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Abstract | In last two decades, increase in mobile devices coupled with 
subscriptions have enabled large proliferation of mobile systems and 
applications. Apart from traditional services such as voice calls, SMSes, 
today’s mobile phones enable array of other services i.e. location-based 
services, multimedia, education, citizen information services for the con-
sumers. However, developing mobile system which can work on all the 
mobile devices is still a challenge to solve due to large heterogeneity 
among mobile devices and network. Most of mobile systems are built 
for smartphones, which constitute of only small percentage of all mobile 
devices, rest of devices are feature phones, which have limited capability 
in terms of computation or communication.

We need to take special design considerations while building mobile 
systems for feature phones. In this paper, we present three of such 
mobile systems, which are carefully designed for mobile phones in 
resource-constrained environments. First, CBS-based localization pro-
vides a positioning method for feature phones, which works without war-
driving. Second, a system called Unity that enables collaborative download 
among co-located mobile users and third, a participatory sensing system 
Human Sensors, which enables human-in-loop sensing of city problems 
using a mobile phone.
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1  Introduction
The total number of mobile phone subscriptions 
were nearly 6.8 billion in early 2013 covering more 
than 95% of world population.16 At the same time, 
mobile devices shipments continue to rise every 
year. According to Gartner, 1.75 billion handsets 
were sold in 2012 and it is predicted that in 2013, 
shipments will grow to 1.90  billion.15 Similarly, 
mobile networks have evolved from 1G to 4G 
in last two decades. Increase in mobile devices 
coupled with subscriptions have enabled large 
proliferation of mobile systems/applications. 
Apart from traditional services such as voice 
calls, SMSes, today’s mobile phones enable array 
of other services such as location-based services, 
multimedia, education, mobile payment, social 
media, gaming, and citizen information services 
for the consumers.

Till now, most of the research has focussed 
on building services for smartphones which 
are equipped with powerful set of sensors such 
as compass, accelerometer, GPS, WiFi etc., and 
also, have access to high speed data connection 
(LTE/HSPA/HSDPA). However, there are large 
number of phones which do not have access to 
these sensors popularly called as feature phones. 
As an estimate from Gartner, number of fea-
ture phones are nearly 75% percent of the total 
4.3 billion phones in 2012. Many of these serv-
ices do not work on feature phones due to lack 
of sufficient hardware and limited bandwidth 
data connection (GPRS/EDGE).48 We need to 
take special design considerations for designing 
mobile systems for feature phones. In this paper, 
we describe design and development of mobile 
systems, which will empower feature phones in 
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three aspects, namely, Localization, Communi-
cation, and Sensing.

Current user location has been an integral part 
of user context and an enabler of many services 
like navigation, activity recognition, local business 
search, and friend finder services. Interestingly, all 
context aware services do not require same level of 
accuracy for current location. For instance, navi-
gation applications require high level of accuracy 
(~10 meter) whereas if one has to share location 
with online social networks, even location accu-
racy of hundreds of meter will suffice. There are 
mainly three localization technologies which can 
be used to get user’s current location on mobile 
phone i.e. Global Positioning System (GPS),28,38 
WiFi-based19 and GSM-based.24,40

Among these technologies, GPS is highly accu-
rate (~10–100  meter) and works with the help 
of at least four satellites. However, it consumes 
high energy, requires special hardware, and only 
works outdoors.50 It is predicted that for the next 
five years, over 50% of the phones will not have 
GPS.43 WiFi-based localization requires an already 
established WiFi infrastructure and a perceptual 
map of wireless APs identifiers with respective sig-
nal strengths.26 The process of creating perceptual 
map is called as war-driving. WiFi-infrastructure 
does not exist at a city-scale in many countries 
and war-driving is a cost intensive process.47 Con-
tinuous use of GPS and WiFi drains mobile phone 
battery very quickly,30 many studies have found 
that power consumption is one of the biggest 
barrier in large scale adoption of location-based 
services.33 For the class of applications that do 
not require fine grained location accuracy, GSM-
based localization is better suited due to its wide 
availability and low power consumption. In fact, 
for low-end phones (without GPS/Wi-Fi capabil-
ity) this is best suited.43

As per recent statistics, number of 3G subscrib-
ers in China are only 14% of the total 1 billion cel-
lular subscribers,1 while in India, it is only 2% of 
over 893.8 million subscribers.2 Low penetration 
of 3G/4G networks is attributed to higher setup 
cost, limited number of supporting handsets, and 
expensive data plans. As a result, many people still 
use 2G based data connection which is widely 
deployed and accessible on most of the phones. In 
countries like India and Egypt, over 50% of users 
have access to Internet from mobile phones only.14 
Data consumption rate of the mobile phones is 
increasing every day due to requirements posed 
by mobile applications/services such as multime-
dia. Recent Opera report showsa that, mobile users 

a  Opera Mini is a widely used browser in mobiles.

download content (mostly multimedia) from the 
Internet using 2G network and the top handsets 
used were found to be feature phones.

To enable faster downloading of content 
(workload), we present Unity, a system that ena-
bles collaboration between multiple co-located 
phones (peers). In Unity, co-located peers partici-
pate to individually download different parts of 
the desired workload and then share their down-
loaded part with each other such that everyone 
gets the complete content at the end. Mobile phone 
users are typically expected to be part of several 
social gatherings during the day at different places 
i.e. home, workplace, and even while commut-
ing.44 The key idea of Unity is to use these social 
meetings to provide a collaborative environment 
with a usable interface to enable faster downloads 
of content desired by all (or most) of the partici-
pating peers. Almost all the phones, including fea-
ture phones, have one or more small range radio 
technologies, such as WiFi, Bluetooth, NFC. Unity 
leverages one of the available short range technol-
ogies for coordinating and local sharing of work-
load parts amongst peers while each of the part is 
downloaded by individual peer from the Internet 
using cellular connection.

Many developed countries have city-wide 
deployment of sensing infrastructure to collect 
data about day-to-day city events, the collected data 
is then analyzed online or offline to take a prompt 
action based on those events. For instance, USA 
have deployed traffic sensors across major high-
ways to monitor the health of roads and to detect 
timely events such as traffic congestion. Data col-
lected from these sensors is useful to make broad 
city development decisions. This kind of sensing 
infrastructure does not exist or have limited cov-
erage in many countries due to lack of resources, 
cost, and bigger scale of deployment. Being an 
integrated computing, storage, and communica-
tion device, mobile phones can be efficiently used 
for sensing tasks.34 There has been several efforts 
to use smartphone sensors for variety of purposes 
such as to estimate pollution exposure,36 pothole 
detection27 and traffic conditions.35 All of these 
work expects people to participate, collect appro-
priate sensor data using their smartphones and 
contribute it for a common purpose.23 We have 
designed a participatory sensing system to collect 
information about city events with the help of citi-
zens while offering different submission interfaces 
i.e Android-based mobile application, SMSes, 
and a web based tool. Multimodal interface of the 
system allows citizens to sense and submit events 
using their preferred mode which can minimize 
cost. Findings from processed events data can be 
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used to multiple purposes i.e. citizens informa-
tion, city planning etc.

The paper is organized as follows, Section  2 
presents design goals which needs to be take care 
of, while building system for feature phones. 
Section  3 describes a GSM-based localization 
system which works on feature phoneswithout any 
extra infrastructure. Section  4 presents a system 
Unity that enables collaboration between multiple 
co-located peers to download a mutually desired 
content using low bandwidth EDGE connections. 
Finally, we have described a city-scale sensing sys-
tem Human Sensors in Section 5 and discuss our 
findings and experiences in Section 6.

2  Design Goals
Feature phones have limited capabilities as com-
pared to smart phones, system designers have to 
take special consideration while building system 
for these phones. Following are some of design 
goals which needs to be taken care of while design-
ing such systems.

•	 Low Cost: Mobile users especially in develop-
ing countries are cost-constrained. A mobile 
system should perform its functions with min-
imal cost. For instance, most of participatory 
sensing systems are voluntary,34 they should 
be designed to minimize user cost as much as 
possible.

•	 Low Energy: One of the main concern with 
mobile devices is limited battery. A mobile 
system design should try to maximize battery 
life of the device. For example, services which 
uses network connection very frequently tend 
to drain battery very quickly. There have been 
approaches which leverage delay tolerance of 
web traffic to schedule them in same data con-
nection session which can potentially mini-
mize energy.21,20 Similarly, low RSSI results in 
less throughput and more energy consump-
tion.39 Hence, a data connection should be ini-
tiated only when RSSI is good.

•	 Limited Hardware and Programming Sup-
port: A mobile system has to work with lim-
ited hardware and programming support to 
provide smartphone like service to feature 
phones. For instance, GPS and WiFi chip does 
not exist on low cost phones.43 A mobile sys-
tem should use GSM-based location interfaces 
as much as possible which are available on 
most of the phones.47

•	 Utilizing Available Resources: A mobile sys-
tem should be designed to utilize available 
resources to fullest. Almost all the phones, 
including feature phones, have one or more 

small range radio technologies, such as WiFi, 
Bluetooth, NFC. Short range radio technologies 
can be used intelligently to share content or 
resources locally.46

While above design goals are described keep-
ing feature phones and developing countries as a 
focus, they are general in nature and hold true for 
any community or mobile phones.

3  Localization
GSM-based localization is most preferred way 
of accessing user location for feature phones 
due to its wide availability and minimal energy 
consumption. However, current approaches 
have limitations which are described in next 
subsection.

3.1  Background
Prior work related to GSM-based localization can 
be divided into two categories: (A) Cell ID based 
Approaches and (B) RSSI fingerprinting based 
approaches.

3.1.1  Cell ID-based approaches: In this 
approach, Cell IDs are fetched using phone APIs, 
and looked up in an existing war-driving based 
database to provide localization. To the best of our 
knowledge, none of the mobile phone operators 
reveal exact location of the Cell towers. Hence, 
using crowd sourcing/war driving data, cell tower 
location is approximated, which could be several 
hundred meter away from its actual location. 
According to GSM standards, a phone can receive 
signals from seven different Cell towers.25 If there 
are multiple visible Cell IDs, the approaches com-
pute some function, e.g. centroid, of all the geo-
coordinates (latitude and longitude) obtained 
from the database. Our experience supported by 
other prior work38,37 show that for several phones 
(including Nokia S40, S60 phones, Samsung 
Android phones) provide access to only one Cell 
ID to which the phone is currently connected. 
This significantly reduces accuracy of the localiza-
tion as compared to the accuracy that had been 
obtained with access to seven Cell IDs.

Google Mobile Maps’(GMM) My Location8 
application works on a single Cell ID-based 
approach, where it provides a median localiza-
tion error of 656.37  meters for a rural area and 
503.89  meters for an urban area.31 The localiza-
tion error depends on density of cell towers. Due 
to high density of Cell towers, this method pro-
vides better accuracy in urban areas as compared 
to rural area. However, it is hard to get a com-
prehensive database of Cell IDs. There are some 



Kuldeep Yadav and Vinayak Naik

Journal of the Indian Institute of Science  VOL 93:3  Jul.–Sep. 2013  journal.iisc.ernet.in524

proprietary databases, such as one used by GMM, 
which are not publicly shared.

There exist open source initiatives, e.g. Open-
CellID17 and Cell Spotting,5 that build their data-
base using crowd-sourcing. To check the coverage 
of open source cell ID databases, we selected two 
widely used operators in New Delhi. We call them 
X and Y for anonymity. On our self collected data-
set of Cell IDs for operator X, we observed that 
out of 252 cell IDs, OpenCellID contained only 
65. For operator Y, the number was only 21 out 
of 164 as shown in Table  1. We cannot find out 
comprehensiveness of the GMM as it is not pub-
licly available. However, given low penetration of 
Android phones in rural India, we postulate that 
the database will be underpopulated. Crowd-
sourcing for building cell ID database seems to be 
ineffective due to (A) lack of incentives as people 
need to incur airtime charges for contributing to 
the databases and (B) lack of GPS-enabled phones 
in developing countries.

3.1.2  RSSI fingerprinting-based approaches: 
In this approach, RSSI (Received Signal Strength 
Indication) is collected along with Cell IDs during 
war-driving and a perceptual map is built similar 
to WiFi-based approaches. Typically, a fingerprint 
constitutes of Cell IDs, their associated RSSI, and 
GPS coordinates that are represented in a vector 
form. During the localization phase, Cell ID(s) 
and associated RSSI are compared with stored 
vector space of fingerprints using KNN (K Near-
est Neighbor) to estimate user’s location. KNN 
uses euclidean distance in RSSI space as a metric 
to find closest stored fingerprint.25 This approach 
gives better accuracy than the Cell ID-based 
approaches since granularity of stored informa-
tion is more. However, it requires more storage 
and computational capabilities as well as more 
efforts are needed during war-driving.

Continuous war-driving effort is required in 
this approach because RSSI keeps on fluctuating 
due to changes in physical environment. It works 
good when there is a visibility of seven cell towers 
and their respective RSSIs. Recent results demon-
strate that RSSI measure from single cell tower is 

not a good measure to calculate movement.38 We 
conducted our own study to find out whether 
RSSI is a good metric for localization. RSSI dif-
ference is the absolute change in the RSSI, for a 
given Cell ID, when user moves from one loca-
tion to another. In our database, we had 24064 
unique RSSI difference values from 410 unique 
cell IDs. We plot maximum, minimum, and aver-
age distances for each RSSI difference. As seen in 
Figure 1, the average difference is almost constant 
for RSSI difference ranging from 1 to 9 dBm. This 
concludes that RSSI is not a good measure for 
GSM-based localization as one observes similar 
RSSI values between two points with large physi-
cal distance between them.

This concludes that current GSM-based locali-
zation approaches have practical limitation such 
as limited access to APIs, need of war-driving etc. 
In the next section, we will describe CBS-based 
localization approach which do not require war-
driving effort and works with APIs provided by 
major phone platforms.

3.2  Architecture
The CBS messages are broadcast by Cell towers to 
all the phones in its range.13 CBS is defined in the 
phase II of GSM standard 3.49.4 The users need not 
pay airtime charges to receive CBS messages, even 
while roaming outside of their home area. The 
CBS messages are commonly used to broadcast 
information about weather forecast, landmarks/
area names, news, announcement by governments, 
etc. All this information can be broadcasted simul-
taneously on different channels. A cell tower typi-
cally broadcasts the locality/landmark name, where 
it is located. Channel 50 is reserved for broadcast-
ing location/area names. Most of the phones come 
with built-in APIs to capture CBS messages. Fig-
ure 2 shows architecture of a working instance of 
CBS-based approach. The data flows as depicted 

Table  1:  Success rate of Open Cell ID (most 
extensive open source database of cell IDs) on our 
dataset collected in New Delhi region.

Operator No of cell IDs
Found on  
OpenCellID %

X 252 65 31%

Y 164 21 13%

Figure 1:  In whole dataset, Min-Max bars repre-
senting minimum and maximum distance between 
two position into same cell ID. For instance, for a 
difference of 14 dBm in RSSI, distance between 
those points can range from 0 to 4000 meter.
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by numbered arrows in the Figure 2 correspond to 
the following:

1.	 GSM base station broadcasts CBS messages, 
each containing a CBS string mentioning loca-
tion name or advertisement. The messages 
are received by a listener application running 
on the phone. The listener application at the 
phone continuously listens at the port 50 for 
incoming messages.

2.	 After receiving a message, mobile application 
automatically figures out whether it contains 
location or advertisement. If the message con-
tent is a location, then the phone checks for 
its corresponding geo-coordinates in its local 
cache. If it is not available, the application 
makes a request to geo-coding service.

3.	 Geo-coding service estimates the geo-coor-
dinates of the queried location name using a 
combination of techniques described in Sec-
tion 3.3.2 and return them to the phone. The 
application at the phone adds it to local cache 
of the phone. Geo-coding service is likely to get 
request from many phones, using that it builds 
a cache of all location names with their geo-
coordinates. Phone application can download 
this global cache proactively to avoid frequent 
requests to the cloud.

Above described approach is the most basic way 
of estimating a user’s location using CBS messages 
and called as baseline approach. Baseline approach 
is identical to Cell ID approach described in Sec-
tion 3.1. To the best of our knowledge, this is the 
first attempt to use CBS messages for localization. 
We could not find any publicly available dataset 
of CBS messages. To characterize the accuracy of 
CBS-based localization approach, we collected 
CBS messages for two different operators X and 
Y along with GPS coordinates in urban settings of 
New Delhi, India. Rate of reception of CBS mes-
sages depends on the speed of the user, we have 
characterized our collected traces in two categories 
i.e. walking and traveling as shown in Figure 2. Our 
detailed data collection methodology is described 

in our earlier work.47 Further, we have also pro-
cured a CBS message dataset from Nokia which 
is collected as part of pilot deployment of Nokia 
Nearby application. This dataset has about 29K 
records with 469 unique CBS location names.

We analyze the data from both the datasets in 
the next section and list out challenges in using 
CBS messages for localization.

3.3  Challenges
Data from our pilot study brought forth several 
non-trivial challenges which need to be solved 
before CBS-based localization can be realized in 
real-world setting. In this section, we describe all 
challenges and presents our approaches to solve 
them.47,49

3.3.1  Filtering of advertisement messages: 
CBS messages contain advertisements in addi-
tion to location names. It is essential to filter out 
these advertisements. By looking at the data, we 
have made the following two observations which 
can distinguish between a location name and an 
advertisement.

1.	 Advertisements contain common patterns such 
as special characters (‘*’,‘#’,‘%’,‘@’) or continu-
ous digits like (‘578785’) which are unlikely to 
be present in genuine location names.

2.	 Advertisements contains operator name or 
some other advertisement specific words such 
as “Cricket”, “Free”, “Ringtone”, which are hard 
to find in genuine location names.

Using these two discriminators, we designed a 
regular expression which can filter all the adver-
tisements at the phone itself.49 These observations 
hold true for both the operators’ data. We got 
100% accuracy in filtering advertisements when 
the regular expression was applied off-line to 
33279 CBS messages in our dataset. Interestingly, 
we found that number of advertisements differ 
among operators X and Y as shown in Table  3, 
operator Y had about 61% advertisement CBS 
messages whereas operator X had about 46%.

Figure 2:  Architecture of CBS based Localization 
System.

Table 2:  Number of travelling and walking traces 
in CBS dataset across two different operators X 
and Y.

State X Y
Combined  
(X + Y)

Avg  
Duration  
(Minutes)

Travelling 27 12 10 46

Walking 12   7   7 65
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3.3.2  Geo-coding of location names: 
As described in Figure 2, CBS location messages 
need to be converted into corresponding geo-
coordinates using a geo-coding service. Among 
all the on-line maps services, we found Google 
Maps to be most effective in geo-coding CBS loca-
tion names because its coverage is much higher 
than other map providers specifically in the areas 
where we had collected data. We have used Google 
Maps’s geo-coding APIs7 for all our experiments. 
We found that more than 30% of location names 
can not be geo-coded directly by Google APIs. Pri-
mary reasons of geo-coding failures are described 
as following:

1.	 Location names may exist differently (in the 
geo-coding service), e.g. there could be a spell-
ing difference, use of short hand abbrevia-
tions etc. For example, ‘Matiyala’ and ‘Matyala’, 
‘Uttam Nagar’ and ‘Uttam Ngr’, ‘Dwarka Sec-3’ 
and ‘Sec-3 Dwarka’.

2.	 Some locations have two different names i.e. 
one could be colloquial which local people use 
and other one is official name which exist on 
Maps. For example, ‘Kakrola Mor’ and ‘Dwarka 
Mor’ etc.

3.	 Some location names do not exist completely 
on maps as coverage of these services in devel-
oping regions are still limited and there is no 
publicly available extensive GIS database by 
government agencies too.

To increase geo-coding success rate, we pro-
pose following geo-coding framework which uses 
combination of several techniques described as 
follows:

1.	 Direct Geo-coding: The location name which 
need to be geo-coded are directly sent to 
Google Maps’s geo-coding APIs. If it exists on 
maps, APIs will return corresponding latitude 
and longitude information. Otherwise, it will 
return a geo-coding failure.

2.	 Pre-processing Location Names: If there is a 
geo-coding failure in the previous step then 
pre-processing is done on location name to 

remove ambiguity, if any. Presence of irregular 
or no-space, extra characters, and short hand 
abbreviations in some location names makes 
it difficult for direct geo-coding to find their 
coordinates. To resolve the ambiguity present 
in location names, we do a pre-processing of 
location names before sending them to the 
geo-coding service. Pre-processing algorithm 
apply following steps to sanitize the CBS loca-
tion names:
a.	 Replace special character such as ‘-’ with a 

space. For example, location names such 
as ‘Dwarka Sec-02’, ‘Dwarka Sec-2’ and 
‘Sec-2-Dwarka’ are converted to ‘Dwarka 
Sec 02’, ‘Dwarka Sec 2’ and ‘Sec 2 Dwarka’ 
respectively.

b.	 Numerical characters in the location name 
are separated out from surrounding text 
characters e.g. converting ‘Dwarka Sec2’ to 
‘Dwarka Sec 2’.

c.	 After fixing special characters and numeri-
cal characters in location name, our pre-
processing algorithm search for popular 
abbreviations in location names like ‘NGR’, 
‘SEC’, ‘VHR’ etc., and replace them with its 
full form like ‘NGR’ for ‘Nagar’ with the 
help of a dictionary. We have populated 
this dictionary from the location names 
using a semi-automated process.

d.	 Similar to the above step, stop words such 
as ‘Nagar’, ‘Garden’ are searched into a loca-
tion name and a space is inserted before 
every occurrence of a stop word. For exam-
ple, ‘Rajourigarden’ will be converted into 
‘Rajouri Garden’.
After sanitizing location names using 

above listed steps, direct geo-coding is used to 
convert give location names into coordinates. 
If geo-coding is successful, process is stopped 
here otherwise, it will move to next step.

3.	 Using Crowd sourced POIs Information: 
For the location names that are completely 
missing from digital maps or exist with dif-
ferent name(s), we take help of point of inter-
est (POIs)/businesses data which are crowd 
sourced by Google Maps. We use Google 
Places API9 to fetch POIs information about 
a specific location name. Many of CBS loca-
tion names are colloquial, they were present in 
this crowd sourced location data in some form 
or other, but not on Google Maps. As, crowd-
sourced data has its own challenges in terms 
of accuracy, noise etc, which need to be solved 
before using this data for estimating a CBS 
location’s geo-coordinates. Following is step 
by step description of our algorithm which 

Table  3:  Percentage of advertisement CBS 
messages in both the datasets collected for 
operator X and Y.

Operator
Total CBS  
messages

Advertisements  
(%)

X 32106 46%

Y 1173 60.53%
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estimates coordinates of a given location using 
this POIs data.

	 Step 1: Google Places API requires input of 
base coordinates, queried location name and 
it searches POIs around the base coordinates 
which contains queried location name in 
their addresses. We use the geo-coordinates 
of immediate previously received and geo-
coded location name from the CBS trace, as 
base coordinates. If the queried CBS location 
name has space, we break it into different set 
of location names and query Google Places 
API multiple times. For instance, ‘Palam Rail-
way Junction’ will have three different values 
for queried location name i.e. [’Palam’, ‘Palam 
Railway’, ‘Palam Railway Junction’]. The idea 
behind creating multiple names/queries is to 
maximize POI addresses because many times, 
a part of location name may miss from the 
actual POI address. For instance, many POIs 
may contain name ‘Palam’ because it is a more 
popular location entity than ‘Palam Railway 
Junction’. Here is one sample query to Google 
Places API.10

	 Step 2: Google Places API returns a differ-
ent set of POI addresses with every different 
value of queried location name. The results are 
aggregated from all the queries and a single 
set of POI addresses is maintained with their 
corresponding geo-coordinates. After aggrega-
tion, we apply levenshtein string edit distance 
to rank POI addresses based on their lexical 
similarity to the actual CBS location name and 
select top-K addresses.

	 Step 3: After selecting top- K POI addresses, we 
compute an average of their geo-coordinate. 
The resultant coordinates will be the estimated 
coordinates for a given CBS location name.

4.	 Geocoding Framework Evaluation: From 
both the datasets, we had total 572 unique 
location names. In our data collection, we 
have collected GPS coordinates too, with the 
CBS location names. We use GPS coordinates 
as a ground truth to evaluate accuracy of geo-
coding framework as well as individual tech-
niques. From our empirical evaluation, we 
have found value of K equal to 10. Our geo-
coding framework successfully geo-coded 
nearly 92% of total 572 location names as 
shown in Table  4. Our pre-processing algo-
rithms and use of crowd sourced information 
jointly increased the geo-coding success rate 
by 26.39%. Pre-processing location names 
increased the geo-coding success rate by only 
4.54%. In our earlier work,47 pre-processing of 
location names increased geo-coding success 

rate by about 15% on a relatively smaller data-
set of 143 location names. From our close 
observation, we have found that Google Maps 
have improved over time and they are already 
doing some pre-processing of location names 
which we have done earlier in.47

We believe that a common algorithm that can 
work for geo-coding of all the location names is 
very hard to achieve due to non-standard nomen-
clature for CBS messages and poor GIS database 
(specially in developing countries). However, 
it is still a one-time task to geo-code the names 
which are not automatically geo-coded by any 
service and requires much less effort than the war-
driving used by other GSM-based localization 
approaches.

3.4  �Inaccuracy of CBS location 
messages

In Cell ID-based localization approach (described 
in Section 3.1), accuracy depends on the richness 
of the perceptual map (Cell ID database) that is 
created using war-driving. Similarly, accuracy of 
CBS-based localization approach will depend on 
quality of location names that we receive as CBS 
messages. To understand the quantitative estimate 
of the error in CBS messages, we have computed 
the localization error which is essentially distance 
between geo-coordinates of CBS location and 
associated GPS coordinates. If there are multiple 
GPS coordinates associated with a CBS location 
in our dataset, we took an average of all those 
GPS coordinates and then computed the distance. 
Figure 3 shows a bar graph of distribution of error 
in terms of percentage of the location names. Out 
of 527 location names, about 8% of the names 
could not be geo-coded, we have ignored such 
names while plotting Figure 3. For about 58% of 
the names, which were successfully geo-coded, 
localization error was more than 500  meters. 
Typically, CBS messages have inaccuracies, such as 

Table 4:  Success percentage of different steps in 
geo-coding.

Geocoding  
frameworks

Successfully  
geocoded

Successful  
(%)

Direct Geocoding 376 65.73%

Pre-processing +  
Direct Geocoding

  26   4.54%

Using Crowdsourced  
POIs information

125 21.85%

Total 527 92.13%
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errors introduced by geo-coding services, presence 
of generic CBS location names, and association of 
same CBS names with multiple towers.47 These 
inaccuracies impact the localization accuracy and 
to reduce the impact, we design two algorithms 
described in next section.

3.5  �Algorithms to improve localization 
accuracy

CBS-based localization approach is primarily aimed 
for feature phones. Primary design goal for CBS-
based localization algorithms is to strike a balance 
between reasonable accuracy and being low-cost in 
terms of computation, communication, and data 
storage. Baseline approach takes the most recently 
received CBS message’s geo-coordinates to approxi-
mate the location of the user. Baseline approach 
does not always give good results due to inher-
ent errors described in Section  3.4. A key insight 
towards reducing the impact of these errors is that 
we are not taking into account history of the loca-
tions visited by the mobile users in the recent past.

To account for location history, we form a vec-
tor of location names received in the past. When 
the user is stationary, the phone often receives 
multiple distinct location names as it can asso-
ciate with different cell towers that are in geo-
graphic proximity at different time instances.22 
Figure 4 presents a real example from our data-
set which shows reception of four different CBS 
messages even when user stays at same place. As 
shown in Figure 4, CBS messages sometimes may 
include locations that, in reality are far away from 
user’s current location. However, the frequency 
of such location names may be smaller than fre-
quency of location names that are in close prox-
imity to the current location. We hypothesize 
that this frequency difference is a factor of dis-
tance between Cell Tower and the user. Therefore, 
a weighted average based approach where the 
weight given to each location name is dependent 
on the frequency of received messages with the 
corresponding location name (within fixed time 

window) will intuitively work well for improving 
the localization accuracy. We call this approach 
FrequencyWeighted and it considers all CBS loca-
tion messages received in a fixed time window 
duration δ. For instance, if a service running in 
a mobile phone requires user’s current location 
at time t, FrequencyWeighted algorithm takes all 
the CBS location messages which were received 
between (t, t–δ) and compute estimated user 
location by taking weighted average of their cor-
responding geo-coordinates. The detailed expla-
nation and pseudocode of this algorithm is given 
in our prior work.47

For a slow moving user, since the conditions 
are similar to a static user, the FrequencyWeighted 
approach should ideally provide better locali-
zation accuracy. However, a fast moving user 
will probably be in the range of a Cell tower for 
a short duration and hence will receive a small 
number of (often only a single) CBS message 
with the corresponding location. However, it may 
also happen that the currently received location 
name corresponds to a location in real world that 
is ahead on the path of the user while the previ-
ously received location name was behind on the 
path of the user (a typical case when the location 
name is received immediately on crossing the cell 
boundary). Therefore, weighted average of the 
geo-coordinates of received location names with 
higher weight given to those that are received 
most recently and exponentially reducing the 
weights of location names received in the past will 
intuitively improve the localization accuracy. This 
approach uses a timeout parameter λ to check if 
there is a long gap in the reception of a CBS loca-
tion message, the algorithm forgets past history 
of messages and starts accumulating new history 
if there is a timeout. We call this approach Time-
Weighted and detailed algorithm is described in 
our earlier work.47

Figure  4:  Snapshot of received CBS location 
messages at a given location. Marker E depicts 
the current location of the phone and markers A–D 
presents the four CBS location messages received 
during phone’s stay at E.

Figure  3:  Distribution of localization error for all 
the location names. For 58% of the location names, 
error is more than 500 meters.
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3.6  �Evaluation of the algorithms’ 
accuracy

We now describe the empirical evaluation of the 
two algorithms, FrequencyWeighted and Time-
Weighted , explained in the previous section, using 
our self collected CBS traces dataset. For com-
parison purpose, we used baseline CBS-based 
localization approach which is identical to Cell ID 
based localization approaches (including service 
providers like Google). We use localization error as 
our evaluation metric. It is the distance between 
actual location (GPS Coordinates) and estimated 
location using CBS-based approach. For simplic-
ity purpose, we discuss only one operator’s result 
(referred to as operator Y) in detail and briefly 
present results for operator X. As hypothesized 
earlier, the accuracy of the algorithms could 
depend on the speed of travel. Hence, we evaluate 
our algorithms on traces for two different modes 
i.e. static/walking and traveling.

Let us first analyze the effect of varying input 
parameters on the performance of two algo-
rithms. For TimeWeighted algorithm, λ is a time-
out parameter, which is necessary to forget old 
history. Empirically, we found value of λ to be 
2 minutes since it gave the least median localiza-
tion error for all the traveling traces. For Frequen-
cyWeighted algorithm, time window to perform 
weighted average i.e. δ was found to be equal to 
2  minutes for traveling traces since it gave the 
least median localization error. In case of walking 
traces, we have not found any time-out instance 
but still kept value of λ to maintain uniformity. 
We have found value of δ to be equal to 3 min-
utes. Intuitively, higher value of δ, as compared to 
the case oftraveling traces, is justified since longer 
history of CBS location messages will be useful as 
user is mostly static or walking at slow speed.

Figure 5a compares the Cumulative Distri-
bution Function (CDF) of localization error for 

TimeWeighted and FrequencyWeighted algorithm 
with the baseline approach. Both TimeWeighted 
and FrequencyWeighted algorithms perform con-
sistently better than baseline. The improvement 
in median localization accuracy for TimeWeighted 
and FrequencyWeighted over baseline is approxi-
mately 12% and 16% respectively. Let us discuss 
intuition for performance of the two algorithms 
for traveling case. Typical rate of arrival of CBS 
message is 1per minute which is consistent across 
both the operators. With λ fixed to 2  minutes 
and assuming average speed of traveling trace as 
30KM/hr, if no CBS message is received for 2 min-
utes, the user has approximately moved by 1KM 
from the location of previously received CBS mes-
sage. It is therefore better for TimeWeighted algo-
rithm to discard the history of CBS messages than 
to consider them for future calculation of locali-
zation. Similarly, with δ fixed to 2  minutes, Fre-
quencyWeighted algorithm will onlyconsider CBS 
messages received within a distance of 1KM for 
calculation of localization, giving weights based 
on frequency of each CBS message received. This 
will mostly translate to average of two distinct CBS 
messages received in the 2 minute interval.

Therefore, in case of traveling trace with cor-
respondingly fixed parameter values, Frequen-
cyWeighted algorithm never considers any CBS 
message outside the 2 minute window while the 
TimeWeighted algorithm gives any message outside 
the 2 minute window a small weight in case there 
is no time out in received rate of CBS messages. If 
there is a timeout happens in TimeWeighted , for 
the first 2 minutes, calculated localization for both 
of the algorithms will be same. This led to nearly 
similar performance of both the algorithms in 
case of travelling traces. For operator X too, both 
algorithms perform equally good as compared to 
baseline. The improvement in localization accu-
racy for TimeWeighted and FrequencyWeighted 

Figure 5:  CDF plots for TimeWeighted and FrequencyWeighted algorithms w.r.t Baseline for operator Y.
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over baseline is approximately 10% and 11% 
respectively, as shown in Table 5.

Figure 5b show the CDF plot where perform-
ance of TimeWeighted and FrequencyWeighted 
algorithm is compared with baseline for walk-
ing traces. Overall TimeWeighted and Frequen-
cyWeighted algorithms give median accuracy 
improvement of approximately 35% and 10% 
respectively over the baseline approach. Earlier, we 
had hypothesized FrequencyWeighted algorithm to 
provide higher localization accuracy than Time-
Weighted algorithm for walking traces (as dis-
cussed in Section 3.5). However, empirical study 
showed otherwise. Close observation of the col-
lected data revealed that the walking traces con-
tained a lot of location names, that were farther 
located, 1200–1500  meters from phone’s actual 
location. This noise, particularly, gets added by the 
geo-coding service and presence of distant loca-
tion names, which are among the challenges men-
tioned in Section 3.3. Effect of this noise can also 
be seen in terms of higher baseline error for walk-
ing traces (712.94 meter) as compared to traveling 
traces (621.4  meters). In case of TimeWeighted 
algorithm, when such a CBS message with dis-
tant location name is received most recently, the 
calculated location is inaccurate. However, as the 
time progresses the weight of the CBS message 
with distant location is reduced, correspondingly 
resulting inaccuracy is reduced in estimated loca-
tion as well.

We conclude that our initial assumption that 
fast and slow motion patterns would demand 
different approaches for improved localization 
was empirically found incorrect on our collected 
data. As shown here, TimeWeighted algorithm 
that was hypothesized to handle fastmotion suf-
fices for slow motion as well since it tolerates the 
noise added by the distant CBS location names 
for real data. However, we believe that the locali-
zation accuracy may vary slightly across different 
environments. For operator X, baseline accu-
racy was good due to good quality of landmarks. 
Improvement in localization accuracy for Time-
Weighted and FrequencyWeighted over baseline 

is approximately 18% and 17% respectively, as 
shown in Table 5.

If we don’t have ground truth of whether the 
person is moving slow or fast, we cannot com-
bine the algorithms. However, if we have a way 
of finding that out, for example using an acceler-
ometer, then the two algorithms can be combined 
into one to give optimal accuracy. We have used 
TimeWeighted algorithm in designing multimodal 
approaches, which combines CBS-based localiza-
tion with Cell ID and GPS to enhance accuracy. 
Our empirical evaluation shows that combination 
of Cell ID + CBS can improve the median localiza-
tion accuracy by up to 40% while Cell ID + GPS 
can improve the localization accuracy by 51%.

We implement both FrequencyWeighted and 
TimeWeighted algorithms as a part of CBS service, 
which runs on the phone. CBS service continuously 
listen to incoming CBS messages and stores them 
in a location vector with their geo-coordinates. 
Whenever any application needs current location 
of the user, the service takes location vector as an 
input and returns calculated coordinates.

4  Communication
Many mobile phone users across the world still 
use 2G based data connection to download large 
files from Internet. Most advanced 2G technology 
(EDGE) can provide download throughput of up 
to 48 KBps. We performed an experiment to meas-
ure the throughput of 2G data connection in wild 
by repeatedly downloading a MP3 song of about 
5 MB size on five different phones, used by volun-
teers for a week. The median download through-
put achieved by the EDGE network across two 
operators was about 18 KBps while the variation in 
throughput was from 4 KBps to 28 KBps. We also 
observed many instances of failed downloads—
approx. 22% downloads failing for Operator A and 
approx. 42% for Operator B. Low throughput and 
failed downloads are primarily due to two major 
reasons—variable wireless conditions (low RSSI) 
and variable load on cellular networks. As a result 
downloading content (especially multimedia) on 
EDGE results in several limitations—1) Higher 
time to download; 2) Excessive power consumption 
due to low throughput (cellular radio is switched 
ON irrespective of data speed;39,41 and 3) Poor user 
experience due to frequent failed downloads.

There is a lack of appropriate systems that can 
assist users while downloading content in limited 
bandwidth conditions offered by 2G. It has been 
observed that co-located people have similar interests 
w.r.t. downloading of the content. For instance, Fig-
ure 6 shows media overlap among 38 mobile phone 
users in a publicly available dataset. Mobile phone 

Table 5:  For operator X, Median localization error 
(in meters) comparison of TimeWeighted and 
FrequencyWeighted algorithms with baseline for 
walking and traveling traces.

Traces Baseline TimeWeighted
Frequency-
Weighted

Travelling 688.2 618.29 615.14

Walking 466.69 382.8 386.56
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users are typically expected to be part of several 
social gatherings during the day at different places 
i.e. home, workplace, and even while commuting.44 
The key idea of Unity is to use these social meetings 
to provide a collaborative environment with a usa-
ble interface to enable faster downloads of content 
desired by all (or most) of the participating peers.

4.1  Architecture
System architecture of Unity is guided by various 
capabilities of commonly available phones. Unity 
works in two different modes for the participating 
phones i.e. a phone can either act as a coordinator 
or a peer. The coordinator initiates the download, 
recruits phones in the geographical vicinity that 
are willing to participate in the download process, 
and coordinates all the communication with the 
participating peers. The peer connects to the coor-
dinator, downloads a part of the desired workload 
and shares it with the coordinator. The coordina-
tor, within itself, also runs a peer instance to share 
the download workload. In Unity , all the local 
communication among peers happens through 
short range radio technology such as WiFi or 
Bluetooth as shown in Figure 7.

4.1.1  Usage scenario: Let us now explain the 
utility of Unity through a usage scenario, as shown 
in Figure  7. Three friends Alice, Bob and Carol, 
are interested in the multimedia content “V” and 
decide to use Unity for collaborative downloading 
as follows:

1.	 Alice decides to be the initiator and therefore 
launches Unity coordinator mode. She finds 
the URL of “V” and feeds it into Unity. Bob and 
Carol launch the peer mode of Unity .

2.	 After Alice chooses a network interface available 
within all three of their devices e.g. Bluetooth/

WiFi, Unity launches device discovery on the 
selected network interface to find nearby peers—
Bob and Carol, and recruit them as peers.

3.	 From the given URL, Unity in the coordinator 
mode finds the size of “V” using the HTTP pro-
tocol request and equally divide the file work-
load among the three peers by communicating 
with each one of them the URL address and 
block information. Block information denotes 
the number of bytes with start and end byte to 
be downloaded.

4.	 On receipt of content download request from 
coordinator, peers start downloading the 
assigned blocks using their cellular connection.

5.	 On complete download of the assigned indi-
vidual block, each peer sends it to the coordi-
nator who combines all the blocks to make the 
desired content “V”.

6.	 Coordinator also communicates the remain-
ing blocks (from the received and downloaded 
blocks) to each peer. As a result, each partici-
pating peer gets access to the whole file after 
combining the received blocks with its own 
downloaded blocks.

4.2  Implementation details
Initial implementation of Unity was built for 
Android phones as they continue to grow in 
countries like India and at the same time, pro-
vide rich networking API support essential for 
the implementation. However, Unity can work 
on any Java-enabled phone too. We have kept 
design of Unity modular so that it can easily run 
on phones with different capabilities. Some of the 
different modules of Unity are User interface mod-
ule, Local networking module, Downloader module 

Figure 6:  Media file overlap among 38 users in 
publicly available Nokia MDC dataset. User ID 14 
and 15 have 133 common media files where as 
total 47 user pairs have atleast one common media 
file among them. Figure  7:  Design of proposed system Unity, a 

group of mobile phones users collaborates with 
each other to download a single workload which 
are of interest to all of them.
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and Controller module.32 User interface module is 
responsible for showing different screens to user 
based on the selected mode i.e. Coordinator or 
Peer. Figure 9a shows the home screen of Unity for 
coordinator which accepts different parameters 
from the user to get started. Local networking 
module enables seamless data sharing and mes-
sage passing between different peers and coor-
dinator using WiFi or Bluetooth. Downloader 
module connects to the Internet using a cellular 
connection and download desired content given 
URL address and byte ranges as an input. Also, 
if download of a workload got failed in between, 
it restarts the download of a workload from the 
point it got failed. Controller module invokes 
other modules and also based on user choice, it 
selects collaboration policy i.e Unity-Adapt or 
Unity-Default (described in Section 4.2.2).

4.2.1  Local networking: Unity’s local network-
ing module may use WiFi and Bluetooth based on 
its availability on participating phones. However, 
WiFi and Bluetooth have different networking 
stack in the phones and thus, require completely 
different and independent implementation.

Unity-WiFi: This is a variant of Unity which uses 
WiFi for local communication. WiFi (802.11) sup-
ports two different modes: Infrastructure and Adhoc. 
In infrastructure mode, two or more WiFi enabled 
devices have to use a intermediate WiFi access point 
(AP) to communicate between them because AP is 
used for routing of data packets. In adhoc mode, 
two different devices can directly (i.e. P2P) com-
municate with each other without any AP. Android 
started supporting WiFi Adhoc mode after OS ver-
sion 4.0, popularly called as WiFi-Direct. There are 
large number of phones, with prior Android OS ver-
sions such as 2.2 or 2.3.3 Building our system with 
WiFi-Direct would have eliminated more than 70% 
of the total Android based phones. Further, WiFi 
adhoc mode results in higher energy consumption 
as all the peers have to stay awake and send beacons 
to exchange data whenever required.

As an alternative of WiFi adhoc mode, we use 
a novel utility provided by Android called as WiFi 
hotspot, primarily designed for sharing the Internet 
connection of the phone with other devices such as 
a laptop. WiFi hotspot utility is available on all ver-
sion of Android which are running Android 2.3 or 
beyond. WiFi hotspot utility uses 802.11 infrastruc-
ture mode which turn the phone into WiFi AP and 
other phonesb can connect to it. For simplicity, let 
us assume that coordinator is acting as WiFi AP and 

b  Android 2.3 based AP can support up to 6 connected devices 
whereas Android 4.0supports up to 7 devices.

all other phones connected to it are different peers. 
Figure 8 shows various control and data exchanges 
between a Unity coordinator and two Unity peers, 
following is corresponding description:

1.	 The phone, which is running Unity coordina-
tor creates WiFi AP and other peers connect to 
it as clients.

2.	 As shown in Figure  8, coordinator launches 
device discovery to discover all connected 
peers and exchange a few control messages 
with them individually to get information 
such as peer name. (Refer Phase 1)

3.	 After device discovery step, block information 
and URL is passed on to all the peers using a 
control message and each of them start down-
loading their block from Internet. By default, 
Android uses WiFi AP functionality for ena-
bling tethering and it may happen that peers 
start downloading using coordinator’s data 
connection. To force the peers to use their own 
data connection, we change the connection 
priority during download. (Refer Phase 2)

Figure 9:  Different screens for Unity coordinator: 
(a) shows the different modes and variants of Unity, 
(b) Peers running Unity peer mode and (c) Trans-
fer rate of downloading and blocks received from 
other devices.

Figure  8:  Sequence diagram of various control 
and data exchanges between different phones in 
Unity-WiFi.



Empowering Feature Phones to Build Smart Mobile Networked Systems

Journal of the Indian Institute of Science  VOL 93:3  Jul.–Sep. 2013  journal.iisc.ernet.in 533

4.	 Coordinator can also check the status of block 
download in between by sending a status 
request.

5.	 On download completion, peers send their 
data blocks to the coordinator. On receipt of 
blocks from all the peers, coordinator sends 
the remaining blocks for each peer to them. 
Peers then merge the received blocks with 
downloaded blocks to get the complete con-
tent. (Refer Phase 3 and 4)

Coordinator, acting as WiFi AP, will be awake 
for whole download duration while the peers can 
operate in power saving mode (PSM) which con-
sumes negligible energy29 or even turn off their 
WiFi to save energy when not in use. As shown in 
Figure  7, star topology where one phone, acting 
as coordinator, communicates with all the other 
phones results in smaller local communication 
bandwidth as compared to the distributed archi-
tecture. Unity-WiFi requires that at least one per-
son in the group should have a phone with WiFi 
hotspot capability and all other phones should 
have WiFi.

Unity-Bluetooth: To enable Unity on feature 
phones, we also developed a Bluetooth based local 
networking module. Bluetooth only supports 
adhoc P2P connection. In case of Unity, coordina-
tor runs Bluetooth server instance and the peers 
run Bluetooth client instance. All control and data 
exchanges in Unity-Bluetooth happen in the same 
order as Unity-WiFi. In the device discovery phase, 
each Unity peer creates a bluetooth socket with a 
service recordc and listens for incoming connec-
tions whereas Unity coordinator connects with 
them subsequently and exchanges information 
such as peer name as shown in Figure 8. Bluetooth 
server stores all the UUIDs with peer names for 
futurecommunication. Unlike Unity-WiFi, it does 
not require changing data priority on different 
peers. nication.

4.2.2  Collaboration schemes: Unity has two 
different collaboration schemes—Unity-Default, 
Unity-Adapt. Unity-Default divides the desired 
workload of size d into equally sized blocks. 
If  there are n devices participating in the down-
load, block size, to be downloaded by eachpeer, 
will be d/n. This scheme has advantage in terms 
of fairness as all the collaborating peers will incur 
equal amount of data connection expense. How-
ever, in cellular network conditions, it is usual 
that some nearby peer may be experiencing poor 

c  Unity has a common service name and unique UUID number 
for each peer.

cellular network conditions resulting in low down-
load rate.39 In such cases, this scheme will result in 
increased waiting time for Unity coordinator and 
other peers due to the peer who is experiencing 
low throughput. Our experiments showed that for 
large downloads, this incremental wait could be 
several minutes thus correspondingly increasing 
the energy consumption as well.

To reduce this waiting time, Unity uses a sim-
ple algorithm, which adapts to changing network 
conditions termed as Unity-Adapt. For a workload 
of size d, Unity-Adapt divides it into equally sized 
blocks of size k.d Unity coordinator assigns each 
peer a single block to download at a time and 
the peer is expected to request another block to 
download whenever it finishes downloading 80% 
of the assigned block. Unity coordinator will keep 
on allocating the blocks dynamically until all the 
blocks are assigned. Thereafter, Unity peers will 
send all the downloaded blocks to Unity coordi-
nator together to minimize control overhead and 
frequent connections.

4.3  Evaluation
In this section, we present brief evaluation results 
of Unity while running on Android phones. The 
detailed evaluation results are given in our prior 
work.32 We define some of the evaluation metrics 
for Unity. Total download time is the time taken 
by Unity to collaboratively download a work-
load and deliver it to all the collaborating peers. 
From total download time, we compute effective 
download rate which is equal to workload size 
divided by total download time. Our evaluation 
experiment consists of four Android phones, 
three of them manufactured by HTC and one by 
Samsung. All the phones were running Android 
2.3.3 OS.

4.3.1  Download rate vs workload size: To eval-
uate download rate in Unity with varying number 
of collaborating devices and varying workload 
sizes, we downloaded five different workloads i.e. 
3 MB, 6 MB, 9 MB, 12 MB, 15 MB with default 
collaboration policy. Number of collaborating 
devices were varied from 2, 3 and 4 for each of 
the workload. For each download instance, the 
download rate of individual devices are computed 
from the time taken by them to download the 
assigned workload and effective download rate 
of Unity is computed as defined in metrics above. 
In case of Unity-WiFi with 3 devices, as shown 
in Figure  10a, effective download rate increases 

d  Value of k in this case is typically greater than the number of 
collaborating devices.
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linearly with workload size. Unity download rate 
is comparatively low for smaller workloads as 
local communication overhead for collaboration 
across different peers takes significant time. How-
ever, with increasing workload size, this overhead 
becomes negligible.

4.3.2  Overhead comparison: Total download 
time for Unity consists of workload downloading 
time from internet, local sharing amongst collabo-
rating devices and merging the shared workloads. 
It is useful to accurately quantify the overhead 
caused by different Unity operationsi.e. local net-
working and merging, and compare them with the 
total download time. For this purpose, we ran three 
instances of workload (12  MB) using Unity and 
collected logs with high resolution time intervals 
for these activities. Average overhead % across the 
3 instances for Unity-WiFi and Unity-Bluetooth is 
shown in Figure 11.

We observed that much of the overhead in 
Unity is dominated by local networking mod-
ule for exchanging control and data messages 
across different devices. As a result, overhead % 
using WiFi is smaller than using Bluetooh due 

to the corresponding difference in data trans-
fer rates (WiFi: 1.5–2  MBps and Bluetooth: 
450–480 KBps).29

4.3.3  Measuring impact of Unity-Adapt: Due 
to variable cellular network conditions, one or 
more devices may download at a lower rate in 
Unity thereby increasing the overall download 
time. As an instance, in Figure  10b, device D3 
downloaded with slower rate as compared to the 
other 2 devices. To avoid such a situation, Unity-
Adapt divides the whole workload into smaller 
block sizes and keeps assigning them to the col-
laborating peers based on their download rate. 
Empirically, we found that block size equal to 
1  MB works well in Unity and used it for these 
experiments. With 3 collaborating devices, we gave 
Unity a workload of 12 MB to download in three 
different instances. Across all of these instances, 
average download rates of the three devices were 
5.94 KBps, 8.14 KBps and 10.54 KBps for D1, D2 
and D3 respectively. On an average, Unity without 
adaptation downloaded the whole workload in 
approx. 692 seconds. However, when using Unity-
Adapt, total download time was reduced to approx. 
505.78 seconds resulting in approx. 27% improve-
ment. Additionally, the workload downloaded by 
a peer on an average was representative of their 
download rate i.e. D1 (3 MB), D2 (4 MB) and D3 
(5 MB).

5  Sensing
Dedicated sensing infrastructure does not exist 
in many countries due to lack of resources, cost, 
and bigger scale of deployment. Smartphones 
have many sensors such as accelerometer, audio, 
GPS, camera etc which can be used for collecting 
rich and good quality data with minimal cost as 
compared to dedicated sensors deployment. As 

Figure 10:  Download rate of Unity-WiFi and Unity-Bluetooth with different workloads and total 3 collaborat-
ing devices. D1, D2, and D3 represents the individual device’s estimated download rate.

Figure  11:  Overhead % comparison between 
Unity-WiFi and Unity-Bluetooth.
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discussed earlier, penetration of smartphones is 
limited for now. Hence, our participatory sens-
ing system design have multimodal interfaces to 
submit important events related to city as shown 
in Figure  12. Apart from “human-in-loop” data 
collection interfaces, our system automatically 
extracts events from given social media feeds. 
All the submitted events go to the Cloud which 
aggregates, pre-processes these events, and then, 
find patterns from the data. Moreover, our sys-
tem is designed for unified open-ended sensing 
and broadly divide all events into five major cat-
egories: Civic complaints, traffic, neighbourhood 
issues, emergency and others.

5.1  System details and deployment
In Human Sensors system, there are different 
modes to submit event reports i.e. (1) mobile 
application, (2) SMS, (3) Web-based form and it 
automatically extracts event reports from social 
media feeds.45

5.1.1  Android-based mobile application: We 
built an application for only Android OS due to 
two different reasons; (1) It provides rich support 
of APIs to capture contextual data, (2) Android 
based mobile devices are getting increasingly pop-
ular in developing countries such as India. The 
android application is designed in such a way that 
it provides a user friendly UI for the participants 
to report events with minimum efforts. Snapshot 
of different screens of the application can be seen 
on Google play.11

Whenever, a user wants to submit an event, 
she chooses a category which broadly describe the 
event among civic complaints, traffic, neighbour-
hood issues, emergency or others. After choosing 
an appropriate category of the event, application 
prompts user to enter more details about the event 
i.e. free form text describing the event, the loca-
tion/landmark of the event, and some appropriate 
tags related to the event. To provide more contex-
tual sensor information, which can further assist 
the event report, the participant can also click the 
button Click Image which starts the camera of the 
phone and captures an image. The Record Audio 
button records a short audio clipping of 10 second 
duration to capture the sound in the vicinity of the 
event. On pressing the Submit button all the data 
including the text input, image, audio clip along 
with the GPS coordinates and cell information 
is uploaded using HTTP Post request to a server. 
Based on HTTP response, users get a notification 
on their phone either acknowledging successful 
upload or an error message incase of a failure.

5.1.2  SMS and web based event report sub-
mission: There are significant number of phones 
which do not run Android OS or limited pro-
gramming capability. To extend the reach of our 
event report submission, we enabled participant 
to send report via SMS messages too. This option 
is suitable for non-programmable phones, non-
supported smartphones, and users who do not 
prefer to use their data connection for sending 
reports.The following is a sample report: Police 

Figure 12:  CrowdSensing and Multi-modal Data Fusion Testbed.
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asking 1000 rs bribe for approving passport for a 
friend, though all documents are perfect @ indore

For non-Android smartphone or tablet users, 
we have also enabled web based event report sub-
mission. After one time registration and login, 
user can go to the website12 and submit the event 
report similar to Android application. Our web-
based form too allows rich data collection which 
can consist of text, audio and video inputs.

5.1.3  Social media feeds: Specifically in India, 
there are some initiatives started by government 
departments6 and individuals18 to crowdsense 
and disseminate information which may benefit 
citizens. Our system uses APIs provided by social 
mediawebsites such as Facebook to extract event 
reports from them which may complement the 
data reported by testbed users.

5.2  System deployment
We have publicized our system among univer-
sity students through email and posters in India 
and asked them to submit city events happening 
around them. There were also facebook and twit-
ter pages to continuously engage the students. The 
duration of system deployment was for about 3 
months. Due to multiple event report submission 
methods, we capture different kind of information 
among which some of them need to be input by 
the user, while others get automatically captured 
and are sent when the event is submitted as shown 
in Table 6.

From our deployment, we were able to col-
lect a total of 838 event reports among which 488 
were submitted using web, 210 were submitted 
using SMSes and 140 events were submitted using 
Android application. A total of 435 users were reg-
istered in the system. While participants can sub-
mit text, audio and images, predominantly they 
have submitted text details of the events. Over-
all, we got 838 text reports i.e. all the submitted 

events had text, 182 of events had images and 5 
had audio clip.

5.3  Preliminary data analysis
Most of text reports submitted using mobile appli-
cation or SMSes contained noisy data because 
intentional corruptions are very common in data 
uploaded from mobile devices.42 This is due to the 
limited data entry options (keypad constraints 
on mobile devices) and due to the pressure of 
reducing communication latency (or cost in case 
of SMS) by keeping messages short yet intelligi-
ble. We have used several pre-processing steps to 
extract meaningful information such as location, 
category etc from the reports which came from 
social media or SMS. For instance, many text 
reports do not have any delimiter which can be 
used to find the location names embedded into it. 
To find location name in such reports, we parse 
the text and usepopular location suffixes such as 
‘nagar’, ‘chowk’, ‘cross’ etc to estimate the location 
name. We have used a location dictionary to auto-
matically learn location suffixes which can help 
in location name extraction. Extracted location 
name could be a locality name or a city name, we 
used Google’s geocoding API to convert the loca-
tion names to approximate geo-coordinates. But, 
there may exist some location names which can 
not be geocoded by Google’s geocoding service 
i.e. some lesser known locality names which does 
not exists on Google Maps.47 For such names, we 
used a dictionary of 963 Indian cities and towns to 
translate the location names to their correspond-
ing city names. Those city names were in turn 
fed to the Google’s geocoding service to retrieve 
approximate geo-coordinates.

As part of analysis, we analyzed the distribu-
tion of different event categories across different 
states for finding major patterns in the submitted 
data. Across India, most of events (43%) submit-
ted are about civil issues followed by traffic issues 
(22%), neighborhood issues (18%), emergency 
(7%) and others (10%). The three states from 
which we have received the maximum data are 
Uttrakhand (105), Delhi (95) and Tamilnadu (80). 
We have seen a large variance in distribution of 
various event categories across different states, for 
instance, maximum reports (54%) from Uttra-
khand contains civil complaints; in Delhi, traffic 
events (42%) and from Tamilnadu, both civic and 
neighborhood issues (80%) were maximum.

Further, we analyzed the event text for specific 
categories to find broad patterns in the data. 
Figure 13a shows the tag cloud of textual reports 
submitted for traffic related events in Delhi. 
Most of the event deals in reporting of high 

Table  6:  Automatic and manual information 
collected by different modes of our crowdsensing 
system i.e. SMS(S), Web-based form (W), Mobile 
Application (MA) and Social Media Feeds (SM)

Automatically  
sent details Manually sent details

Time Stamp  
(S + W + MA  
+ SM)

Event Type—(W + MA)

Lat, Lng, Cell Info  
(MA + SM)

Message/Text (S + W + MA + SM) 
Event Tags (W + MA) 
Textual Location (S + W + MA + SM) 
Image & Audio (W + MA + SM)
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traffic, jam, congestion, water logging etc. Simi-
larly, Figure  13b  shows the tag cloud of report 
submitted for neighborhood issues in Tamilnadu 
and most of them deals with water logging, waste, 
drainage, unauthorized parking etc. From our 
preliminary data analysis, we have found that 
Human Sensors can potentially be used to source 
data from community and then making decisions 
accordingly. From our limited data, we found that 
Delhi is more concerned about traffic jams, a more 
detailed analysis of data can also reflect the causes 
of traffic jams as well as location where they hap-
pen regularly.

6  Discussion
Sixty percent of total phones will be feature phones 
in 2016. Due to absence of many sensors and good 
processing capacity, many feature phone users can 
not use applications which have become ubiqui-
tous among smart phone users. In this paper, we 
take into consideration three different directions 
i.e. Localization, Communication, and Sensing to 
empower feature phones. For each of these direc-
tions, we describe various challenges in realizing a 
working system and design a system solving some 
of those challenges.

For Localization, we described our CBS-
based approach which removes the necessity of 
war-driving or building a Cell ID database for 
GSM based localization. Evaluation using real-
world traces shows that the proposed approach 
can provide reasonably good accuracy which is 
sufficient for many location based services. We 
have developed several location-aware applica-
tion using CBS-based localization technique and 
even built multimodal techniques using Cell ID 
and GPS, which can minimize energy consump-
tion on smartphones. Hence, CBS-based localiza-
tion is a promising solution, especially for feature 

phones and provides mobile users in developing 
countries, an opportunity to access location based 
services without any extra infrastructure.

For Communication, we described Unity 
which enables faster communication on several 
co-located phones which have limited bandwidth 
connection (2G). Multiple people, specifically 
those who have similar interests typically inferred 
by social network or geographic proximity, have 
overlapping interests in desired content such as 
multimedia songs and videos. However, most 
often they tend to download the same content 
individually from Internet. Unity enables collabo-
ration between co-located and socially connected 
users to download mutually desired content from 
Internet. Unity is implemented as a complete sys-
tem for Android and is evaluated for effectiveness 
on different workload sizes and varying number 
of collaborating devices. Unity users will benefit 
byincurring lower costs for data connection as 
well as multi-fold increase in download time while 
reducing overall energy consumption. However, 
users have to manually keep track of their friend’s 
content preference as well as location in Unity . We 
are extending current architecture of Unity with 
the help of the cloud to address some of these lim-
itations and make collaboration more useful and 
pervasive. The cloud acts as a control information 
gateway among different mobile peers interested 
in collaboration.

For Sensing, we designed and deployed an 
open-ended community sensing test bed in India. 
The main goal of test bed was to sense various 
events across different cities or day-to-day prob-
lems with citizens’ participation. We have enabled 
multimodal submission interface for submission 
of events to increase citizen participation. Sub-
mission interfaces such as SMS gives flexibility 
as well as cost reduction to participants because 

Figure 13:  Tag Clouds of some of major patterns found in data collection, Delhi residents were mostly 
concerned with traffic-related problems where as Tamilnadu had civic issues.
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many people in developing countries subscribe 
to bulk SMS plans. From our deployment, we 
have observed that all our submission interfaces 
were used by the participants. The primary goal 
of our effort was to explore the challenges in col-
lecting balanced and reliable data by exploiting 
the unreliable, autonomous “community of sen-
sors”. This was a preliminary effort and we look 
to solve many challenges which we encountered 
during our deployment such as engaging partici-
pants, controlling data quality and automatic data 
validation.

Other the afore-mentioned three aspects, one 
more aspect, where there is a disparity between 
feature phones and smartphones is computational 
resources. One way to deal with the disparity is 
with the use of cloud-based VM. In this solution, 
the feature phone is made into a thin client and 
the compute intensive operations are done in a 
VM on the cloud. We are currently working on 
this solution.
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