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Abstract | This article is an exposition on the ‘congruence subgroup problem’. This subject is at

a common ground shared by group theory and number theory. It deals with certain groups

defined arithmetically and their subgroup structure. This is a relatively modern subject having

taken off in the mid 1960’s after Klein’s early investigations on the modular group. Apart from

interest in its own right, the subject gains importance also because of connections with the

theory of automorphic forms which is central to number theory. This exposition is meant to

introduce the subject to professional mathematicians working in other areas. At the end, some

recent work by the author is mentioned.

1. Introduction
If one views Z simply as a discrete subgroup of
R, many of its number-theoretic properties lie
hidden. For instance, to ‘see’ prime numbers, one
needs to use some other topology on Z. This is the
so-called profinite (or artihmetic) topology. Here,
arithmetic progressions form a basis of open sets.
The Chinese remainder theorem essentially tells us
that the arithmetic topology is ‘built out of ’ various
p-adic topologies for all the primes p. More precisely,
any subgroup of finite index in Zn evidently contains
kZn for some natural number k. The congruence
subgroup problem is a question which asks whether
this property generalises to vastly general groups.
As we shall see, an affirmative answer would again
amount to the ‘topology given by subgroups of finite
index being built out of the p-adic topologies’. If one
considers a matrix group with integral entries, say,
SLn(Z), for some n ≥2, one natural way of finding a
subgroup of finite index is to look at the natural ring
homomorphism Z → Z/kZ for a natural number k

and look at the kernel of the corresponding group
homomorphism SLn(Z) → SLn(Z/kZ). This is
known as the principal congruence subgroup of level
k, for obvious reasons. Any subgroup of SLn(Z)

which contains a principal congruence subgroup
of some level is called a congruence subgroup.
Congruence subgroups show up in many situations
in number theory. For instance, the main step
in Wiles’s proof of Fermat’s last theorem is to
obtain a non-constant meromorphic map from
the quotient of the upper half-plane by a suitable
congruence subgroup into an elliptic curve defined
over Q. In fact, the classical theory of modular forms
and Hecke operators which plays such a central
role in number theory is a theory which ‘lives’ on
congruence subgroups. Interestingly, this fact that
Hecke operators essentially live on subgroups of
the modular group already requires the solution
of the congruence subgroup problem for the so-
called Ihara modular group SL2(Z[1/p]), as shown
by Serre and Thompson. Suffice it to say that
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congruence subgroups are important in number
theory.

1.1. A naive form of the congruence subgroup
problem

The first question one may ask is whether all
subgroups of finite index in SLn(Z) are congruence
subgroups. Note that the question is meaningful
because of the existence of plenty of congruence
subgroups in the sense that their intersection
consists just of the identity element. Already in
the late 19th century, Fricke and Klein showed
that the answer to this question is negative if
n = 2. Indeed, since the free group of rank 2
is the principal congruence subgroup 0(2) of
level 2, any 2-generated finite group is a quotient
of this group. But there are many finite, simple
2-generated groups (like An (n > 5), PSL3(Z/qZ)

for prime q) which are quotients of 0(2) where
the corresponding kernel cannot be a congruence
subgroup of SL2(Z). One way to see this is to use the
fact that any simple, non-abelian quotient group of
0(2) by a congruence subgroup must be of the form
PSL2(Fp) where Fp is the finite field with p elements
and observe that there are 2-generated finite simple
groups different from PSL2(Fp) for any p. Indeed,
for n > 5, even the order of An cannot be be equal
to that of any of these groups. As PSL2(Fp) has
abelian q-Sylow subgroups for all odd primes q
whereas a group like PSL(3,Z/qZ) has non-abelian
q-Sylow subgroups, the latter group is a quotient of
0(2) by a non-congruence subgroup. Thus, SL2(Z)

has non-congruence subgroups, of finite index. In
fact, it can be shown that there are many more
noncongruence subgroups of finite index in SL2(Z)

than there are congruence subgroups. It was only in
1962 that Bass–Lazard–Serre—and, independently,
Mennicke—showed that the answer to the question
is affirmative when n ≥ 3. Later, in 1965, Bass–
Milnor–Serre generalised this to the special linear
and the symplectic groups over number fields.

Mennicke showed later that subgroups of finite
index in SL2(Z[1/p]) are congruence subgroups
and this is the principal reason behind the fact
asserted above that the classical Hecke operators for
SL(2,Z) live only on congruence subgroups.

2. Arithmetic and congruence groups in
algebraic groups

Let us first say how the question can be posed for
general (linear) algebraic groups over a number field
k. The algebraic groups we consider are all linear
(therefore, affine) algebraic groups; the formulation
for abelian varieties is quite different. Recall that
an algebraic group defined over k (considered as a
subfield of C) is a subgroup G of GL(N ,C) which

is also the set of common zeroes of a finite set of
polynomial functions P(gij ,det(g)−1) in N2

+1
variables with coefficients from k. The definition
has to be slightly modified if k is a field of positive
characteristic. The group G(k) = G ∩ GL(N ,k)

turns out to be defined independent of the choice of
embedding G ⊂ GL(N ,C) and, is called the abstract
group of k-points of G.

Here are some standard examples of algebraic
groups defined over a subfield k of C.

(i) G = GL(n,C).
(ii) G = SL(n,C) = K er(det : GL(n,C) → C∗).

(iii) For any symmetric matrix M ∈ GL(n,k), the
orthogonal group

O(M) = {g ∈ GL(n,C) :
t gMg = M}.

(iv) For any skewsymmetric matrix � ∈ GL(2n,k),
the symplectic group

Sp(�) = {g ∈ GL(2n,C) :
t g�g = �}.

(v) Let D be a division algebra with center k (its
dimension as a k-vector space must be n2 for
some n). Let vi;1 ≤ i ≤ n2 be a k-basis of D
(then it is also a C-basis (as a vector space) of
the algebra D⊗k C). The right multiplication
by vi gives a linear transformation Rvi from
D ⊗k C to itself, and thus, one has elements
Rvi ∈ GL(n2,C) for i = 1,2, . . . ,n2.

G = {g ∈ GL(n2,C) : gRvi = Rvi g

∀ i = 1,2, . . . ,n2
}.

This last group has its G(k) = the nonzero
elements of D.

Henceforth, k will denote an algebraic number
field. Let G ⊂ SLn be a k-embedding of a linear
algebraic group. If Ok denotes the ring of algebraic
integers in k, we denote by G(Ok), the group
G∩SLn(Ok). For any non-zero ideal I of Ok, one
has the normal subgroup G(I) = Ker(G(Ok) →

SLn(Ok/I)) of finite index in G(Ok). Note that it
is of finite index because the ring Ok/I is finite.

Then, one could define a subgroup of G(Ok) to
be a congruence subgroup if it contains a subgroup
of the form G(I) for some non-zero ideal I . The
only problem is that, unlike G(k), the definitions of
G(Ok) and G(I) etc. depend on the k-embedding
we started with. However, it turns out that for a new
k-embedding, the ‘new’ G(Ok) contains an ‘old’
G(I) for some I 6= 0. Thus, the following definition
is independent of the choice of the k-embedding:
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A subgroup 0 of G(Ok) is a congruence
subgroup if 0 ⊃ G(I) for some I 6= 0.

The group G(Ok) can be realised as a discrete
subgroup of a product G(R)r1 × G(C)r2 of Lie
groups, where k has r1 real completions and r2 non-
conjugate complex completions. More generally,
let S be any finite set of inequivalent valuations
containing all the above archimedean valuations.
The nonarchimedean valuations in S correspond to
nonzero prime ideals of Ok . One has the bigger ring
OS of S-units of k; these are the elements of k which
admit denominators only from primes in S. One
may define G(OS) = G ∩ SLn(OS); then G(OS)

is a discrete subgroup of the product
∏

v∈S G(kv)

of real, complex and p-adic Lie groups, where kv

denotes the completion of k with respect to the
valuation v.

One calls a subgroup 0 ⊂ G(OS) an
S-congruence subgroup if and only if it contains
G(I) (the elements of G(OS) which map to the
identity element in G(OS/I)) for some nonzero
ideal I of OS. Of course, G(OS) itself depends on
the k-embedding of G chosen.

Hence, the most general definition is the
following:

A subgroup 0 ⊂ G(k) is an S-congruence
subgroup if, for some (and, therefore, any) k-
embedding of G, the group 0 contains G(I) as
a subgroup of finite index for some nonzero ideal I
of OS.

One also defines:

A subgroup 0 ⊂ G(k) is an S-arithmetic subgroup
if, for some (and, therefore, any) k-embedding, 0

and G(OS) are commensurable (i.e., 0∩ G(OS)

has finite index in both groups).

3. The congruence kernel
Each of the two families (the S-arithmetic groups
and the S-congruence groups) defines a topology
on G(k) as follows. For any g ∈ G(k), one defines a
fundamental system of neighbourhoods of g to be
the cosets gG(I) as I varies over the nonzero ideals
of OS. This topology Tc is called the S-congruence
topology on G(k). If one takes a fundamental
system of neighbourhoods of g to be the cosets
g0 as 0 varies over S-arithmetic subgroups of
G(k), the corresponding topology Ta is called the
S-arithmetic topology. As S-congruence subgroups
are S-arithmetic subgroups, Ta is finer. Note that
Ta just gives the profinite topology on G(OS). If
the resulting completions of (uniform structures
on) G(k) are denoted by Ĝa and Ĝc , then there
is a continuous surjective homomorphism from
Ĝa onto Ĝc . Obviously, this is an isomorphism
if all subgroups of finite index in G(OS) are

S-congruence subgroups. In general, the kernel
C(S,G) of the above map, called the S-congruence
kernel, measures the deviation.

A basic important property is that C(S,G) is a
profinite group. In fact, the closures 0̂a, 0̂c of G(OS)

in Ĝa and Ĝc respectively, are profinite groups and
C(S,G) ⊂ 0̂a. The congruence subgroup problem
(CSP) is the problem of determining the group
C(S,G) for any S,G.

4. Margulis–Platonov conjecture
There is a conjecture due to Serre which predicts
precisely when the group C(S, G) is finite.
The finiteness of C(S,G) has many interesting
consequences as we shall soon see. Before going
into it, we note that when C(S,G) is trivial, all S-
arithmetic subgroups are S-congruence subgroups.
For any S, the association G 7→ C(S, G) is a
functor from the category of k-algebraic groups
to the category of profinite groups. Given G,
a general philosophy (which can be made very
precise) is that the larger S is, the ‘easier’ it is
to compute C(S,G). In fact, when S consists of
all the places of k excepting the (finitely many
possible) nonarchimedean places T for which G(kv)

is compact (for the topology induced from kv), the
computation of C(S,G) amounts to a conjecture
of Margulis & Platonov which has been proved
in most cases. In fact, in most cases T is empty
which means that the triviality of C(S,G) (for the
S mentioned last) is equivalent to the simplicity of
the abstract group G(k)/center. One important
case where the Margulis–Platonov conjecture has
still not been proved is that of the special unitary
group of a division algebra with center k and with an
involution of the second kind. The following people
have contributed to the proof of the MP conjecture
for the other cases: Borovoi, Chernousov, Liebeck,
Margulis, Platonov, Raghunathan, Rapinchuk, Segev,
Seitz, Sury and Tomanov.

5. Necessary conditions for finiteness
First, we briefly indicate how the CSP for a
general group reduces to CSP for certain types
of groups. The problem easily reduces to connected
algebraic groups G and, further, to the reductive
group G/Ru(G) using nothing more than the
Chinese remainder theorem. Here, the unipotent
radical Ru(G) of G is the maximal, normal,
connected, unipotent subgroup. A reductive k-
group G contains a central k-torus T (an algebraic
k-torus is a connected, abelian k-subgroup C-
isomorphic to products of k∗) so that G/T is
a semisimple group. For tori T , the congruence
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kernel C(S,T) is trivial—this is a theorem due
to Chevalley and is essentially a consequence of
Chebotarev’s density theorem in global class field
theory. Hence, the problem reduces to that for
semisimple groups. For semisimple G, the group
G(OS) (for any embedding) can be identified with
a lattice in the group GS :=

∏
v∈S G(kv) under the

diagonal embedding of G(k) in GS. That is, the
quotient space GS/G(OS) has a finite, GS-invariant
measure.

Finally, it is necessary (as observed by Serre)
for the finiteness of C(S,G) that G be simply-
connected as an algebraic group—that is, there
is no k-algebraic group G̃ admitting a surjective k-
map π : G̃ → G with finite nontrivial kernel. This is
actually equivalent to G(C) being simply-connected
in the usual sense. Further, if one can compute
C(S,G̃) for a simply-connected ‘cover’ G̃ of G, then
one can compute C(S,G). Thus, the CSP reduces
to the problem for semisimple, simply-connected
groups.

If G is simply-connected and the group∏
v∈S G(kv) is noncompact (equivalently, G(OS)

is not finite), one has the strong approximation
property. This means that the closure 0̂c of
G(OS) with respect to Tc can be identified with∏

v 6∈S G(Ov). Here Ov is the local ring of integers
in the p-adic field kv . Thus, if C(S,G) is trivial,
the profinite completion of G(OS) is also equal to∏

v 6∈S G(Ov).

Thus, roughly speaking, when the congruence kernel is
trivial the topology given by subgroups of finite index
is built out of the p-adic topologies as asserted in the
introduction.

For G(k) itself, strong approximation means
that Gc can be identified with the ‘S-adelic
group’ G(AS), the restricted direct product of all
G(kv), v 6∈ S with respect to the open compact
subgroups G(Ov). The reason that G must be
simply-connected in order that C(S,G) be finite,
is as follows. Let there exist a k-map: G̃ → G
with kernel µ and G̃ simply-connected. Now, the
S-congruence completion G̃c can be identified
with the S-adelic group G̃(AS). If π is the
homomorphism from the S-arithmetic completion
G̃a to G̃c = G̃(AS), then it is easy to see that C(S,G)

contains the infinite group π−1(µ(AS))/µ(k).
As mentioned at the beginning, subgroups of

finite index in SL(n,Z) are congruence subgroups
when n ≥ 3 while this is not so when n = 2. What
distinguishes these groups qualitatively is their rank.

If G ⊂ SLn is a k-embedding, one calls a k-torus
T in G to be k-split, if there is some g ∈ G(k) such
that gTg−1 is a subgroup of the diagonals in SLn.
The maximum of the dimensions of the various
k-split tori (if they exist) is called the k-rank of

G. For example, k-rank SLn = n −1 and k-rank
Sp2n = n. If F is a quadratic form over k, it is an
orthogonal sum of an anisotropic form over k and a
certain number r of hyperbolic planes (r is called
the Witt index of F), by Witt’s classical theorem.
Then, the group SO(F) is a k-group whose k-rank
is this same r.

6. Serre’s conjecture
Let us consider a general semisimple, simply-
connected k-group G. Assume that G is absolutely
almost simple (that is, G has no connected normal
algebraic subgroups). For a finite S containing
all the archimedean places, Serre formulated
the characterisation of the congruence subgroup
property (that is, the finiteness of C(S, G))
conjecturally as follows. First, it is easy to see that a
necessary condition for finiteness of C(S,G) is
that for any nonarchimedean place v in S, the
group G has kv-rank > 0 (equivalently, G(kv) is not
profinite by a theorem of Bruhat-Tits-Rousseau).
Indeed, otherwise the whole of G(kv) is a quotient
of C(S,G).

Conjecture 1 (Serre). C(S,G) is finite if, and only
if, S-rank(G) :=

∑
v∈S kv −rank(G) ≥ 2 and G(kv)

is noncompact for each nonarchimedean v ∈ S.
When C(S,G) is finite, one says that the CSP is

solved affirmatively or that the congruence subgroup
property holds for the pair (G,S).

As mentioned in the introduction, for k = Q,S =

{∞,p} for some prime p and G = SL2, the CSP was
solved affirmatively by Mennicke and this fact can be
used to show (as was done by Serre and Thompson)
that the classical theory of Hecke operators ‘lives’ only
on congruence subgroups of SL2(Z).

It should be noted that the finitness of C(S,G)

as against its being actually trivial, already has
strong consequences. One, pointed by Serre, is
super-rigidity; this means:

If C(S,G) is finite, then any abstract homomorphism
from G(OS) to GLn(C) is essentially algebraic.
In other words, there is a k-algebraic group
homomorphism from G to GLn which agrees with the
homomorphism we started with, at least on a subgroup
of finite index in G(OS). In particular, 0/[0,0] is
finite for every subgroup of finite index in G(OS).

This last fact has already been used to prove in
some cases that C(S,G) is NOT finite, by producing
a 0 of finite index which surjects onto Z.

7. Relation with cohomology
Consider the exact sequence defining C(S, G).
Recall that the strong approximation theorem for
G(k) means Gc can be identified with the ‘S-adelic
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group’ G(AS), the restricted direct product of all
G(kv), v 6∈ S with respect to the open compact
subgroups G(Ov). Thus, we have the exact sequence

1 → C(S,G) → Ĝa → G(AS) → 1

which defines C(S,G). By looking at continuous
group cohomology H i with the universal
coefficients R/Z, one has the corresponding
Hochschild–Serre spectral sequence which gives the
exact sequence

H1(G(AS)) → H1(Ĝa) → H1(C(S,G))G(AS)

→ H2(G(AS)).

Now, the congruence sequence above splits over
G(k), the last map actually goes into the kernel of
the restriction map from H2(G(AS)) to H2(G(k)).
So, if α denotes the first map, then we have an exact
sequence

1 → Cokerα → H1(C(S,G))G(AS)

→ K er(H2(G(AS) → H2(G(k))).

Here G(k) is considered with the discrete topology.
The last kernel is called the S-metaplectic kernel and
it is a finite group. It had been computed for several
cases by Gopal Prasad and Raghunathan and now, it
has been computed in all cases by Gopal Prasad and
Rapinchuk. The cokernel of α is nothing but the S-
arithmetic closure of [G(k),G(k)]; hence it is also
a finite group since [G(k),G(k)] has finite index in
G(k). In fact, one expects the cokernel to be trivial,
and this is known in most cases. Therefore, the
middle term H1(C(S,G))G(AS) is finite. But, this
shows that the the quotient C(S,G)/[C(S,G), Ĝa]

is finite. In fact, we have:
C(S,G) is finite if, and only if, it is contained in

the center of Ĝa.
The centrality of C(S,G) has been proved for all

cases of S-rank at least 2 other than the important
case of groups of type An which have k-rank 0.

Several people like Clozel, Labesse, J-S Li,
Lubotzky, Millson, Gopal Prasad, Raghunathan,
Schwermer & Venkataramana have proved vanishing
results for cohomology of lattices in Lie groups and
the techniques of the CSP can often be applied.
For instance, Raghunathan and Venkataramana
established the existence of cocompact arithmetic
lattices 1 in SO(n,1) (n ≥ 5,n 6= 7) for which
H1(1,C) 6= 0. It is relevant to recall a famous
old conjecture of Thurston to the effect that any
compact (real) hyperbolic manifold admits a finite
covering with non-vanishing first Betti number. The
various results mentioned here prove it except for

3-manifolds. The connection with CSP arises in
the approach of Raghunathan and Venkataramana
(and in later work by Venkataramana) as follows.
Embed the real hyperbolic manifold in a suitable
complex hyperbolic manifold. That the latter admits
a ‘congruence’ covering with non-vanishing first
Betti number is a result of Kazhdan using his
property T. More precisely, (the later refinement of
Venkataramana asserts):

If H ⊂ G are Q-simple and H(R) = SO(n,1) and
G(R) = SU (n,1), and 0 is a congruence subgroup
of G(Q), then the restriction of H1(0,C) to the
product of H1(g0g−1

∩H ,C) over all g ∈ G(Q), is
injective.

The idea is to prove that the translates of
C(S,H) under the group (AutG)(Q) topologically
generate a subgroup of finite index in C(S,G).

There are other connections with cohomology
in the form of Kazhdan’s property T, and Selberg’s
property for minimal eigenvalue of Laplacian
etc. where Alex Lubotzky is one of the principal
contributors. For instance, Thurston’s famous
conjecture on the first Betti number is solved
for a number of cases by Lubotzky using these
techniques.

8. Profinite group theory
Since C(S,G) is a profinite group, it is conceivable
that one can use general results on profinite groups
profitably. This is indeed the case. In fact, one
can characterise the centrality by means of purely
profinite-group-theoretic conditions. Platonov &
Rapinchuk proved that C(S,G) is finite if, and
only if, the profinite group 0̂a has bounded
generation. In other words, there are elements
x1, ··· ,xr (not necessarily distinct) in 0 so that
the set < x1 >···< xr > coincides with the whole
group 0̂a. The fore-runner of this result (which was
used by them crucially) is the theorem of Lazard
to the effect that among pro-p groups (for any
prime p), the Lie groups are characterised as those
admitting bounded generation as above. After the
solution of the restricted Burnside problem, one
also has other characterisations for analyticity of
pro-p groups like the number of subgroups of any
given index being a polynomial function of the
index. These can also be adapted to characterise the
finiteness of C(S,G) in terms of polynomial index
growth for 0̂a.

Another characterisation was conjectured by
Lubotzky and proved by Platonov and Sury. The
following general result turns out to be true: a
(topologically) finitely generated profinite group 1

which can be continuously embedded in the S-
adelic group

∏
p SL(n,Zp) for some n, has bounded

generation. A special case of this, proved by Platonov
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and Sury, was sufficient to prove Lubotzky’s
conjecture that C(S,G) is finite if, and only if,
G(OS) can be continuously embedded in the S-
adelic group

∏
p SL(n,Zp) for some n.

Aspects of subgroup growth have turned
out to have deep relations with the CSP. Many
such have emerged from the works of Alex
Lubotzky and collaborators. For instance, apart
from revealing finer structural facts like the number
of noncongruence subgroups being a higher order
function (in a more precisely known form) than the
number of congruence subgroups (when CSP does
not hold), the methods allow an analogue of the
CSP to be asked for lattices (even nonarithmetic
ones!) in semisimple Lie groups, viz.,

If 0 is a lattice in a semisimple Lie group over a local
field (of characteristic 0), is the subgroup growth type
of 0 strictly less than nlog n?

Such results as well as others like polynomial
subgroup growth etc. are described in the recent
book [LS] where a number of open problems are
also mentioned.

An unexpected connection of the CSP with
cohomology of finite simple groups is revealed by
some recent work of Alex Lubotzky. For a finite
group A, denote by h(A), the supremum of the

number dimH2(A,M)
dimM over all primes p and all simple

Fp[G]-modules M. Derek Holt had proved that
for any finite simple group A, there is a bound
h(A) = O(log|A|); he conjectured that there is a
constant c >0 such that h(A)≤ c for all finite simple
groups A. Partial results can be obtained from the
methods of the CSP. For instance, if G is a fixed
simple Chevalley scheme, then there is a constant
c > 0 such that h(G(Fp)/center) ≤ c for all primes
p. The idea is to obtain the finite groups G(Fp) as
quotients of the congruence completion of G(Z).

9. Status of finiteness of C(S,G)

For the classical case of SLn(Z) with n ≥3, centrality
can be proved with the help of elementary matrices
and reduction to SLn−1. The key fact here is that
any unimodular integral vector c which satisfies
c ≡ en mod r must be in the orbit of En(r), the
normal subgroup generated by those elementary
matrices which are in the principal congruence
subgroup 0(r) of level r. For general G whose k-
rank is nonzero, there are unipotent elements in
G(k) which play the role of the elementary matrices
and which allow for similar (although much harder)
proofs. For the groups of k-rank 0, there are no
unipotents and one needs to work with concrete
descriptions of them as unitary groups of hermitian
forms etc. Apart from the list mentioned in the

discussion of MP conjecture, Bak, Rehmann and
Kneser have made crucial contributons.

The proofs have been shortened and simplified
by Gopal Prasad and Rapinchuk recently. Their
arguments bring out the essential feature that
centrality hinges on locating subgroups Gv in the
S-arithmetic completion Ĝa, for each place v 6∈ S
which pairwise commute and map onto G(kv).

Most of what we discussed earlier for number fields
is also valid for global fields of positive characteristic;
these are finite extensions of Fq(t). Note that in the
positive characteristic case, every valuation of k is
nonarchimedean. One must remember though that
lattices may not be finitely generated and that the
congruence subgroup property fails for unipotent
groups.

The centrality/finiteness of C(S,G) (for the cases
where it is conjectured to be finite) is still open for
two very important cases where new ideas may be
required but these cases have a lot of relevance to the
theory of automorphic forms. These two cases are:
(i) G = SL(1,D) for a division algebra with center k,
and (ii) G = SU (1,D) where D is a division algebra
with a center K which is a quadratic extension of k
and D has a K/k-involution.

10. Structure of C(S,G) when it is infinite
One theme which has been exploited in proving
finiteness of C(S,G) is: If C(S,G) is not finite, it
has to be really huge.

This can be used to show that if C(S,G) is
infinite, it is infinitely generated as a profinite group.
Melnikov used results on profinite groups to prove
that, for SL2(Z), one has C({∞},SL2) ∼= F̂ω, the
free profinite group of countably infinite rank. This
proof uses the existence of a central element of
order 2 in SL2(Z) and a general result about free
profinite groups. We note that although the profinite
completion of a free group of finite rank r is the free
profinite group of rank r, the profinite completion
of a free group of countably infinite rank is not the
group F̂ω appearing here. The profinite completion
is much larger and, the group F̂ω can be constructed
from a countably infinite set X by looking at the free
group F(X) and at only those normal subgroups of
finite index in F(X) which contain all but finitely
many elements of X.

One further distinction between the case of free
profinite groups and those of (discrete) free groups
is that closed subgroups of free profinite groups may
not be free profinite. For instance, Zp is a closed

subgroup of Ẑ.
This result of Melnikov is an isolated one and

does not give a general method. We assume now that
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kv-rank (G) = 1 for some nonarchimedean place
v ∈ S and that G(kw) is compact (equivalently, kw-
rank (G) = 0) for all w ∈ S−{v}. Then, the S-rank
of G (the sum of the local ranks for the places in S)
is 1 and C(S,G) should be infinite. The projection
0 of G(OS) ⊂

∏
w∈S G(kw) into G(kv) is a lattice

in it. In other words, for any choice of left Haar
measure for the locally compact group G(kv), the
corresponding quotient space G(kv)/0 has finite
G(kv)-invariant measure. The group G(kv) acts
simplicially on a tree, known as its Bruhat–Tits tree
(for groups of rank r over kv , the corresponding
object is a rank r building). Hence, one can use the
Bass-Serre theory of groups acting on trees to try to
study the structure of lattices in G(kv).

First, a basic theorem of Bass-Serre theory tells
us that when a group 0 acts on a tree X, there
is a graph of groups (0,Y ) associated with the
quotient graph Y such that 0 is the fundamental
group of this graph of groups. The main advantage
of this is that one can obtain a presentation for
0. For instance, this is an easy and natural way of
proving that PSL2(Z) is a free product of Z/2Z and
Z/3Z. In fact, the notion of fundamental group
of a graph of groups generalises free groups and
free products with amalgamation. Here, a graph of
groups (0,Y ) simply means that Y is a connected
graph, and there are groups 0v (vertex stabilisers)
and 0e (edge stabilisers) corresponding to each
vertex v and each edge e of Y along with inclusions
of 0e in the vertex stabilisers for both the origin
vertex and the terminus vertex.

Classically, one has symmetric spaces associated
to semisimple Lie groups and for an arithmetic
subgroup of a Q-group G the construction of
a fundamental domain for its action on the
symmetric space provided a presentation. Garland
and Raghunathan had constructed fundamental
domains for R-rank 1 groups and Raghunathan also
constructed fundamental domains in rank 1 groups
in positive characteristic. Then, one has:

Let G,k,S be as above and let X denote the associated
Bruhat-Tits tree. Then, the quotient graph X/0 is
a union of a finite graph with finitely many infinite
rays.

If characteristic of k is zero (that is k is a finite
extension of Qp), it is a fact that lattices in G(kv)

must be cocompact. Note this departure from the
case of real and complex groups where one has
both uniform (another name for cocompact) and
nonuniform lattices. The reason for this is that one
can find large open compact subgroups of G(kv)

which are torsion-free. For example, the subgroup
of SLn( Qp) consisting of matrices A with entries
in Zp such that aii ∈ 1+pZp,aij ∈ pZp for i 6= j is
such a group when p is odd.

On the other hand, when characteristic of k
is positive, there could exist nonuniform lattices.
An example is the group SL2(Fp((t))) in which
SL2(Fp[t−1

]) is a nonuniform lattice.
Lubotzky used Raghunathan’s results and proved

a structure theorem for the quotient graph of groups
(0,Y ) where 0 is a lattice in G(kv) for G of rank
1 over a nonarchimedean local field kv , and Y is the
quotient graph of the Bruhat-Tits tree of G(kv) by
0. From this, he deduced a structure theorem for
the lattice and concluded that when 0 is arithmetic,
then a subgroup of finite index in 0 maps onto
Z. This already implies that 0 does not satisfy
the congruence subgroup property as we noted
earlier.

In joint work with Alec Mason, Alexander
Premet and Pavel Zalesskii, we completely determine
the structure of C(S,G) when G,S are as above—
that is, so that G(OS) can be identified with a lattice
in G(kv) for some nonarchimedean completion
kv . We use group actions on trees and profinite
analogues as well as a detailed analysis of unipotent
radicals in every rank 1 group over a local field
of positive characteristic, to deduce the following
structure theorem:

Theorem 1 (Ref. [29]). Let G,k,S be as above, with
S-rank (G) = 1. Then,

(i) if G(OS) is cocompact in G(kv)(in particular,
if char. k = 0), then C(S,G) ∼= F̂ω, and

(ii) if G(OS) is nonuniform (therefore, necessarily
char. k = p > 0), then C(S,G) ∼= F̂ω tT , a free
profinite product of a free profinite group of
countably infinite rank and of the torsion factor
T which is a free profinite product of groups,
each of which is isomorphic to the direct product
of 2ℵ0 copies of Z/pZ.

A surprising consequence of the theorem is that
C(S, G) depends only on the characteristic of k
when G(OS) is a lattice in a rank 1 group over a
nonarchimedean local field.

As a by-product of the above result, we also obtain
the following result which is of independent interest:

Theorem 2. Let U be the unipotent radical of a
minimal kv-parabolic subgroup of G where G is as in
(ii) above, then either U is abelian or is automatically
defined over k.

We recall what a free profinite product is and also
some important facts about profinite groups which
we need.

The free profinite product G1 t ··· t Gn of
profinite groups G1, . . . , Gn can be defined by
an obvious universal property but it can also be
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constructed as the completion of the free product
G1 ∗···∗Gn with respect to the topology given by
the collection of all normal subgroups N of finite
index in the free product such that N ∩Gi is open
in Gi for each i.

One has the profinite counterpart of Schreier’s
formula:

Let H be an open subnormal subgroup of a free
profinite group F̂r of rank r. Then, H is a free profinite
group of rank 1+ (r −1)[F̂r : H].

In general, one says that a profinite group 1

satisfies Schreier’s formula if the following holds.
Let d(1) denote the smallest cardinality of a set of
generators of 1 converging to 1. Here, a subset
X of a profinite group 1 is said to be a set of
generators converging to 1 if every open subgroup
of 1 contains all but finitely many elements in
X and < X > is dense in 1. Then, 1 is said to
satisfy Schreier’s formula if, for every open normal
subgroup H , one has

d(H) = 1+ (d(1)−1)[1 : H].

Free profinite groups satisfy Schreier’s formula. One
also uses the following results:

Let 1 be a finitely generated pro-p group, for some
prime p. Then, 1 is free pro-p if, and only if, it
satisfies Schreier’s formula.

On the other hand, a free pronilpotent group 1

with d(1) ≥ 2 never satisfies Schreier’s formula.
Note that this is not true if d(1) = 1. In fact, any
direct product 1 = 11 ×12 with d(1) ≥ 2 does
not satisfy Schreier’s formula. This is one of the key
(although simple to prove) facts we use in our proof.

Let F̂r be the free profinite group of finite rank r ≥ 2.
Let H be a closed normal subgroup of F̂r of infinite
index. If F̂r/H does not satisfy Schreier’s formula,
then H is a free profinite group of countably infinite
rank.
The analogue of Kurosh subgroup theorem holds
for open subgroups of free profinite products
but not for closed subgroups. For closed normal
subgroups of free profinite products, one has a
similar statement which involves projective profinite
groups in place of free profinite groups. Projective
profinite groups are closed subgroups of free
profinite groups. We use the following result:

Let F be a free profinite group of infinite rank and let
P be a projective profinite group with d(P) ≤ d(F).
Then the free profinite product F tP ∼= F.

Note that the above result also shows that free
factors of a free profinite group need not be free
profinite groups.

Another fact we use is:

Let F be a free profinite group of rank r (any cardinal
number) ≥ 2. Then, a closed normal subgroup H
of infinite index with d(F/H) < r must be a free
profinite group and it has rank max(r,N0).

Some of these facts that we use are proved using the
notion of a profinite graph of profinite groups and a
notion of the fundamental group of such a profinite
graph of groups.

To finish with, we recall the two problems which
may be termed outstanding here. The first is the
finiteness of the C(S,G) in Serre’s conjecture is still
very much open for the groups of type An with
k-rank 0. Solving them would lead to applications
to the theory of automorphic forms. These G,S are
described as follows:

(i) Let D be a division algebra with center k
and the k-group G is SL(1,D). For S with
S-rank(G) ≥ 2, is C(S,G) finite?

(ii) Let D be a division algebra with center K which
is a quadratic extension of k and suppose
D admits an involution of the 2nd kind
whose fixed field is k. Then the k-group G
is SU (1,D). For S so that S-rank(G) ≥ 2, is
C(S,G) finite?

The second question is when k is a number field, S
consists only of the archimedean places, and G is a
k-group such that S-rank of G is 1, then what is the
structure of C(S,G) ? Recently, it has been proved
by Lubotzky that C(S,G) is finitely generated as a

normal subgroup of Ĝ(OS). However, the structure
is unknown as yet. This is unknown excepting the
case of SL(2,Z); our theorem above deals with all
the cases where S contains a nonarchimedean place.

Received 24 October 2007; revised 27 October 2007.

References
1. M. Abert, N. Nikolov & B. Saegedy, Congruence subgroup

growth of arithmetic groups in positive characteristic, Duke J.
Math. 117 (2003) 367–383.

2. A. Bak, Le Probleme des sous-groupes de congruence et le
probleme metaplectique pour les groupes classiques de rang
> 1, C. R. Acad. Sci. Paris 292 (1981) 307–310.

3. A. Bak & U. Rehmann, The congruence subgroup and
metaplectic problems for SLn≥2 of division algebras, Jour.
Algebra 78 (1982) 475–547.

4. H. Bass, M. Lazard and J-P. Serre, Sous-groupes d’indice fini
dans SL(n,Z), Bull. Amer. Math. Soc. 70 (1964) 59–137.

5. H. Bass, J. Milnor and J-P. Serre, Solution of The Congruence
Subgroup Problem, Publ. Math. I.H.E.S., 33 (1967) 59–137.

6. J. L. Brenner, The linear homogeneous group III, Ann. of
Math. 71 (1960) 210–233.

7. J. Britto, On defining a subgroup of the special linear group by
a congruence, J. Indian Math. Soc. 69 (1981) 298–304.

8. D. Carter & G. Keller, Bounded elementary generation of
SL(n,O), Amer. J. Math. 105 (1983) 673–687.

9. J. W. S. Cassels & A. Frohlich (editors), Algebraic Number
Theory, Acad. Press, London 1967.

464 Journal of the Indian Institute of Science VOL 87:4 Oct–Dec 2007 journal.library.iisc.ernet.in



B. Sury REVIEW
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