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REVIEWS

On the proof of the Poincaré conjecture

Siddhartha Gadgil

Abstract | In 2002, Perelman proved the Poincare conjecture, building on the work of Richard

Hamilton on the Ricci flow. In this article, we sketch some of the arguments and attempt to

place them in a broader dynamical context.

The proof of the Poincaré conjecture, due to
Perelman [7–9], is an epic piece of mathematics
involving an extraordinary range of ideas, many
of which are due to Perelman and many others
developed over time by various mathematicians,
most notably Richard Hamilton. The goal here is to
view these ideas in a more general context. There
are no new ideas in this note—it is a collection of
loose remarks inspired by the work of Hamilton and
Perelman and many related geometric ideas. For a
more serious account, we refer the reader to [4–6]
and [10].

The Poincaré conjecture is a statement
characterizing the three-dimensional sphere among
three-dimensional spaces M (more accurately closed
three-dimensional manifolds) as the only one that
is simply-connected. This means that any curve can
be deformed to a single point in the space M .

The Poincaré conjecture can be reformulated
as saying that a simply-connected, closed, three-
dimensional manifold M admits a Riemannian
metric g that satisfies the Einstein equation. For
the present, the reader can regard this as simply
saying there is a collection of functions on M
(more accurately a tensor on M) satisfying a certain
equation. The goal is to show such a solution exists,
using the hypothesis that M is simply-connected.

Hamilton’s approach [2,3], taken to a successful
conclusion by Perelman, was to start with an
arbitrary metric g and modify this with time using a
particular equation, the Ricci flow. Einstein metrics
are precisely the metrics that are fixed up to scaling
by the Ricci flow. Thus, one sets up an infinte
dimensional dynamical system and hopes that it
flows to a fixed point. One of the early results

of Hamilton was that the Ricci flow exists for a
short time, so we can speak of a dynamical system
corresponding to the equation.

Hamilton showed that this does happen in an
imporant special case—manifolds of positive Ricci
curvature. However, it is too optimistic to hope that
a dynamical system flows to a fixed point even in
finite dimensions. To understand the subtleties, it is
instructive to consider finite dimensional smooth
systems. An orbit for such a system may go to
infinity, i.e., may not remain in a compact region.

For the Ricci flow, not remaining in a compact
region turns out to correspond to unbounded
curvature or having injectivity radius not bounded
below. Understanding such regions was the crux of
Hamilton’s programme.

Even if an orbit remains in a compact region,
it may correspond to a periodic orbits, or more
generally a compact invariant set. However, we can
conclude we have fixed points for an important
special class of dynamical systems, namely those
given by gradient flows. Such a dynamical system
does not have periodic orbits or other compact
invariant sets not containing fixed points.

A surprising result of Perelman was that the Ricci
flow is closely related to a gradient flow. Namely, we
can modify the Ricci flow by symmetries so that it is
the gradient flow for what Perelman calls the entropy
(as pointed out by Topping [10], and independently
Mokshay Madiman (personal communication), this
is really a Fisher information).

Of the results of Perelman and Hamilton that
buildup to the Poincaré conjecture, many are valid
for the Ricci flow in all dimensions while others
are specific to dimension three. We shall emphasise
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those that are special to dimension three. These
can be regarded as the results that prevent complex
behaviors. Thus, it seems a worthwhile exercise
to try to isolate the features that make a system
well-behaved.

The Ricci flow, like General Relativity, has the
feature that rather than equations for fields on a
fixed space, one has evolution equations for the
space itself. This leads to special subtleties. In the
case of the Ricci flow, there take the form of non-
collapsing conditions that must be satisfied. As these
subtleties, and the techniques for dealing with them,
are less likely to be relevant in other contexts, we
shall avoid much discussion of them. We remark
that the techniques invented by Perelman to address
these are valid in all dimensions and hence are not
those determining regularity.

1. Reaction-diffusion equations
To understand the Ricci flow, it is very useful to
work with so called harmonic co-ordinates, i.e., co-
ordinate functions that are harmonic. These were
used extensively by Einstein in general relativity
and have recently come to play a major role in
Riemannian geometry.

In harmonic co-ordinates, the Ricci flow takes
the form of a reaction-diffusion equation, the
prototypical equation for complex systems. Thus,
the Ricci flow is given by

∂g

∂t
= 1g +Q(g ,∂g)

where Q(g ,∂g) is a quadratic expression in the
metric g and its first derivatives.

Without the quadratic term, the above equation
is closely related to the heat equation, which governs
the diffusion of a fluid. The extra term is a so-
called reaction term. A large part of Hamilton’s
work on the Ricci flow amounted to controlling
the sign of the reaction term to obtain maximum
principles extending the maximum principle for
the heat equation. We illustrate the principles with
some simple examples below.

First, consider the case of the heat equation,
which we regard as the equation governing the flow
of a fluid that is not involved in chemical reactions.
In this case, the fluid flows from regions of higher
concentration to those of lower concentration. In
particular, the minimum concentration increases
with time. This is the maximum principle in this
case.

Suppose now that we have a mixture of fluids
that react (in addition to diffusing). We may
nevertheless be able to deduce certain aspects
of the behavior from simple facts regarding the
reactions. For instance, if the reactions always

result in the total concentration of all substances
increasing, we can deduce that the minimum of the
total concentrations increases with time, and even
estimate the rate of this increase. Indeed the first
of Hamilton’s maximum principles, that for scalar
curvature, is of this form.

For the Ricci flow in dimension three, we have
a more subtle result called the Hamilton-Ivey
pinching. This is once more analagous to a simple
process. Imagine a mixture of two fluids that react
in such a way that the relative concentration of
the sparser fluid increases, i.e., the ratio of the
fluids tends to one (we call this pinching). Then the
minimum of the ratio of the fluids increases with
time.

Note that if concentrations of the chemicals are
high, then the reaction term is large compared to the
diffusion term. If the rate of pinching is sufficiently
high, then it will follow that this ratio goes to one
(or an appropriate constant) in regions of high
concentration. This means such regions have much
simpler behaviour.

2. Riemannian manifolds
A smooth manifold is the natural generalisation of
a smooth surface to higher dimensions. As in the
case of surfaces, given a point x ∈ M in a smooth
manifold M, we can consider the set of vectors
tangent to M at x. This is a vector space called the
tangent space Tx M .

A Riemannian metric g assigns an inner product
to each tangent space Tx M, x ∈ M, in a smooth
fashion. Given a Riemmannian metric, the length
of a parametrised curve γ(t) can be obtained by
integrating the infinitesimal length with respect to γ

l(γ) =

∫
g(γ̇ , γ̇)1/2

Fix a point x ∈ M. For points y in a
neighbourhood of x, there is a unique shortest
curve (parametrised by arclength) joining x to y.
Such a curve is a geodesic. These geodesics give polar
co-ordinates for a neighbourhood of x. An example
is the set of longitudes near the north pole.

In the case of the sphere, the geodesics at a
point move towards each other, i.e., the distance
between points along two geodesics is less than
those between corresponding points in Euclidean
space. Such a space is said to be positively curved.
In general, we can associate to surfaces with
Riemmannian metrics a number at each point,
called the Gaussian curvature, which measures the
rate at which geodesics converge or diverge (relative
to the Euclidean case).

For surface, any pair of geodesics converge
and diverge at the same rate. However, in higher
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On the Poincaré conjecture REVIEW

dimensions this is not the case. The rate of
convergence or divergence depends on the plane in
the tangent space spanned by the initial velocities
of the two geodesics. Hence, one needs to consider
such a number, the sectional curvature, for each
plane in the tangent space.

One can average sectional curvatures over
different planes to obtain two other useful
quanitities measuring curvature, the Ricci curvature
Ric and the scalar curvature R.

The minimising geodesics do not give polar co-
ordinates on all of M . The largest radius for which
they do is called the injectivity radius.

3. The space of Riemannian metrics
We fix a manifold M . The Ricci flow is a dynamical
system on the space Riem of Riemannian metrics on
M . The manifold M has a large group of symmetries,
the diffeomorhisms of M (which we regard as the
Gauge transformations). These can be regarded as
change of co-ordinates, so metrics that differ by
diffeomorphisms should be regarded as esentially
the same.

The Ricci flow also induces flows on the
space Riem/Dif f of Riemmannian metrics up to
diffeomorphism. It is the flow on this space that is of
interest. Hence a central issue is to understand the
dynamics on this space. We also consider a further
quotient where we regard two metrics as the same if
they differ by scaling. A fixed point on this space,
i.e., a solution constant up to diffeomorphisms and
rescaling is called a Ricci soliton.

To understand the dynamics, it is important
to understand when the Ricci flow remains in a
compact region of the space Riem/Dif f . Consider
a closed subset X of Riem/Dif f . The volume of a
Riemannian manifold gives a continuous function
on Riem/Dif f , hence on X. If X is compact, then
this is bounded, i.e., there is an upper bound on
the volumes of the manifolds in X. Similarly, we
can consider the injectivity radius, which gives a
positive function on X. If X is compact, then the
injectivity radius is bounded below. Similarly, we
can associate to each closed Riemannian manifold
the maximum sectional curvature for the manifold.
This is also bounded on X.

Important results in Riemannian geometry tell
us that in fact the set X is compact if and only
if the volume and maximum absolute value of
the curvature are bounded above on X and the
injectivity radius is bounded below.

We shall see later that the curvature can be
regarded as the energy density. A crucial fact is that
rescaling the metric causes the curvature to scale
in inverse proportion to the square of the scaling
factor. Thus, the curvature can be considered the

natural scale for the Riemannian manifold, as we
see below.

Perelman introduced an entropy and other
related quantities that increase along the
Ricci flow. Further, one may view the Ricci
flow as a gradient flow of the entropy after
making appropriate changes of co-ordinates, i.e.,
applying diffeomorphisms (which are the gauge
transformations for the Ricci flow). This is crucial in
controlling the dynamics.

Using these functionals, Perelman was able to
show that there is a lower bound on the injectivity
radius for the appropriate rescaled manifolds. By
a result of Cheeger, this amounts to showing a
lower bound for the volume on the natural scale
of the manifold given by the curvature. This is a
not unexpected consequence of a lower bound on
the entropy (though in general the entropy of a
system may decrease locally). This is Perelman’s
non-collapsing result.

4. Energy and scales
As mentioned before, curvature can be viewed
an an analogue of the energy density. From this
viewpoint, the behaviour of a system depends on
the relation between the dimension and the nature
of the appropriate energy, with different kinds of
behaviour in the case of elliptic regularity, in the
critical case and for dimensions beyond the critical
case. One way of viewing a part of Perelman’s work
is to say that we do have regularity for the Ricci flow
in dimension three even though the dimension is
greater than the critical case. We attempt to view this
in a general context in the hope that this facilitates
other applications of this idea.

For comparison, consider smooth functions on
a unit ball B(0,1) in Rk with the energy (assumed
to be finite) given by

E(f ) =

∫
‖∇ f ‖2

We consider functions with a fixed energy E.
A general principle is that the number of possible
states of the system (whose log is the entropy) grows
exponentially with energy. One can formulate an
appropriate continuous analog of this, which holds
for this simple system. In particular, we say the
system shows non-trivial behaviour if the energy
is not small (which we denote E � 0). Denote the
volume of the unit ball by V0/

Let us now restrict such functions to a small
ball B(ε) of radius ε (with centre 0 for simplicity),
whose volume is Vε = (ε)kV0. Let the energy of the
restriction fε of a given function f be Eε. This is
simply the integral above restricted to the ball B(ε).
We can view these restrictions as a subsystem.
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We can view these restrictions as functions on
the unit ball by rescaling. Namely consider the
function f ′ on the unit ball given by

f ′(x) = f (εx)

The function f ′ has energy given by

E′
= ε2−kEε

As with the original system, we say that the
subsystem at scale ε has non-trivial behaviour if
E′

� 0.
Observe that if the dimension k < 2, then if ε

is small so is E′. Hence we cannot have non-trivial
behaviour at small scales. This is the domain of
elliptic regularity.

For the critical case k = 2, E′
= Eε. Thus, we do

have non-trivial behaviour at the scale ε whenever
Eε is comparable to E, i.e., a definite proportion
of the energy is localised at bε (so called energy
concentration). Evidently such energy concentration
can only happen at finitely many points. At these
points we have the well known phenomenon of
bubbling.

Finally, if k > 2, then we evidently can have
non-trivial behaviour at many scales as E′ may be
large even when Eε � E. This is typical of complex
systems. As mentioned earlier, the Ricci flow in
dimension three is in this range, yet is well-behaved.

The energy can be interpreted as giving a natural
scale for the system at a point, i.e., the smallest
scale at which one has non-trivial behaviour. First,
assume that the energy is given by an energy density

η(x) = lim
ε→0

Eε

Vε

If the energy density is well-defined (i.e., the
limit exists), Eε is approximately ηVε for a ball of
radius ε (ε small enough) centred about the point x.
Observe that in this case the energy of the rescaled
function is E′

= ε2η(x).
Thus, the natural scale for the system at x can be

taken to be ε satisfying ε2η = 1. At this scale, one
can have non-trivial behaviour near x.

If the energy density oscillates rapidly, there are
in general points y close to x with η(y) � η(x).
This means that there can be much smaller regions
exhibiting non-trivial behaviour in the ball Bε. This
makes the system complex for k > 2. It is precisely
this rapid oscillation of η that Perelman showed
does not happen for the Ricci flow in dimension
three.

5. Curvature as energy density
Recall that rescaling a manifold decreases the
curvature by the square of the rescaling factor. Thus,
given a ball of radius ε with curvature function κ,
on rescaling to a unit ball the curvature function
for corresponding points becomes ε2κ. This is the
same transformation as for the energy density in the
above example.

Further, consider Riemannian manifolds
(possibly with boundary) with diameter at most
D and injectivity radius bounded below. We first
consider the case of closed manifolds, to understand
how complexity is governed by curvature. In this
case, Cheeger’s finiteness theorem asserts that given
an upper bound K on the maximum absolute
sectional curvaure, there are only finitely many such
manifolds up to diffeomorphism with curvature
satisying this upper bound. Further, this number
grows exponentially with K . Thus, K can be
regarded as the total energy, or more accurately the
maximum energy density. In the case of both closed
manifolds and those with boundary, one can also
see that in some sense the volume of the space of
Riemannian manifolds satisfying theses conditions
grows exponentially with K .

These considerations make it clear that one
should regard the curvature as analogous to the
energy density, and the natural scale at a point is
a scale ε so that rescaling an ε ball to a unit ball
makes the maximum curvature 1 (or any universal
constant).

6. The blow-up analysis
We now return to the case of the Ricci flow. In
view of Perelman’s non-collapsing result, the main
remaining issue is to understand regions of high
curvature. As indicated in the previous section, a
standard method of doing this is to rescale so that
the curvature (more generally energy) is bounded,
and to rescale time correspondingly. Such a rescaling
gives a new solution on the Ricci flow which is
ancient, i.e., is defined on (−∞,0].

In the case of the Ricci flow, there are a few
special features which lead to strong results from
the blow-up analysis. Firstly, the curvature pinching
results mean that the resulting ancient solutions
are manifolds of non-negative curvature. Such
manifolds are very special.

Secondly, we consider a sequence of manifolds
backward in time. As the Ricci flow is a gradient,
a subsequence has a limit which is a fixed point
for the flow on Riem/Dif f , i.e., a Ricci soliton (in
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fact a gradient soliton). As the manifolds have non-
negative curvature, the limit is a gradient shrinking
soliton of non-negative curvature. There are very
few such solitons.

Further, the solitons obtained above are stable
(in the dynamical sense) under the Ricci flow, so
that as the solution is close to the asymptotic soliton
at very negative times, it remains close at all times.
Hence the Riemannian manifolds at all times of
the ancient solution are close to the soliton. From
this one can deduce a canonical neighbourhood
theorem for points of maximum curvature, using
the corresponding result for asymptotic solitons.

The blow-up analysis is a common method
used in mathematics. However, it normally yields
results only near points of maximum curvature at
the natural scale for these points. At such points,
on rescaling according to the natural scale, we get
solutions with bounded energy (curvature in our
case), which can be analysed using appropriate
compactness results.

In general we have points where the energy
density (curvature) does tend to infinity but slower
than the maximum energy density. Furthermore,
such points can be the limits of points where the
energy density grows much faster than the given
point. In this case, rescaling using the natural scale
does not give solutions with bounded energy. Hence
blow-up analysis does not suffice to obtain an
understanding of the solution near such points.

Observe that the above situation does not arise if
the curvature does not oscillate, i.e., the gradient of
the curvature is bounded after rescaling so that the
curvature is bounded. In the case of the Ricci flow,
one can deduce from the nature of the blow-up
solutions (using curvature pinching) that this is
the case at the points of maximum curvature. A
clever inductive argument of Perelman uses this to
establish the canonical neighbourhood theorem for
all points of high curvature.

Thus, we can view Perelman’s argument in two
steps. Fistly, blow-up limits are close to appropriate
solitons. This is something which one may obtain in
many complex systems. However, the second and
special feature is that a soliton that is ancient is of
a very special form, so that, by adding constraints
from the topology, there are very few possibilities
for points close to the blow-up limit. Looked at in
another way, the special cases are positive Einstein
metrics. Negative Einstein metrics, which are far
more common, do not give ancient solutions to the
Ricci flow. As a result, if we consider a Ricci flow
for a time ε > 0 with any initial metric, the result
cannot be a negative Einstein metric with very high
curvature.

7. An overview of the proof
We conclude with some general remarks about the
proof of the Poincaré conjecture.

• We consider a manifold with a field on it—a
Riemannian metric in our situation.

• There is a group of Gauge transformations
for the field—in our case the group of
diffeomorphisms. We consider the flow both
on fields, and modulo Gauge transformations.
We sometimes also consider the fields modulo
scaling and Gauge symmetries.

• We wish to find fixed points of the flow. Fixed
points modulo symmetries are solitons.

• Perelman considers the flow modified by
Gauge transformations. In this case the flow
is a gradient and entropy increases along the
flow.

• One wishes to understand points where the
energy density (maximum curvature) blows
up. We can rescale to obtain bounds at the
point of maximum energy. The energy density
gives the natural scale for the system.

• The maximum principles say that at points
where the energy blows up, the curvature is
of a special form. This is a condition on the
germ of the field at each point.

• As a result, blowing up at the maximum
points gives an ancient solution, with the
field at each time of a special form (of non-
negative curvature)

• One can take times backward to −∞

and extract a limit. This is a soliton with
nonnegative curvature.

• These can be classified and are of a special
form. In particular the energy does not oscillate
rapidly for these.

• The special solitons we obtain are the only
maxima for the entropy on a subspace of
Riem/Dif f that is stable under the Ricci
flow. Hence these solitons are attractors. It
follows that the entire ancient solution is close
to the solitons.

• Thus, we have regularity for points of
maximum energy.

• The control in oscillations also allows blow-
up analysis at high but not maximum
curvature.
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