
GSM-based localization is most preferred way
of accessing user location for feature phones
due to its wide availability and minimal energy
consumption. However, current approaches
have limitations which are described in next
subsection.

3.1 Background
Prior work related to GSM-based localization can
be divided into two categories: (A) Cell ID based
Approaches and (B) RSSI fingerprinting based
approaches.

3.1.1 Cell ID-based approaches: In this
approach, Cell IDs are fetched using phone APIs,
and looked up in an existing war-driving based
database to provide localization. To the best of our
knowledge, none of the mobile phone operators
reveal exact location of the Cell towers. Hence,
using crowd sourcing/war driving data, cell tower
location is approximated, which could be several
hundred meter away from its actual location.
According to GSM standards, a phone can receive
signals from seven different Cell towers.25 If there
are multiple visible Cell IDs, the approaches com-
pute some function, e.g. centroid, of all the geo-
coordinates (latitude and longitude) obtained
from the database. Our experience supported by
other prior work38,37 show that for several phones
(including Nokia S40, S60 phones, Samsung
Android phones) provide access to only one Cell
ID to which the phone is currently connected.
This significantly reduces accuracy of the localiza-
tion as compared to the accuracy that had been
obtained with access to seven Cell IDs.

Google Mobile Maps’(GMM) My Location8
application works on a single Cell ID-based
approach, where it provides a median localiza-
tion error of 656.37 meters for a rural area and
503.89 meters for an urban area.31 The localiza-
tion error depends on density of cell towers. Due
to high density of Cell towers, this method pro-
vides better accuracy in urban areas as compared
to rural area. However, it is hard to get a com-
prehensive database of Cell IDs. There are some

Kuldeep Yadav and Vinayak Naik

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in524

proprietary databases, such as one used by GMM,
which are not publicly shared.

There exist open source initiatives, e.g. Open-
CellID17 and Cell Spotting,5 that build their data-
base using crowd-sourcing. To check the coverage
of open source cell ID databases, we selected two
widely used operators in New Delhi. We call them
X and Y for anonymity. On our self collected data-
set of Cell IDs for operator X, we observed that
out of 252 cell IDs, OpenCellID contained only
65. For operator Y, the number was only 21 out
of 164 as shown in Table 1. We cannot find out
comprehensiveness of the GMM as it is not pub-
licly available. However, given low penetration of
Android phones in rural India, we postulate that
the database will be underpopulated. Crowd-
sourcing for building cell ID database seems to be
ineffective due to (A) lack of incentives as people
need to incur airtime charges for contributing to
the databases and (B) lack of GPS-enabled phones
in developing countries.

3.1.2 RSSI fingerprinting-based approaches:
In this approach, RSSI (Received Signal Strength
Indication) is collected along with Cell IDs during
war-driving and a perceptual map is built similar
to WiFi-based approaches. Typically, a fingerprint
constitutes of Cell IDs, their associated RSSI, and
GPS coordinates that are represented in a vector
form. During the localization phase, Cell ID(s)
and associated RSSI are compared with stored
vector space of fingerprints using KNN (K Near-
est Neighbor) to estimate user’s location. KNN
uses euclidean distance in RSSI space as a metric
to find closest stored fingerprint.25 This approach
gives better accuracy than the Cell ID-based
approaches since granularity of stored informa-
tion is more. However, it requires more storage
and computational capabilities as well as more
efforts are needed during war-driving.

Continuous war-driving effort is required in
this approach because RSSI keeps on fluctuating
due to changes in physical environment. It works
good when there is a visibility of seven cell towers
and their respective RSSIs. Recent results demon-
strate that RSSI measure from single cell tower is

not a good measure to calculate movement.38 We
conducted our own study to find out whether
RSSI is a good metric for localization. RSSI dif-
ference is the absolute change in the RSSI, for a
given Cell ID, when user moves from one loca-
tion to another. In our database, we had 24064
unique RSSI difference values from 410 unique
cell IDs. We plot maximum, minimum, and aver-
age distances for each RSSI difference. As seen in
Figure 1, the average difference is almost constant
for RSSI difference ranging from 1 to 9 dBm. This
concludes that RSSI is not a good measure for
GSM-based localization as one observes similar
RSSI values between two points with large physi-
cal distance between them.

This concludes that current GSM-based locali-
zation approaches have practical limitation such
as limited access to APIs, need of war-driving etc.
In the next section, we will describe CBS-based
localization approach which do not require war-
driving effort and works with APIs provided by
major phone platforms.

3.2 Architecture
The CBS messages are broadcast by Cell towers to
all the phones in its range.13 CBS is defined in the
phase II of GSM standard 3.49.4 The users need not
pay airtime charges to receive CBS messages, even
while roaming outside of their home area. The
CBS messages are commonly used to broadcast
information about weather forecast, landmarks/
area names, news, announcement by governments,
etc. All this information can be broadcasted simul-
taneously on different channels. A cell tower typi-
cally broadcasts the locality/landmark name, where
it is located. Channel 50 is reserved for broadcast-
ing location/area names. Most of the phones come
with built-in APIs to capture CBS messages. Fig-
ure 2 shows architecture of a working instance of
CBS-based approach. The data flows as depicted

Table 1: Success rate of Open Cell ID (most
extensive open source database of cell IDs) on our
dataset collected in New Delhi region.

Operator No of cell IDs
Found on
OpenCellID %

X 252 65 31%

Y 164 21 13%

Figure 1: In whole dataset, Min-Max bars repre-
senting minimum and maximum distance between
two position into same cell ID. For instance, for a
difference of 14 dBm in RSSI, distance between
those points can range from 0 to 4000 meter.

Empowering Feature Phones to Build Smart Mobile Networked Systems

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in 525

by numbered arrows in the Figure 2 correspond to
the following:

1. GSM base station broadcasts CBS messages,
each containing a CBS string mentioning loca-
tion name or advertisement. The messages
are received by a listener application running
on the phone. The listener application at the
phone continuously listens at the port 50 for
incoming messages.

2. After receiving a message, mobile application
automatically figures out whether it contains
location or advertisement. If the message con-
tent is a location, then the phone checks for
its corresponding geo-coordinates in its local
cache. If it is not available, the application
makes a request to geo-coding service.

3. Geo-coding service estimates the geo-coor-
dinates of the queried location name using a
combination of techniques described in Sec-
tion 3.3.2 and return them to the phone. The
application at the phone adds it to local cache
of the phone. Geo-coding service is likely to get
request from many phones, using that it builds
a cache of all location names with their geo-
coordinates. Phone application can download
this global cache proactively to avoid frequent
requests to the cloud.

Above described approach is the most basic way
of estimating a user’s location using CBS messages
and called as baseline approach. Baseline approach
is identical to Cell ID approach described in Sec-
tion 3.1. To the best of our knowledge, this is the
first attempt to use CBS messages for localization.
We could not find any publicly available dataset
of CBS messages. To characterize the accuracy of
CBS-based localization approach, we collected
CBS messages for two different operators X and
Y along with GPS coordinates in urban settings of
New Delhi, India. Rate of reception of CBS mes-
sages depends on the speed of the user, we have
characterized our collected traces in two categories
i.e. walking and traveling as shown in Figure 2. Our
detailed data collection methodology is described

in our earlier work.47 Further, we have also pro-
cured a CBS message dataset from Nokia which
is collected as part of pilot deployment of Nokia
Nearby application. This dataset has about 29K
records with 469 unique CBS location names.

We analyze the data from both the datasets in
the next section and list out challenges in using
CBS messages for localization.

3.3 Challenges
Data from our pilot study brought forth several
non-trivial challenges which need to be solved
before CBS-based localization can be realized in
real-world setting. In this section, we describe all
challenges and presents our approaches to solve
them.47,49

3.3.1 Filtering of advertisement messages:
CBS messages contain advertisements in addi-
tion to location names. It is essential to filter out
these advertisements. By looking at the data, we
have made the following two observations which
can distinguish between a location name and an
advertisement.

1. Advertisements contain common patterns such
as special characters (‘*’,‘#’,‘%’,‘@’) or continu-
ous digits like (‘578785’) which are unlikely to
be present in genuine location names.

2. Advertisements contains operator name or
some other advertisement specific words such
as “Cricket”, “Free”, “Ringtone”, which are hard
to find in genuine location names.

Using these two discriminators, we designed a
regular expression which can filter all the adver-
tisements at the phone itself.49 These observations
hold true for both the operators’ data. We got
100% accuracy in filtering advertisements when
the regular expression was applied off-line to
33279 CBS messages in our dataset. Interestingly,
we found that number of advertisements differ
among operators X and Y as shown in Table 3,
operator Y had about 61% advertisement CBS
messages whereas operator X had about 46%.

Figure 2: Architecture of CBS based Localization
System.

Table 2: Number of travelling and walking traces
in CBS dataset across two different operators X
and Y.

State X Y
Combined
(X + Y)

Avg
Duration
(Minutes)

Travelling 27 12 10 46

Walking 12 7 7 65

Kuldeep Yadav and Vinayak Naik

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in526

3.3.2 Geo-coding of location names:
As described in Figure 2, CBS location messages
need to be converted into corresponding geo-
coordinates using a geo-coding service. Among
all the on-line maps services, we found Google
Maps to be most effective in geo-coding CBS loca-
tion names because its coverage is much higher
than other map providers specifically in the areas
where we had collected data. We have used Google
Maps’s geo-coding APIs7 for all our experiments.
We found that more than 30% of location names
can not be geo-coded directly by Google APIs. Pri-
mary reasons of geo-coding failures are described
as following:

1. Location names may exist differently (in the
geo-coding service), e.g. there could be a spell-
ing difference, use of short hand abbrevia-
tions etc. For example, ‘Matiyala’ and ‘Matyala’,
‘Uttam Nagar’ and ‘Uttam Ngr’, ‘Dwarka Sec-3’
and ‘Sec-3 Dwarka’.

2. Some locations have two different names i.e.
one could be colloquial which local people use
and other one is official name which exist on
Maps. For example, ‘Kakrola Mor’ and ‘Dwarka
Mor’ etc.

3. Some location names do not exist completely
on maps as coverage of these services in devel-
oping regions are still limited and there is no
publicly available extensive GIS database by
government agencies too.

To increase geo-coding success rate, we pro-
pose following geo-coding framework which uses
combination of several techniques described as
follows:

1. Direct Geo-coding: The location name which
need to be geo-coded are directly sent to
Google Maps’s geo-coding APIs. If it exists on
maps, APIs will return corresponding latitude
and longitude information. Otherwise, it will
return a geo-coding failure.

2. Pre-processing Location Names: If there is a
geo-coding failure in the previous step then
pre-processing is done on location name to

remove ambiguity, if any. Presence of irregular
or no-space, extra characters, and short hand
abbreviations in some location names makes
it difficult for direct geo-coding to find their
coordinates. To resolve the ambiguity present
in location names, we do a pre-processing of
location names before sending them to the
geo-coding service. Pre-processing algorithm
apply following steps to sanitize the CBS loca-
tion names:
a. Replace special character such as ‘-’ with a

space. For example, location names such
as ‘Dwarka Sec-02’, ‘Dwarka Sec-2’ and
‘Sec-2-Dwarka’ are converted to ‘Dwarka
Sec 02’, ‘Dwarka Sec 2’ and ‘Sec 2 Dwarka’
respectively.

b. Numerical characters in the location name
are separated out from surrounding text
characters e.g. converting ‘Dwarka Sec2’ to
‘Dwarka Sec 2’.

c. After fixing special characters and numeri-
cal characters in location name, our pre-
processing algorithm search for popular
abbreviations in location names like ‘NGR’,
‘SEC’, ‘VHR’ etc., and replace them with its
full form like ‘NGR’ for ‘Nagar’ with the
help of a dictionary. We have populated
this dictionary from the location names
using a semi-automated process.

d. Similar to the above step, stop words such
as ‘Nagar’, ‘Garden’ are searched into a loca-
tion name and a space is inserted before
every occurrence of a stop word. For exam-
ple, ‘Rajourigarden’ will be converted into
‘Rajouri Garden’.
After sanitizing location names using

above listed steps, direct geo-coding is used to
convert give location names into coordinates.
If geo-coding is successful, process is stopped
here otherwise, it will move to next step.

3. Using Crowd sourced POIs Information:
For the location names that are completely
missing from digital maps or exist with dif-
ferent name(s), we take help of point of inter-
est (POIs)/businesses data which are crowd
sourced by Google Maps. We use Google
Places API9 to fetch POIs information about
a specific location name. Many of CBS loca-
tion names are colloquial, they were present in
this crowd sourced location data in some form
or other, but not on Google Maps. As, crowd-
sourced data has its own challenges in terms
of accuracy, noise etc, which need to be solved
before using this data for estimating a CBS
location’s geo-coordinates. Following is step
by step description of our algorithm which

Table 3: Percentage of advertisement CBS
messages in both the datasets collected for
operator X and Y.

Operator
Total CBS
messages

Advertisements
(%)

X 32106 46%

Y 1173 60.53%

Empowering Feature Phones to Build Smart Mobile Networked Systems

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in 527

estimates coordinates of a given location using
this POIs data.

 Step 1: Google Places API requires input of
base coordinates, queried location name and
it searches POIs around the base coordinates
which contains queried location name in
their addresses. We use the geo-coordinates
of immediate previously received and geo-
coded location name from the CBS trace, as
base coordinates. If the queried CBS location
name has space, we break it into different set
of location names and query Google Places
API multiple times. For instance, ‘Palam Rail-
way Junction’ will have three different values
for queried location name i.e. [’Palam’, ‘Palam
Railway’, ‘Palam Railway Junction’]. The idea
behind creating multiple names/queries is to
maximize POI addresses because many times,
a part of location name may miss from the
actual POI address. For instance, many POIs
may contain name ‘Palam’ because it is a more
popular location entity than ‘Palam Railway
Junction’. Here is one sample query to Google
Places API.10

 Step 2: Google Places API returns a differ-
ent set of POI addresses with every different
value of queried location name. The results are
aggregated from all the queries and a single
set of POI addresses is maintained with their
corresponding geo-coordinates. After aggrega-
tion, we apply levenshtein string edit distance
to rank POI addresses based on their lexical
similarity to the actual CBS location name and
select top-K addresses.

 Step 3: After selecting top- K POI addresses, we
compute an average of their geo-coordinate.
The resultant coordinates will be the estimated
coordinates for a given CBS location name.

4. Geocoding Framework Evaluation: From
both the datasets, we had total 572 unique
location names. In our data collection, we
have collected GPS coordinates too, with the
CBS location names. We use GPS coordinates
as a ground truth to evaluate accuracy of geo-
coding framework as well as individual tech-
niques. From our empirical evaluation, we
have found value of K equal to 10. Our geo-
coding framework successfully geo-coded
nearly 92% of total 572 location names as
shown in Table 4. Our pre-processing algo-
rithms and use of crowd sourced information
jointly increased the geo-coding success rate
by 26.39%. Pre-processing location names
increased the geo-coding success rate by only
4.54%. In our earlier work,47 pre-processing of
location names increased geo-coding success

rate by about 15% on a relatively smaller data-
set of 143 location names. From our close
observation, we have found that Google Maps
have improved over time and they are already
doing some pre-processing of location names
which we have done earlier in.47

We believe that a common algorithm that can
work for geo-coding of all the location names is
very hard to achieve due to non-standard nomen-
clature for CBS messages and poor GIS database
(specially in developing countries). However,
it is still a one-time task to geo-code the names
which are not automatically geo-coded by any
service and requires much less effort than the war-
driving used by other GSM-based localization
approaches.

3.4 Inaccuracy of CBS location
messages

In Cell ID-based localization approach (described
in Section 3.1), accuracy depends on the richness
of the perceptual map (Cell ID database) that is
created using war-driving. Similarly, accuracy of
CBS-based localization approach will depend on
quality of location names that we receive as CBS
messages. To understand the quantitative estimate
of the error in CBS messages, we have computed
the localization error which is essentially distance
between geo-coordinates of CBS location and
associated GPS coordinates. If there are multiple
GPS coordinates associated with a CBS location
in our dataset, we took an average of all those
GPS coordinates and then computed the distance.
Figure 3 shows a bar graph of distribution of error
in terms of percentage of the location names. Out
of 527 location names, about 8% of the names
could not be geo-coded, we have ignored such
names while plotting Figure 3. For about 58% of
the names, which were successfully geo-coded,
localization error was more than 500 meters.
Typically, CBS messages have inaccuracies, such as

Table 4: Success percentage of different steps in
geo-coding.

Geocoding
frameworks

Successfully
geocoded

Successful
(%)

Direct Geocoding 376 65.73%

Pre-processing +
Direct Geocoding

 26 4.54%

Using Crowdsourced
POIs information

125 21.85%

Total 527 92.13%

Kuldeep Yadav and Vinayak Naik

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in528

errors introduced by geo-coding services, presence
of generic CBS location names, and association of
same CBS names with multiple towers.47 These
inaccuracies impact the localization accuracy and
to reduce the impact, we design two algorithms
described in next section.

3.5 Algorithms to improve localization
accuracy

CBS-based localization approach is primarily aimed
for feature phones. Primary design goal for CBS-
based localization algorithms is to strike a balance
between reasonable accuracy and being low-cost in
terms of computation, communication, and data
storage. Baseline approach takes the most recently
received CBS message’s geo-coordinates to approxi-
mate the location of the user. Baseline approach
does not always give good results due to inher-
ent errors described in Section 3.4. A key insight
towards reducing the impact of these errors is that
we are not taking into account history of the loca-
tions visited by the mobile users in the recent past.

To account for location history, we form a vec-
tor of location names received in the past. When
the user is stationary, the phone often receives
multiple distinct location names as it can asso-
ciate with different cell towers that are in geo-
graphic proximity at different time instances.22
Figure 4 presents a real example from our data-
set which shows reception of four different CBS
messages even when user stays at same place. As
shown in Figure 4, CBS messages sometimes may
include locations that, in reality are far away from
user’s current location. However, the frequency
of such location names may be smaller than fre-
quency of location names that are in close prox-
imity to the current location. We hypothesize
that this frequency difference is a factor of dis-
tance between Cell Tower and the user. Therefore,
a weighted average based approach where the
weight given to each location name is dependent
on the frequency of received messages with the
corresponding location name (within fixed time

window) will intuitively work well for improving
the localization accuracy. We call this approach
FrequencyWeighted and it considers all CBS loca-
tion messages received in a fixed time window
duration δ. For instance, if a service running in
a mobile phone requires user’s current location
at time t, FrequencyWeighted algorithm takes all
the CBS location messages which were received
between (t, t–δ) and compute estimated user
location by taking weighted average of their cor-
responding geo-coordinates. The detailed expla-
nation and pseudocode of this algorithm is given
in our prior work.47

For a slow moving user, since the conditions
are similar to a static user, the FrequencyWeighted
approach should ideally provide better locali-
zation accuracy. However, a fast moving user
will probably be in the range of a Cell tower for
a short duration and hence will receive a small
number of (often only a single) CBS message
with the corresponding location. However, it may
also happen that the currently received location
name corresponds to a location in real world that
is ahead on the path of the user while the previ-
ously received location name was behind on the
path of the user (a typical case when the location
name is received immediately on crossing the cell
boundary). Therefore, weighted average of the
geo-coordinates of received location names with
higher weight given to those that are received
most recently and exponentially reducing the
weights of location names received in the past will
intuitively improve the localization accuracy. This
approach uses a timeout parameter λ to check if
there is a long gap in the reception of a CBS loca-
tion message, the algorithm forgets past history
of messages and starts accumulating new history
if there is a timeout. We call this approach Time-
Weighted and detailed algorithm is described in
our earlier work.47

Figure 4: Snapshot of received CBS location
messages at a given location. Marker E depicts
the current location of the phone and markers A–D
presents the four CBS location messages received
during phone’s stay at E.

Figure 3: Distribution of localization error for all
the location names. For 58% of the location names,
error is more than 500 meters.

Empowering Feature Phones to Build Smart Mobile Networked Systems

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in 529

3.6 Evaluation of the algorithms’
accuracy

We now describe the empirical evaluation of the
two algorithms, FrequencyWeighted and Time-
Weighted , explained in the previous section, using
our self collected CBS traces dataset. For com-
parison purpose, we used baseline CBS-based
localization approach which is identical to Cell ID
based localization approaches (including service
providers like Google). We use localization error as
our evaluation metric. It is the distance between
actual location (GPS Coordinates) and estimated
location using CBS-based approach. For simplic-
ity purpose, we discuss only one operator’s result
(referred to as operator Y) in detail and briefly
present results for operator X. As hypothesized
earlier, the accuracy of the algorithms could
depend on the speed of travel. Hence, we evaluate
our algorithms on traces for two different modes
i.e. static/walking and traveling.

Let us first analyze the effect of varying input
parameters on the performance of two algo-
rithms. For TimeWeighted algorithm, λ is a time-
out parameter, which is necessary to forget old
history. Empirically, we found value of λ to be
2 minutes since it gave the least median localiza-
tion error for all the traveling traces. For Frequen-
cyWeighted algorithm, time window to perform
weighted average i.e. δ was found to be equal to
2 minutes for traveling traces since it gave the
least median localization error. In case of walking
traces, we have not found any time-out instance
but still kept value of λ to maintain uniformity.
We have found value of δ to be equal to 3 min-
utes. Intuitively, higher value of δ, as compared to
the case oftraveling traces, is justified since longer
history of CBS location messages will be useful as
user is mostly static or walking at slow speed.

Figure 5a compares the Cumulative Distri-
bution Function (CDF) of localization error for

TimeWeighted and FrequencyWeighted algorithm
with the baseline approach. Both TimeWeighted
and FrequencyWeighted algorithms perform con-
sistently better than baseline. The improvement
in median localization accuracy for TimeWeighted
and FrequencyWeighted over baseline is approxi-
mately 12% and 16% respectively. Let us discuss
intuition for performance of the two algorithms
for traveling case. Typical rate of arrival of CBS
message is 1per minute which is consistent across
both the operators. With λ fixed to 2 minutes
and assuming average speed of traveling trace as
30KM/hr, if no CBS message is received for 2 min-
utes, the user has approximately moved by 1KM
from the location of previously received CBS mes-
sage. It is therefore better for TimeWeighted algo-
rithm to discard the history of CBS messages than
to consider them for future calculation of locali-
zation. Similarly, with δ fixed to 2 minutes, Fre-
quencyWeighted algorithm will onlyconsider CBS
messages received within a distance of 1KM for
calculation of localization, giving weights based
on frequency of each CBS message received. This
will mostly translate to average of two distinct CBS
messages received in the 2 minute interval.

Therefore, in case of traveling trace with cor-
respondingly fixed parameter values, Frequen-
cyWeighted algorithm never considers any CBS
message outside the 2 minute window while the
TimeWeighted algorithm gives any message outside
the 2 minute window a small weight in case there
is no time out in received rate of CBS messages. If
there is a timeout happens in TimeWeighted , for
the first 2 minutes, calculated localization for both
of the algorithms will be same. This led to nearly
similar performance of both the algorithms in
case of travelling traces. For operator X too, both
algorithms perform equally good as compared to
baseline. The improvement in localization accu-
racy for TimeWeighted and FrequencyWeighted

Figure 5: CDF plots for TimeWeighted and FrequencyWeighted algorithms w.r.t Baseline for operator Y.

Kuldeep Yadav and Vinayak Naik

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in530

over baseline is approximately 10% and 11%
respectively, as shown in Table 5.

Figure 5b show the CDF plot where perform-
ance of TimeWeighted and FrequencyWeighted
algorithm is compared with baseline for walk-
ing traces. Overall TimeWeighted and Frequen-
cyWeighted algorithms give median accuracy
improvement of approximately 35% and 10%
respectively over the baseline approach. Earlier, we
had hypothesized FrequencyWeighted algorithm to
provide higher localization accuracy than Time-
Weighted algorithm for walking traces (as dis-
cussed in Section 3.5). However, empirical study
showed otherwise. Close observation of the col-
lected data revealed that the walking traces con-
tained a lot of location names, that were farther
located, 1200–1500 meters from phone’s actual
location. This noise, particularly, gets added by the
geo-coding service and presence of distant loca-
tion names, which are among the challenges men-
tioned in Section 3.3. Effect of this noise can also
be seen in terms of higher baseline error for walk-
ing traces (712.94 meter) as compared to traveling
traces (621.4 meters). In case of TimeWeighted
algorithm, when such a CBS message with dis-
tant location name is received most recently, the
calculated location is inaccurate. However, as the
time progresses the weight of the CBS message
with distant location is reduced, correspondingly
resulting inaccuracy is reduced in estimated loca-
tion as well.

We conclude that our initial assumption that
fast and slow motion patterns would demand
different approaches for improved localization
was empirically found incorrect on our collected
data. As shown here, TimeWeighted algorithm
that was hypothesized to handle fastmotion suf-
fices for slow motion as well since it tolerates the
noise added by the distant CBS location names
for real data. However, we believe that the locali-
zation accuracy may vary slightly across different
environments. For operator X, baseline accu-
racy was good due to good quality of landmarks.
Improvement in localization accuracy for Time-
Weighted and FrequencyWeighted over baseline

is approximately 18% and 17% respectively, as
shown in Table 5.

If we don’t have ground truth of whether the
person is moving slow or fast, we cannot com-
bine the algorithms. However, if we have a way
of finding that out, for example using an acceler-
ometer, then the two algorithms can be combined
into one to give optimal accuracy. We have used
TimeWeighted algorithm in designing multimodal
approaches, which combines CBS-based localiza-
tion with Cell ID and GPS to enhance accuracy.
Our empirical evaluation shows that combination
of Cell ID + CBS can improve the median localiza-
tion accuracy by up to 40% while Cell ID + GPS
can improve the localization accuracy by 51%.

We implement both FrequencyWeighted and
TimeWeighted algorithms as a part of CBS service,
which runs on the phone. CBS service continuously
listen to incoming CBS messages and stores them
in a location vector with their geo-coordinates.
Whenever any application needs current location
of the user, the service takes location vector as an
input and returns calculated coordinates.

4 Communication
Many mobile phone users across the world still
use 2G based data connection to download large
files from Internet. Most advanced 2G technology
(EDGE) can provide download throughput of up
to 48 KBps. We performed an experiment to meas-
ure the throughput of 2G data connection in wild
by repeatedly downloading a MP3 song of about
5 MB size on five different phones, used by volun-
teers for a week. The median download through-
put achieved by the EDGE network across two
operators was about 18 KBps while the variation in
throughput was from 4 KBps to 28 KBps. We also
observed many instances of failed downloads—
approx. 22% downloads failing for Operator A and
approx. 42% for Operator B. Low throughput and
failed downloads are primarily due to two major
reasons—variable wireless conditions (low RSSI)
and variable load on cellular networks. As a result
downloading content (especially multimedia) on
EDGE results in several limitations—1) Higher
time to download; 2) Excessive power consumption
due to low throughput (cellular radio is switched
ON irrespective of data speed;39,41 and 3) Poor user
experience due to frequent failed downloads.

There is a lack of appropriate systems that can
assist users while downloading content in limited
bandwidth conditions offered by 2G. It has been
observed that co-located people have similar interests
w.r.t. downloading of the content. For instance, Fig-
ure 6 shows media overlap among 38 mobile phone
users in a publicly available dataset. Mobile phone

Table 5: For operator X, Median localization error
(in meters) comparison of TimeWeighted and
FrequencyWeighted algorithms with baseline for
walking and traveling traces.

Traces Baseline TimeWeighted
Frequency-
Weighted

Travelling 688.2 618.29 615.14

Walking 466.69 382.8 386.56

Empowering Feature Phones to Build Smart Mobile Networked Systems

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in 531

users are typically expected to be part of several
social gatherings during the day at different places
i.e. home, workplace, and even while commuting.44
The key idea of Unity is to use these social meetings
to provide a collaborative environment with a usa-
ble interface to enable faster downloads of content
desired by all (or most) of the participating peers.

4.1 Architecture
System architecture of Unity is guided by various
capabilities of commonly available phones. Unity
works in two different modes for the participating
phones i.e. a phone can either act as a coordinator
or a peer. The coordinator initiates the download,
recruits phones in the geographical vicinity that
are willing to participate in the download process,
and coordinates all the communication with the
participating peers. The peer connects to the coor-
dinator, downloads a part of the desired workload
and shares it with the coordinator. The coordina-
tor, within itself, also runs a peer instance to share
the download workload. In Unity , all the local
communication among peers happens through
short range radio technology such as WiFi or
Bluetooth as shown in Figure 7.

4.1.1 Usage scenario: Let us now explain the
utility of Unity through a usage scenario, as shown
in Figure 7. Three friends Alice, Bob and Carol,
are interested in the multimedia content “V” and
decide to use Unity for collaborative downloading
as follows:

1. Alice decides to be the initiator and therefore
launches Unity coordinator mode. She finds
the URL of “V” and feeds it into Unity. Bob and
Carol launch the peer mode of Unity .

2. After Alice chooses a network interface available
within all three of their devices e.g. Bluetooth/

WiFi, Unity launches device discovery on the
selected network interface to find nearby peers—
Bob and Carol, and recruit them as peers.

3. From the given URL, Unity in the coordinator
mode finds the size of “V” using the HTTP pro-
tocol request and equally divide the file work-
load among the three peers by communicating
with each one of them the URL address and
block information. Block information denotes
the number of bytes with start and end byte to
be downloaded.

4. On receipt of content download request from
coordinator, peers start downloading the
assigned blocks using their cellular connection.

5. On complete download of the assigned indi-
vidual block, each peer sends it to the coordi-
nator who combines all the blocks to make the
desired content “V”.

6. Coordinator also communicates the remain-
ing blocks (from the received and downloaded
blocks) to each peer. As a result, each partici-
pating peer gets access to the whole file after
combining the received blocks with its own
downloaded blocks.

4.2 Implementation details
Initial implementation of Unity was built for
Android phones as they continue to grow in
countries like India and at the same time, pro-
vide rich networking API support essential for
the implementation. However, Unity can work
on any Java-enabled phone too. We have kept
design of Unity modular so that it can easily run
on phones with different capabilities. Some of the
different modules of Unity are User interface mod-
ule, Local networking module, Downloader module

Figure 6: Media file overlap among 38 users in
publicly available Nokia MDC dataset. User ID 14
and 15 have 133 common media files where as
total 47 user pairs have atleast one common media
file among them. Figure 7: Design of proposed system Unity, a

group of mobile phones users collaborates with
each other to download a single workload which
are of interest to all of them.

Kuldeep Yadav and Vinayak Naik

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in532

and Controller module.32 User interface module is
responsible for showing different screens to user
based on the selected mode i.e. Coordinator or
Peer. Figure 9a shows the home screen of Unity for
coordinator which accepts different parameters
from the user to get started. Local networking
module enables seamless data sharing and mes-
sage passing between different peers and coor-
dinator using WiFi or Bluetooth. Downloader
module connects to the Internet using a cellular
connection and download desired content given
URL address and byte ranges as an input. Also,
if download of a workload got failed in between,
it restarts the download of a workload from the
point it got failed. Controller module invokes
other modules and also based on user choice, it
selects collaboration policy i.e Unity-Adapt or
Unity-Default (described in Section 4.2.2).

4.2.1 Local networking: Unity’s local network-
ing module may use WiFi and Bluetooth based on
its availability on participating phones. However,
WiFi and Bluetooth have different networking
stack in the phones and thus, require completely
different and independent implementation.

Unity-WiFi: This is a variant of Unity which uses
WiFi for local communication. WiFi (802.11) sup-
ports two different modes: Infrastructure and Adhoc.
In infrastructure mode, two or more WiFi enabled
devices have to use a intermediate WiFi access point
(AP) to communicate between them because AP is
used for routing of data packets. In adhoc mode,
two different devices can directly (i.e. P2P) com-
municate with each other without any AP. Android
started supporting WiFi Adhoc mode after OS ver-
sion 4.0, popularly called as WiFi-Direct. There are
large number of phones, with prior Android OS ver-
sions such as 2.2 or 2.3.3 Building our system with
WiFi-Direct would have eliminated more than 70%
of the total Android based phones. Further, WiFi
adhoc mode results in higher energy consumption
as all the peers have to stay awake and send beacons
to exchange data whenever required.

As an alternative of WiFi adhoc mode, we use
a novel utility provided by Android called as WiFi
hotspot, primarily designed for sharing the Internet
connection of the phone with other devices such as
a laptop. WiFi hotspot utility is available on all ver-
sion of Android which are running Android 2.3 or
beyond. WiFi hotspot utility uses 802.11 infrastruc-
ture mode which turn the phone into WiFi AP and
other phonesb can connect to it. For simplicity, let
us assume that coordinator is acting as WiFi AP and

b Android 2.3 based AP can support up to 6 connected devices
whereas Android 4.0supports up to 7 devices.

all other phones connected to it are different peers.
Figure 8 shows various control and data exchanges
between a Unity coordinator and two Unity peers,
following is corresponding description:

1. The phone, which is running Unity coordina-
tor creates WiFi AP and other peers connect to
it as clients.

2. As shown in Figure 8, coordinator launches
device discovery to discover all connected
peers and exchange a few control messages
with them individually to get information
such as peer name. (Refer Phase 1)

3. After device discovery step, block information
and URL is passed on to all the peers using a
control message and each of them start down-
loading their block from Internet. By default,
Android uses WiFi AP functionality for ena-
bling tethering and it may happen that peers
start downloading using coordinator’s data
connection. To force the peers to use their own
data connection, we change the connection
priority during download. (Refer Phase 2)

Figure 9: Different screens for Unity coordinator:
(a) shows the different modes and variants of Unity,
(b) Peers running Unity peer mode and (c) Trans-
fer rate of downloading and blocks received from
other devices.

Figure 8: Sequence diagram of various control
and data exchanges between different phones in
Unity-WiFi.

Empowering Feature Phones to Build Smart Mobile Networked Systems

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in 533

4. Coordinator can also check the status of block
download in between by sending a status
request.

5. On download completion, peers send their
data blocks to the coordinator. On receipt of
blocks from all the peers, coordinator sends
the remaining blocks for each peer to them.
Peers then merge the received blocks with
downloaded blocks to get the complete con-
tent. (Refer Phase 3 and 4)

Coordinator, acting as WiFi AP, will be awake
for whole download duration while the peers can
operate in power saving mode (PSM) which con-
sumes negligible energy29 or even turn off their
WiFi to save energy when not in use. As shown in
Figure 7, star topology where one phone, acting
as coordinator, communicates with all the other
phones results in smaller local communication
bandwidth as compared to the distributed archi-
tecture. Unity-WiFi requires that at least one per-
son in the group should have a phone with WiFi
hotspot capability and all other phones should
have WiFi.

Unity-Bluetooth: To enable Unity on feature
phones, we also developed a Bluetooth based local
networking module. Bluetooth only supports
adhoc P2P connection. In case of Unity, coordina-
tor runs Bluetooth server instance and the peers
run Bluetooth client instance. All control and data
exchanges in Unity-Bluetooth happen in the same
order as Unity-WiFi. In the device discovery phase,
each Unity peer creates a bluetooth socket with a
service recordc and listens for incoming connec-
tions whereas Unity coordinator connects with
them subsequently and exchanges information
such as peer name as shown in Figure 8. Bluetooth
server stores all the UUIDs with peer names for
futurecommunication. Unlike Unity-WiFi, it does
not require changing data priority on different
peers. nication.

4.2.2 Collaboration schemes: Unity has two
different collaboration schemes—Unity-Default,
Unity-Adapt. Unity-Default divides the desired
workload of size d into equally sized blocks.
If there are n devices participating in the down-
load, block size, to be downloaded by eachpeer,
will be d/n. This scheme has advantage in terms
of fairness as all the collaborating peers will incur
equal amount of data connection expense. How-
ever, in cellular network conditions, it is usual
that some nearby peer may be experiencing poor

c Unity has a common service name and unique UUID number
for each peer.

cellular network conditions resulting in low down-
load rate.39 In such cases, this scheme will result in
increased waiting time for Unity coordinator and
other peers due to the peer who is experiencing
low throughput. Our experiments showed that for
large downloads, this incremental wait could be
several minutes thus correspondingly increasing
the energy consumption as well.

To reduce this waiting time, Unity uses a sim-
ple algorithm, which adapts to changing network
conditions termed as Unity-Adapt. For a workload
of size d, Unity-Adapt divides it into equally sized
blocks of size k.d Unity coordinator assigns each
peer a single block to download at a time and
the peer is expected to request another block to
download whenever it finishes downloading 80%
of the assigned block. Unity coordinator will keep
on allocating the blocks dynamically until all the
blocks are assigned. Thereafter, Unity peers will
send all the downloaded blocks to Unity coordi-
nator together to minimize control overhead and
frequent connections.

4.3 Evaluation
In this section, we present brief evaluation results
of Unity while running on Android phones. The
detailed evaluation results are given in our prior
work.32 We define some of the evaluation metrics
for Unity. Total download time is the time taken
by Unity to collaboratively download a work-
load and deliver it to all the collaborating peers.
From total download time, we compute effective
download rate which is equal to workload size
divided by total download time. Our evaluation
experiment consists of four Android phones,
three of them manufactured by HTC and one by
Samsung. All the phones were running Android
2.3.3 OS.

4.3.1 Download rate vs workload size: To eval-
uate download rate in Unity with varying number
of collaborating devices and varying workload
sizes, we downloaded five different workloads i.e.
3 MB, 6 MB, 9 MB, 12 MB, 15 MB with default
collaboration policy. Number of collaborating
devices were varied from 2, 3 and 4 for each of
the workload. For each download instance, the
download rate of individual devices are computed
from the time taken by them to download the
assigned workload and effective download rate
of Unity is computed as defined in metrics above.
In case of Unity-WiFi with 3 devices, as shown
in Figure 10a, effective download rate increases

d Value of k in this case is typically greater than the number of
collaborating devices.

Kuldeep Yadav and Vinayak Naik

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in534

linearly with workload size. Unity download rate
is comparatively low for smaller workloads as
local communication overhead for collaboration
across different peers takes significant time. How-
ever, with increasing workload size, this overhead
becomes negligible.

4.3.2 Overhead comparison: Total download
time for Unity consists of workload downloading
time from internet, local sharing amongst collabo-
rating devices and merging the shared workloads.
It is useful to accurately quantify the overhead
caused by different Unity operationsi.e. local net-
working and merging, and compare them with the
total download time. For this purpose, we ran three
instances of workload (12 MB) using Unity and
collected logs with high resolution time intervals
for these activities. Average overhead % across the
3 instances for Unity-WiFi and Unity-Bluetooth is
shown in Figure 11.

We observed that much of the overhead in
Unity is dominated by local networking mod-
ule for exchanging control and data messages
across different devices. As a result, overhead %
using WiFi is smaller than using Bluetooh due

to the corresponding difference in data trans-
fer rates (WiFi: 1.5–2 MBps and Bluetooth:
450–480 KBps).29

4.3.3 Measuring impact of Unity-Adapt: Due
to variable cellular network conditions, one or
more devices may download at a lower rate in
Unity thereby increasing the overall download
time. As an instance, in Figure 10b, device D3
downloaded with slower rate as compared to the
other 2 devices. To avoid such a situation, Unity-
Adapt divides the whole workload into smaller
block sizes and keeps assigning them to the col-
laborating peers based on their download rate.
Empirically, we found that block size equal to
1 MB works well in Unity and used it for these
experiments. With 3 collaborating devices, we gave
Unity a workload of 12 MB to download in three
different instances. Across all of these instances,
average download rates of the three devices were
5.94 KBps, 8.14 KBps and 10.54 KBps for D1, D2
and D3 respectively. On an average, Unity without
adaptation downloaded the whole workload in
approx. 692 seconds. However, when using Unity-
Adapt, total download time was reduced to approx.
505.78 seconds resulting in approx. 27% improve-
ment. Additionally, the workload downloaded by
a peer on an average was representative of their
download rate i.e. D1 (3 MB), D2 (4 MB) and D3
(5 MB).

5 Sensing
Dedicated sensing infrastructure does not exist
in many countries due to lack of resources, cost,
and bigger scale of deployment. Smartphones
have many sensors such as accelerometer, audio,
GPS, camera etc which can be used for collecting
rich and good quality data with minimal cost as
compared to dedicated sensors deployment. As

Figure 10: Download rate of Unity-WiFi and Unity-Bluetooth with different workloads and total 3 collaborat-
ing devices. D1, D2, and D3 represents the individual device’s estimated download rate.

Figure 11: Overhead % comparison between
Unity-WiFi and Unity-Bluetooth.

Empowering Feature Phones to Build Smart Mobile Networked Systems

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in 535

discussed earlier, penetration of smartphones is
limited for now. Hence, our participatory sens-
ing system design have multimodal interfaces to
submit important events related to city as shown
in Figure 12. Apart from “human-in-loop” data
collection interfaces, our system automatically
extracts events from given social media feeds.
All the submitted events go to the Cloud which
aggregates, pre-processes these events, and then,
find patterns from the data. Moreover, our sys-
tem is designed for unified open-ended sensing
and broadly divide all events into five major cat-
egories: Civic complaints, traffic, neighbourhood
issues, emergency and others.

5.1 System details and deployment
In Human Sensors system, there are different
modes to submit event reports i.e. (1) mobile
application, (2) SMS, (3) Web-based form and it
automatically extracts event reports from social
media feeds.45

5.1.1 Android-based mobile application: We
built an application for only Android OS due to
two different reasons; (1) It provides rich support
of APIs to capture contextual data, (2) Android
based mobile devices are getting increasingly pop-
ular in developing countries such as India. The
android application is designed in such a way that
it provides a user friendly UI for the participants
to report events with minimum efforts. Snapshot
of different screens of the application can be seen
on Google play.11

Whenever, a user wants to submit an event,
she chooses a category which broadly describe the
event among civic complaints, traffic, neighbour-
hood issues, emergency or others. After choosing
an appropriate category of the event, application
prompts user to enter more details about the event
i.e. free form text describing the event, the loca-
tion/landmark of the event, and some appropriate
tags related to the event. To provide more contex-
tual sensor information, which can further assist
the event report, the participant can also click the
button Click Image which starts the camera of the
phone and captures an image. The Record Audio
button records a short audio clipping of 10 second
duration to capture the sound in the vicinity of the
event. On pressing the Submit button all the data
including the text input, image, audio clip along
with the GPS coordinates and cell information
is uploaded using HTTP Post request to a server.
Based on HTTP response, users get a notification
on their phone either acknowledging successful
upload or an error message incase of a failure.

5.1.2 SMS and web based event report sub-
mission: There are significant number of phones
which do not run Android OS or limited pro-
gramming capability. To extend the reach of our
event report submission, we enabled participant
to send report via SMS messages too. This option
is suitable for non-programmable phones, non-
supported smartphones, and users who do not
prefer to use their data connection for sending
reports.The following is a sample report: Police

Figure 12: CrowdSensing and Multi-modal Data Fusion Testbed.

Kuldeep Yadav and Vinayak Naik

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in536

asking 1000 rs bribe for approving passport for a
friend, though all documents are perfect @ indore

For non-Android smartphone or tablet users,
we have also enabled web based event report sub-
mission. After one time registration and login,
user can go to the website12 and submit the event
report similar to Android application. Our web-
based form too allows rich data collection which
can consist of text, audio and video inputs.

5.1.3 Social media feeds: Specifically in India,
there are some initiatives started by government
departments6 and individuals18 to crowdsense
and disseminate information which may benefit
citizens. Our system uses APIs provided by social
mediawebsites such as Facebook to extract event
reports from them which may complement the
data reported by testbed users.

5.2 System deployment
We have publicized our system among univer-
sity students through email and posters in India
and asked them to submit city events happening
around them. There were also facebook and twit-
ter pages to continuously engage the students. The
duration of system deployment was for about 3
months. Due to multiple event report submission
methods, we capture different kind of information
among which some of them need to be input by
the user, while others get automatically captured
and are sent when the event is submitted as shown
in Table 6.

From our deployment, we were able to col-
lect a total of 838 event reports among which 488
were submitted using web, 210 were submitted
using SMSes and 140 events were submitted using
Android application. A total of 435 users were reg-
istered in the system. While participants can sub-
mit text, audio and images, predominantly they
have submitted text details of the events. Over-
all, we got 838 text reports i.e. all the submitted

events had text, 182 of events had images and 5
had audio clip.

5.3 Preliminary data analysis
Most of text reports submitted using mobile appli-
cation or SMSes contained noisy data because
intentional corruptions are very common in data
uploaded from mobile devices.42 This is due to the
limited data entry options (keypad constraints
on mobile devices) and due to the pressure of
reducing communication latency (or cost in case
of SMS) by keeping messages short yet intelligi-
ble. We have used several pre-processing steps to
extract meaningful information such as location,
category etc from the reports which came from
social media or SMS. For instance, many text
reports do not have any delimiter which can be
used to find the location names embedded into it.
To find location name in such reports, we parse
the text and usepopular location suffixes such as
‘nagar’, ‘chowk’, ‘cross’ etc to estimate the location
name. We have used a location dictionary to auto-
matically learn location suffixes which can help
in location name extraction. Extracted location
name could be a locality name or a city name, we
used Google’s geocoding API to convert the loca-
tion names to approximate geo-coordinates. But,
there may exist some location names which can
not be geocoded by Google’s geocoding service
i.e. some lesser known locality names which does
not exists on Google Maps.47 For such names, we
used a dictionary of 963 Indian cities and towns to
translate the location names to their correspond-
ing city names. Those city names were in turn
fed to the Google’s geocoding service to retrieve
approximate geo-coordinates.

As part of analysis, we analyzed the distribu-
tion of different event categories across different
states for finding major patterns in the submitted
data. Across India, most of events (43%) submit-
ted are about civil issues followed by traffic issues
(22%), neighborhood issues (18%), emergency
(7%) and others (10%). The three states from
which we have received the maximum data are
Uttrakhand (105), Delhi (95) and Tamilnadu (80).
We have seen a large variance in distribution of
various event categories across different states, for
instance, maximum reports (54%) from Uttra-
khand contains civil complaints; in Delhi, traffic
events (42%) and from Tamilnadu, both civic and
neighborhood issues (80%) were maximum.

Further, we analyzed the event text for specific
categories to find broad patterns in the data.
Figure 13a shows the tag cloud of textual reports
submitted for traffic related events in Delhi.
Most of the event deals in reporting of high

Table 6: Automatic and manual information
collected by different modes of our crowdsensing
system i.e. SMS(S), Web-based form (W), Mobile
Application (MA) and Social Media Feeds (SM)

Automatically
sent details Manually sent details

Time Stamp
(S + W + MA
+ SM)

Event Type—(W + MA)

Lat, Lng, Cell Info
(MA + SM)

Message/Text (S + W + MA + SM)
Event Tags (W + MA)
Textual Location (S + W + MA + SM)
Image & Audio (W + MA + SM)

Empowering Feature Phones to Build Smart Mobile Networked Systems

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in 537

traffic, jam, congestion, water logging etc. Simi-
larly, Figure 13b shows the tag cloud of report
submitted for neighborhood issues in Tamilnadu
and most of them deals with water logging, waste,
drainage, unauthorized parking etc. From our
preliminary data analysis, we have found that
Human Sensors can potentially be used to source
data from community and then making decisions
accordingly. From our limited data, we found that
Delhi is more concerned about traffic jams, a more
detailed analysis of data can also reflect the causes
of traffic jams as well as location where they hap-
pen regularly.

6 Discussion
Sixty percent of total phones will be feature phones
in 2016. Due to absence of many sensors and good
processing capacity, many feature phone users can
not use applications which have become ubiqui-
tous among smart phone users. In this paper, we
take into consideration three different directions
i.e. Localization, Communication, and Sensing to
empower feature phones. For each of these direc-
tions, we describe various challenges in realizing a
working system and design a system solving some
of those challenges.

For Localization, we described our CBS-
based approach which removes the necessity of
war-driving or building a Cell ID database for
GSM based localization. Evaluation using real-
world traces shows that the proposed approach
can provide reasonably good accuracy which is
sufficient for many location based services. We
have developed several location-aware applica-
tion using CBS-based localization technique and
even built multimodal techniques using Cell ID
and GPS, which can minimize energy consump-
tion on smartphones. Hence, CBS-based localiza-
tion is a promising solution, especially for feature

phones and provides mobile users in developing
countries, an opportunity to access location based
services without any extra infrastructure.

For Communication, we described Unity
which enables faster communication on several
co-located phones which have limited bandwidth
connection (2G). Multiple people, specifically
those who have similar interests typically inferred
by social network or geographic proximity, have
overlapping interests in desired content such as
multimedia songs and videos. However, most
often they tend to download the same content
individually from Internet. Unity enables collabo-
ration between co-located and socially connected
users to download mutually desired content from
Internet. Unity is implemented as a complete sys-
tem for Android and is evaluated for effectiveness
on different workload sizes and varying number
of collaborating devices. Unity users will benefit
byincurring lower costs for data connection as
well as multi-fold increase in download time while
reducing overall energy consumption. However,
users have to manually keep track of their friend’s
content preference as well as location in Unity . We
are extending current architecture of Unity with
the help of the cloud to address some of these lim-
itations and make collaboration more useful and
pervasive. The cloud acts as a control information
gateway among different mobile peers interested
in collaboration.

For Sensing, we designed and deployed an
open-ended community sensing test bed in India.
The main goal of test bed was to sense various
events across different cities or day-to-day prob-
lems with citizens’ participation. We have enabled
multimodal submission interface for submission
of events to increase citizen participation. Sub-
mission interfaces such as SMS gives flexibility
as well as cost reduction to participants because

Figure 13: Tag Clouds of some of major patterns found in data collection, Delhi residents were mostly
concerned with traffic-related problems where as Tamilnadu had civic issues.

Kuldeep Yadav and Vinayak Naik

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in538

many people in developing countries subscribe
to bulk SMS plans. From our deployment, we
have observed that all our submission interfaces
were used by the participants. The primary goal
of our effort was to explore the challenges in col-
lecting balanced and reliable data by exploiting
the unreliable, autonomous “community of sen-
sors”. This was a preliminary effort and we look
to solve many challenges which we encountered
during our deployment such as engaging partici-
pants, controlling data quality and automatic data
validation.

Other the afore-mentioned three aspects, one
more aspect, where there is a disparity between
feature phones and smartphones is computational
resources. One way to deal with the disparity is
with the use of cloud-based VM. In this solution,
the feature phone is made into a thin client and
the compute intensive operations are done in a
VM on the cloud. We are currently working on
this solution.

Acknowledgements
First author is supported by a PhD Fellowship from
Microsoft Research, India. The work presented in
this paper is outcome of many collaborations and
research grants including Nokia Research Centre,
Microsoft Research India, and IBM India Research
Labs. We would like to thank all the volunteers,
who helped us in collecting data for all these
projects and Aparna Bharati for proof reading
drafts of this paper.

Received 9 July 2013.

References
 1. 3G penetration statistics in China, 2013. http://in.news.

yahoo.com/billion-mobile-phones-china-3g-penetra-

tion-low-042833846.html.

 2. 3G penetration statistics in India, 2013. http://www.

zdnet.com/in/3g-subscribers-form-2-percent-of-indias-

mobile-users-7000004883/.

 3. Android OS Version Statistics, 2013. http://androidan-

dme.com/2012/05/smartphones-2/ android-4-now-on-5-

of-android-devices-gingerbread-still-dominant/.

 4. Cell Broadcast Standards, 2013. http://cell-broadcast.

blogspot.com/2005/11/history-and-importance-of-cell.

html.

 5. Cell Spotting, 2013. http://www.cellspotting.com/web-

pages/ cellspotting.html.

 6. Delhi Police Facebook Traffic Page, 2013. https://

www.facebook.com/pages/Delhi-Traff ic-Police/

117817371573308fref=ts.

 7. Google Geocoding APIs, 2013. https://developers.google.

com/maps/documentation/geocoding/.

 8. Google Mobile Maps, 2013. http://maps.google.com.

 9. Google Place APIs, 2013. https://developers.google.com/

places/ documentation/.

10. Google Place APIs, 2013. https://maps.googleapis. com/

maps/api/place/search/json?location=28.5962491,77.33

96212&radius=5000&name=TRILOKPURI&sensor=fa

lse&key=AIzaSyB5lTaawAGOMSLTyiQGJBwlWt4b4C-

4iUc.

11. Human Sensors Android Application on Google Play,

2013. https://play.google.com/store/apps/details?id=com.

ibm.sensingApplication.

12. Human Sensors Web Application, 2013. http://kalpa.

haifa.il.ibm.com: 9080/indiaChallenge/.

13. Introduction to Cell Broadcast, 2013. http://www.gsm-

helpdesk.nl/en/ helpdesk/helpdesk.php?id=57.

14. Mobile only users across the world, 2013. http://

mobithinking.com/mobile-marketing-tools/latest-

mobile-stats/b#mobile-only.

15. Number of mobile phone shipments, 2013. http://

mobithinking.com/mobile-marketing-tools/latest-

mobile-stats/a#phone-shipments.

16. Number of mobile phone subscriptions , 2013. http://

www. internetworldstats.com/mobile.htm.

17. Open Cell ID, 2013. www.opencellid.org.

18. Power Cuts, 2013. www.powercuts.in.

19. P. Bahl and V. N. Padmanabhan. Radar: an in-building rf-

based user location and tracking system. pages 775–784,

2000.

20. A. Balasubramanian, R. Mahajan, and A. Venkataramani.

Augmenting mobile 3g using wifi. In Proceedings of the 8th

international conference on Mobile systems, applications,

and services, pages 209–222. ACM, 2010.

21. N. Balasubramanian, A. Balasubramanian, and A. Venkata-

ramani. Energy consumption in mobile phones: a measure-

ment study and implications for network applications. In

Proceedings of the 9th ACM SIGCOMM conference on Inter-

net measurement conference, pages 280–293. ACM, 2009.

22. M. E. N. Bayir, M.A.; Demirbas. Discovering spatiotemporal

mobility profiles of cellphone users. In IEEE International

Symposium on World of Wireless, Mobile and Multimedia

Networks and Workshops, 2009. WoWMoM 2009, Washing-

ton, DC, USA, 2009. IEEE Computer Society.

23. A. T. Campbell, S. B. Eisenman, N. D. Lane, E. Miluzzo,

R. A. Peterson, H. Lu, X. Zheng, M. Musolesi, K. Fodor,

and G.-S. Ahn. The rise of people-centric sensing. Internet

Computing, IEEE, 12(4):12–21, 2008.

24. M. Y. Chen, T. Sohn, D. Chmelev, D. Haehnel, J. Hight-

ower, J. Hughes, A. Lamarca, F. Potter, I. Smith, and

A. Varshavsky. Practical metropolitan-scale positioning

for gsm phones. In In Proceedings of the Eighth Interna-

tional Conference on Ubiquitous Computing. Springer,

2006.

25. M. Y. Chen, T. Sohn, D. Chmelev, D. Haehnel, J. Hight-

ower, J. Hughes, A. LaMarca, F. Potter, I. Smith, and A. Var-

shavsky. Practical metropolitan-scale positioning for gsm

phones. In UbiComp 2006: Ubiquitous Computing, pages

225–242. Springer, 2006.

Empowering Feature Phones to Build Smart Mobile Networked Systems

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in 539

26. Y.-C. Cheng, Y. Chawathe, A. LaMarca, and J. Krumm.

Accuracy characterization for metropolitan-scale wi-fi

localization. In Proceedings of the 3rd international con-

ference on Mobile systems, applications, and services, pages

233–245. ACM, 2005.

27. J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden,

and H. Balakrishnan. The pothole patrol: using a mobile

sensor network for road surface monitoring. In ACM

MobiSys, 2008.

28. S. Feng and C. L. Law. Assisted gps and its impact on navi-

gation in intelligent transportation systems. In Intelligent

Transportation Systems, 2002. Proceedings. The IEEE 5th

International Conference on, pages 926–931, 2002.

29. R. Friedman, A. Kogan, and Y. Krivolapov. On power and

throughput tradeoffs of wifi and bluetooth in smart-

phones. In INFOCOM, 2011 Proceedings IEEE, pages 900–

908. IEEE, 2011.

30. S. Gaonkar, J. Li, R. R. Choudhury, L. Cox, and A. Schmidt.

Micro blog: sharing and querying content through mobile

phones and social participation. In Proceeding of the 6th

international conference on Mobile systems, applications,

and services, MobiSys ’08, pages 174–186, New York, NY,

USA, 2008. ACM.

31. M. Ibrahim and M. Youssef. A hidden markov model for

localization using low-end gsm cell phones. In Commu-

nications (ICC), 2011 IEEE International Conference on,

pages 1–5. IEEE, 2011.

32. P. Jassal, K. Yadav, A. Kumar, V. Naik, V. Narwal, and

A. Singh Unity: Collaborative downloading content

using co-located socially connected peers. In The Ninth

International Workshop Mobile Peer-to-Peer Computing

(MP2P’13). IEEE, 2013.

33. M. Kjasrgaard. Location-based services on mobile phones:

Minimizing power consumption. Pervasive Computing,

IEEE, 11(1):67–73, 2012.

34. N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury,

and A. T Campbell. A survey of mobile phone sensing.

Communications Magazine, IEEE, 48(9):140–150, 2010.

35. P. Mohan, V. N. Padmanabhan, and R. Ramjee. Nericell:

rich monitoring of road and traffic conditions using

mobile smartphones. In Proceedings of the 6th ACM con-

ference on Embedded network sensor systems, pages 323–

336. ACM, 2008.

36. M. Mun, S. Reddy, K. Shilton, N. Yau, J. Burke, D. Estrin,

M. Hansen, E. Howard, R. West, and P. Boda. Peir, the

personal environmental impact report, as a platform for

participatory sensing systems research. In Proceedings of

the 7th international conference on Mobile systems, applica-

tions, and services, pages 55–68. ACM, 2009.

37. P. Nurmi, S. Bhattacharya, and J. Kukkonen. A grid-based

algorithm for on-device gsm positioning. In Proceedings of

the 12th ACM international conference on Ubiquitous com-

puting, pages 227–236. ACM, 2010.

38. J. Paek, J. Kim, and R. Govindan. Energy-efficient rate-

adaptive gps-based positioning for smartphones. In

Proceedings of the 8th international conference on Mobile

systems, applications, and services, MobiSys ’10, pages 299–

314, New York, NY, USA, 2010. ACM.

39. A. Schulman, V. Navda, R. Ramjee, N. Spring, P. Desh-

pande, C. Grunewald, K. Jain, and V. N. Padmanabhan.

Bartendr: a practical approach to energy-aware cellular

data scheduling. In Proceedings of the sixteenth annual

international conference on Mobile computing and net-

working, pages 85–96. ACM, 2010.

40. A. Schwaighofer, M. Grigoras, V. Tresp, and C. Hoffmann.

Gpps: gaussian process positioning system for cellular

networks. In IN NIPS. MIT Press, 2004.

41. A. Sharma, V. Navda, R. Ramjee, V. N. Padmanabhan, and

E. M Belding. Cool-tether: energy efficient on-the-fly wifi

hot-spots using mobile phones. In Proceedings of the 5th

international conference on Emerging networking experi-

ments and technologies, pages 109–120. ACM, 2009.

42. L. V. Subramaniam, S. Roy, T. A. Faruquie, and S. Negi.

A survey types of text noise and techniques to handle

noisy text. In Proceedings of The Third Workshop on Ana-

lytics for Noisy Unstructured Text Data, pages 115–122.

ACM, 2009.

43. A. Thiagarajan, L. S. Ravindranath, H. Balakrishnan,

S. Madden, L. Girod. Accurate, Low-Energy Trajectory

Mapping for Mobile Devices. In 8th USENIX Symp. on

Networked Systems Design and Implementation (NSDI),

Boston, MA, March 2011.

44. L. Vu, Q. Do, and K. Nahrstedt. Jyotish: A novel frame-

work for con structing predictive model of people

movement from joint wifi/bluetooth trace. In Pervasive

Computing and Communications (PerCom), 2011 IEEE

International Conference on, pages 54–62. IEEE, 2011.

45. K. Yadav, D. Chakraborty, S. Soubam, N. Prathapaneni, V.

Nandakumar, V. Naik, N. Rajamani, L. V. Subramaniam,

S. Mehta, and P. De. Human sensors: Case-study of open-

ended community sensing in developing regions. In 11th

International Conference on Pervasive Computing and

Communications. IEEE, 2013.

46. K. Yadav, V. Naik, and A. Singh. Mobishare: cloud-enabled

opportunistic content sharing among mobile peers. 2012.

47. K. Yadav, V. Naik, A. Singh, P. Singh, and U. Chandra. Low

energy and sufficiently accurate localization for non-

smartphones. In Mobile Data Management (MDM), 2012

IEEE 13th International Conference on, pages 212–221.

IEEE, 2012.

48. K. Yadav, V. Naik, A. Singh, P. Singh, P. Kumaraguru, and

U. Chandra Alternative localization approach for mobile

phones without gps. In In proceedings of NSDR’10 (co-

located with Mobisys’10), 2010.

49. K. Yadav, V. Naik, P. Singh, and A. Singh. Alternative locali-

zation approach for mobile phones without gps. In Mid-

dleware ’10 Posters and Demos Track, Middleware Posters

’10, pages 1:1–1:4, New York, NY, USA, 2010. ACM.

50. Y. Zhao. Mobile phone location determination and its

impact on intelligent transportation systems. Intelligent

Transportation Systems, IEEE Transactions on, 1(1):55–64,

Mar 2000.

Kuldeep Yadav and Vinayak Naik

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in540

Vinayak Naik is an Assistant Professor at
Indraprastha Institute of Information Tech-
nology, Delhi (IIIT-Delhi) since January 2010.
He received his Ph.D. in CSE from Ohio State
University, USA in 2006 and BTech from VJTI,

India in 1999. He has worked at IISc, UCLA, Telcordia, and
TCS in the past. His research focuses on mobile comput-
ing and reliable large-scale wireless/sensor networks. He
was honored with Rajiv Gandhi Excellence award in Aug
2011 and CENS Local Employee Award in Aug 2008. His
Ph.D. students have been awarded Microsoft Research Ph.D.
Fellowship, Google Best Presenter Award at MobiSys’12
conference, and Prime Minister’s Fellowship Scheme for
Doctoral Research.

Kuldeep Yadav is a 4th year Ph.D. student in
Mobile and Ubiquitous group at IIIT-Delhi.
His current research focusses on building large-
scale mobile systems for developing countries
with specific focus on user location. He has been

awarded prestigious Microsoft Research Ph.D. Fellowship in
2011, which is given to only 5 computer science Ph.D. stu-
dents every year in India. His research is presented and dem-
onstrated at various conferences i.e. ACM MobiSys, ACM/
USENIX Middleware, IEEE MDM, IEEE PerCom, and ACM
HotMobile. He has also been awarded best presentation
award in Ph.D. Forum at MobiSys’12 sponsored by Google
and 1st runners up award in Ph.D. poster session at Micro-
soft Research Tech Vista.

