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Temporal Issues in Cyber-Physical Systems
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Abstract | This paper reviews the use of time, clocks, and clock synchro-
nization protocols in cyber-physical systems (CPS). Recent advances in 
the area of timing suggest avenues of research and potential new applica-
tion areas. We discuss how introducing timestamps and clocks can help 
overcome issues such as latency, jitter, and determining correct execution 
order. Furthermore, we show how system complexity can be reduced and 
distribution as well as parallelism can be done deterministically. We also 
point to recent work in raising time to first class citizen status in modeling 
and implementation. In particular, we describe design and execution envi-
ronments of CPS and specialized hardware such as predictable timing 
architectures where time plays a key role.
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1 Introduction
This paper discusses temporal issues in the design 
and implementation of cyber-physical systems 
(CPS). Increasingly synchronized clocks and 
timestamps are being used to improve applica-
tion performance in distributed CPS. We review 
the state of the art in the underlying clock and 
synchronization techniques and illustrate how 
this technology helps overcome issues such as 
latency, jitter, and determining correct execution 
order. Recent research in the areas of design and 
execution environments and specialized hard-
ware such as predictable timing architectures 
raises time to first class citizen status in modeling 
and implementation. Finally we suggest avenues 
of future research and potential new application 
areas.

Section 2 of this paper briefly reviews the tra-
ditional use of time and clocks in CPS. Section 
III reviews the current state of the art in distrib-
uted timing systems and notes recent improve-
ments and support available to designers of CPS. 
Section 4 outlines existing and recent techniques 
for using timestamps and clocks to alleviate prob-
lems in ordering events and overcoming some 
issues related to latency, jitter and system com-
plexity. Section 5 discusses recent results in rais-
ing timing issues to first class citizen status in 
design and execution environments used to cre-
ate CPS. Section 6 reviews analysis techniques 

used in designing CPS and recent efforts to cre-
ate time-centric hardware support including the 
use of predictable timing architectures. Finally we 
summarize and suggest new avenues of research 
suggested by the discussion.

2  Traditional Uses of Time and Clocks 
in CPS

A cyber-physical system consists of a digital com-
putation portion, the cyber portion, and whatever 
the cyber portion interacts with, i.e., the physical 
portion. Here, physical is understood to cover not 
only artifacts modeled by the laws of physics but 
also artifacts modeled by the laws of chemistry, 
biology and increasingly man-made laws, e.g., tel-
ecommunication protocols.

For our purposes it is convenient to divide 
CPS into two categories, as the consideration of 
time and clocks is somewhat different in each. The 
first category, data acquisition, consists of systems 
where the primary focus is on observing the phys-
ical world. The second category, control, consists 
of systems incorporating closed loop control with 
reasonably stringent loop requirements. Of course, 
there are many systems that do not fit cleanly into 
one of these categories, e.g., supervisory control 
and data acquisition (SCADA) systems. However, 
we believe the role of timing in these systems can 
be understood based on the characteristics of tim-
ing in each of the two categories.
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2.1 Data acquisition systems
A data acquisition CPS consists of one or more 
computers that acquire data from sensors that 
observe the physical world. Familiar examples are 
surveillance systems, test and measurement sys-
tems, and environmental monitoring systems.

The purpose of a data acquisition system is to 
acquire, record, and display data describing the 
physical world for eventual evaluation by humans 
or computers. The raw data is often correlated or 
otherwise subject to algorithmic processing prior 
to recording or display. However, any action taken 
based on the data is delayed in time (often due to 
a human in the loop), such that typically it is inap-
propriate to model it as a control system.

It is important that data acquired from sev-
eral sensors be indexed in such a way as to permit 
meaningful analysis. For example, we may need 
to order data to 1) help establish causal relation-
ships e.g., the flight data recorders for aircraft and 
data recorders on military test ranges, 2) to enable 
identification and tracking, e.g., surveillance, 3) to 
determine location e.g., trilateration for gunshot 
location, or 4) in a test and measurement system 
to ensure that the device under tests meets its 
specifications.

In almost all distributed CPS, data indexing is 
done using timestamps. The accuracy and preci-
sion of the timestamps is application dependent. 
For example, for gunshot detection, millisecond 
accuracy is sufficient, but for locating clandestine 
radio transmitters, sub-microsecond accuracy is 
required. In most cases, timestamps are required 
to be based on wall clock time, e.g., coordinated 
universal time (UTC) or international atomic 
time (TAI). In complex or extended physical sys-
tems with multiple computers this requires some 
sort of time distribution protocol as discussed in 
Section 3.

Prior to the advent of digital computers, the 
global navigation satellite system (GNSS), and 
network-based time protocols, data acquisition 
systems typically recorded measurements on 
mechanical chart recorders, analog tape recorders 
or on film. The time of measurement was based 
either on the speed of the recording medium or in 
the case of film on recorded or photographed time 
codes such as IRIG-B.a,1 In the United States, wide 
area timing and reference to standard time made 

a Inter-range instrumentation group (IRIG). IRIG-B is one 
of the time codes created by the TeleCommunications Work-
ing Group of the Inter-Range Instrumentation Group, the 
standards body of the Range Commanders Council of the US 
Department of Defense.

use of WWVb radio broadcasts.2 With the advent of 
digital computers, the GNSS, and network-based 
time protocols, the timestamping of acquired data 
can easily be done with accuracies adequate for 
all but the most demanding applications. Times-
tamps are associated with data either upon receipt 
at a computer or, increasingly more common, at 
the source using local clocks synchronized over a 
network as discussed in Sections 3 and 6.

2.2 Control systems
In contrast to data acquisition systems, a control 
CPS consists of one or more computers that 
1) acquire data from sensors that observe the 
physical world, 2) execute a control strategy, and 
3) instantiate changes in the physical world via 
actuators. Familiar examples are fly-by-wire 
aircraft control, automotive cruise control, HVAC 
(heating, ventilation, and air conditioning) 
systems for buildings, and the control of industrial 
processes and machinery. Prior to the advent of 
digital computers and networks, control systems 
were based on analog electronics, and mechanical, 
pneumatic, or hydraulic components.

Almost all modern control systems of 
appreciable size are based on digital computers 
and networks, and fall into two rough categories: 
safety critical and non-safety critical.

Safety critical systems are those where failure 
may result in loss of life, severe financial loss, or 
unacceptable inconvenience. In many cases, these 
systems are subject to government certification and 
required to be provably correct. Timing is invari-
ably a major issue in the design of such systems 
which typically use a time-slotted control protocol 
to perform sensing, computation, networking, and 
actuation on a periodic schedule. This is enforced 
by a local clock and, in the case of a networked 
system, by local clocks synchronized over the net-
work or by basing time on the slot boundaries in 
a time division multiple access (TDMA) network 
protocol, i.e., the time-triggered model of compu-
tation.3 This fixed schedule provides a degree of 
composability and admits to formal verification 
procedures needed for certification.4 This type 
of system plays a critical role in the ARINC5 and 
SAE6 standards for aircraft.

While non-safety critical systems can use the 
time-triggered approach, many require different 
execution strategies often due to the presence of 
highly asynchronous inputs. For example, a test and 
measurement system verifying the performance of 

b WWV is the call sign of the United States National Institute 
of Standards and Technology’s (NIST) shortwave radio station 
in Fort Collins, Colorado.
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a radar system requires careful temporal coordina-
tion between several instruments and the device 
being tested. However, the instrument system 
controllers invariably depend on a combination 
of code execution time and hardware triggers to 
determine system timing. Adjusting such systems 
is difficult and the result is not robust in the face 
of system evolution or replacement of devices or 
controllers with faster computers.

Alternative techniques for designing these 
systems are discussed in Sections 5 and 6.

2.3 Internet of things
In recent years, mobile devices such as smart 
phones have proliferated to the extent that there 
are few places on earth without mobile cover-
age. Furthermore, these devices increasingly 
incorporate sensors. For example, the Samsung 
Galaxy S4 smart phone reportedly incorporates 
an accelerometer, a gyroscope, a hygrometer, a 
magnetometer, a light sensor, a thermometer, and 
a barometer as well as a camera. The existence of 
these devices in principle enables unprecedented 
capabilities for data acquisition and control. The 
paradigm of connecting such devices, usually 
termed the Internet of things (IoT), has spawned 
lots of research on the many technical and social 
issues involved.7,8 Many, if not all potential appli-
cations or services of the IoT, will require the 
explicit use of a global or local timebase. However, 
the implementation of such a timebase in an ever 
changing, mobile and largely wireless environ-
ment presents new challenges. Except possibly for 
localized applications, the simplest way to pro-
vide such a timebase is via the communications 
infrastructure, i.e., a combination of the Internet 
and mobile devices such as smart phones. Many 
wireless devices will have access to GNSS receivers 
which can provide sub-microsecond global time. 
However, GNSS has limitations as discussed in 
Section 3.2. In particular, most mobile devices 
using GNSS will exhibit worse time accuracy than 
fixed installations due to their poorer antennae 
and the requirementto compute location as well 
as time in solving the equations based on received 
satellite signals. Fixed devices not only have bet-
ter antennae but can have accurate position infor-
mation available, e.g., from a survey or averaging 
spatial information over extended periods, thus 
increasing the accuracy of computing time from 
the equations. Fortunately, the world’s telecommu-
nication providers, who will carry the bulk of the 
IoT traffic, are in the process of standardizing and 
deploying robust sub-microsecond time services 
for the operation of their own networks.9,10 They 
are therefore in a position to make time available 

to any connected device or application network. 
Figure 1 is a diagram of the topology of a field trial 
conducted by China Mobile that delivered better 
than 3 µs time transfer over each of the 40–50 km 
paths under normal traffic loads.10 The figure also 
shows the type of equipment used in the trial.

3  State of the Art of Distributed Timing 
Systems

Today a device or system designer has a wide range 
of options for implementing clocks within devices 
and establishing a common sense of time among 
devices. These options result from advances dur-
ing the last twenty years in oscillator technology, 
in GNSS, in network technology, and in time and 
frequency distribution protocols.

3.1 Oscillator technology
In a centralized timing system, a remote device 
obtains the time by querying a central clock, a 
process that limits the accuracy to milliseconds 
due to communication latency fluctuations. As 
discussed in Section 3.3, network-based time dis-
tribution protocols synchronize the local clocks 
of devices in a distributed system. The principal 
oscillator limits on obtainable synchronization 
accuracy and precision of clocks are the tem-
perature stability and the noise characteristics of 
the local oscillators driving the clocks. In most 
CPS devices, the oscillators will be quartz crystal 
oscillators.

Figure 1: Diagram of China Mobile field trial. 
Photos courtesy of Huawei.
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The oscillation frequency of a quartz crystal is 
temperature dependent. Quartz crystal oscillators 
typically have a temperature fractional frequency 
dependence, ∆f/f, from ∼10-4 for an uncompen-
sated crystal to <4 × 10−9 from 0 °C to 70 °C for 
an ovenized oscillator, OCXO, such as the HP 
10811D. For example, a 1 °C temperature rise over 
a 1s interval using an unsynchronized 100PPM 
oscillator results in a time error of 100µs over 
the 1s interval. Using an HP 10811D, the error is 
reduced to 4ns.

In addition to temperature dependence, ∆f/f is 
limited by noise processes within the crystal. This 
dependence is shown in Figure 2 for a variety of 
oscillators. The Allan deviation is a function of 
the observation interval, τ, with short observation 
times limited by white phase noise, long observa-
tion times limited by random walk frequency noise 
and the noise floor by flicker frequency noise.11 
The observation interval, τ, limits integration 
times whether for data averaging or synchronizing 
to another clock. Once the noise floor is reached, 
increases in the averaging time will decrease the 
temporal accuracy.

Figure 2 shows plots of ∆f/f, the Allan deviation, 
for a typical uncompensated crystal, CTS CB3LV, 
and Rakon RFP040 and HP 10811D OCXOs. 
Uncompensated oscillators, e.g., CTS CB3LV, com-
monly used in computers cost around $1, while a 
high quality ovenized oscillator can cost more than 
$100 forcing designers to carefully consider appli-
cation timing requirements in selecting an appro-
priate oscillator. Recently miniature OCXOs such 

as the Rakon RFP04012 have reached the market 
with performance nearly equal to instrument grade 
oscillators such as the HP 10811D but with costs in 
the range of $10. For applications requiring long 
observation intervals a variety of atomic clocks are 
available. Atomic clocks depend on a quartz oscil-
lator for short observation interval stability and on 
some atomic resonance for longer term stability. 
Atomic clocks most commonly used in CPS are 
the rubidium and the cesium clocks whose prop-
erties are shown in Figure 2. Rubidium clocks are 
found in great numbers in telecommunications 
base stations, which has driven the cost down to 
around $700, while the more expensive cesium 
clocks, ∼$60000, are found in lesser numbers in 
the core of telecommunications systems, military 
systems, and some scientific CPS.

Recently, so-called chip scale cesium atomic 
clocks have been introduced into the market.13 
These cesium-based oscillators currently have 
rubidium performance but in a <17 cm3, 35 grams, 
<120 mW form factor. At a price of ∼$1500 they 
are used mostly in special circumstances such as 
oil exploration sensors. However, the cost will no 
doubt be greatly reduced as larger numbers are 
used. These oscillators promise much longer aver-
aging times, up to an hour, and temperature sta-
bility <4 × 10−10 from 0 °C to 70 °C which should 
eventually open up a new class of designs for CPS 
devices.

3.2 GNSS technology
Over the past twenty years, satellite-based time 
and location services have found their way into 
numerous CPS, e.g., military applications, tel-
ecommunications base stations, surveillance 
and tracking. Today these services are obtainable 
world-wide from the global positioning satellite 
(GPS) system maintained by the United States 
Department of Defense and the Glonass system 
maintained by the Russian Defense Forces. The 
BeiDou system (formerly known as Compass) 
maintained by the Chinese government is cur-
rently available only in China and environs but 
is expected to provide global coverage in the next 
decade. Another regional system is the Indian 
Regional Navigational Satellite System. The Gal-
ileo system is a similar project of the European 
community but is not yet fully operational. Col-
lectively these systems are termed Global Naviga-
tion Satellite Systems (GNSS).

GNSS can be used as a source of time for a CPS 
either as the source for a networked time distribu-
tion protocol or as a source for individual devices. 
In either case the GNSS receiver must have line of 
sight communication with a sufficient number of Figure 2: Allan deviation of several oscillators.
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satellites. This is problematic in urban canyons 
and in the interior of buildings. As noted, all of 
the existing systems are controlled by a national 
government which has raised concern in some cir-
cles as to the availability during periods of inter-
national tension. Each of the GNSS systems, e.g., 
GPS, Glonass, derives its time from the national 
laboratory of the host country. The consistency of 
UTC time between these systems has been meas-
ured to be tens of nanoseconds at best.14 GNSS 
systems are also subject to inadvertent or inten-
tional degradation either by spoofing of satellite 
signals or simply raising the noise floor by jam-
ming. These issues are a major issue for safety 
critical and public infrastructure systems as evi-
denced by discussionsat recent telecommunica-
tions conferences.15–18

GNSS timing accuracy over continental scale 
distance is unmatched by any other technology 
with the exception of two-way satellite time trans-
fer (TWSTT) which is practical only for national 
laboratories. A GNSS receiver synchronizes a local 
clock based on signals from the satellites. The 
accuracy depends on the quality of the quartz 
oscillator and the averaging time as noted in the 
discussion of Figure 2 in Section 3.1. A cheap 
crystal is unlikely to do better than 100ns. With 
a well-designed receiver and an oscillator permit-
ting integration times of >100s, 100ns accuracy 
can be achieved. With an oscillator permitting 
integration times of 24 hours, ±10ns accuracy can 
be achieved.19

3.3  Network timing distribution 
protocols

As noted in Section 2.1, time distribution prior to 
1985 was typically via WWV, IRIG-B and propri-
etary methods. The network time protocol (NTP) 
became available around 1985 and today is the 
dominant network-based time distribution sys-
tem and is implemented in essentially every PC in 
the world. NTP accuracy is on the order of mil-
liseconds and is limited by network and operating 
system latency jitter. GPS has been available world-
wide since 1994 and can achieve sub-microsecond 
accuracy as noted in Section 3.2.

In recent years two additional network-based 
time distribution protocols designed for CPS 
have been standardized. The first, SAE6802,6 is 
designed for safety-critical systems and has been 
implemented in several recently designed aircraft. 
SAE6802 is designed for reasonably compact sys-
tems such as an aircraft and achieves sub-micro-
second accuracy. SAE6802 partitions IEEE 802.3 
bandwidth using time slots allocated to safety-
critical and normal traffic thereby providing 

latency guarantees for safety-critical traffic and 
best effort for normal traffic.

The second major protocol is the precision time 
protocol (PTP), defined in standard IEEE 1588.20 
IEEE 1588 specifies a master-slave synchroniza-
tion hierarchy with the root, the grandmaster, 
determining the time scale for the system. The 
grandmaster in turn can be synchronized to GNSS 
or other sources of time traceable to international 
time standards. IEEE 1588 has achieved wide 
acceptance and implementation in the areas of 
telecommunications, data acquisition, industrial 
automation and power systems. Because it speci-
fies specialized network bridges, so-called bound-
ary and transparent clocks, that greatly reduce 
bridge timing jitter, IEEE 1588 can easily achieve 
100ns synchronization over a local area network 
and with care <10ns.21,22

In addition, recent work at CERN has achieved 
100ps accuracy and 8ps precision across three 
5 km hops of fiber optic cable using a combina-
tion of IEEE 1588 and layer 1 syntonization.23 This 
work will likely be incorporated into the upcom-
ing revision of IEEE 1588–2008.

Other than oscillator characteristics discussed 
in Section 3.1, the principal accuracy limitation 
in two way time transfer techniques such as NTP 
and PTP is asymmetry in the communication 
paths. Two way time transfer protocols work via 
an exchange of signals which are timestamped as 
illustrated in Figure 3. The source and sink for the 
transfer process exchange signals which are times-
tamped based on the local clocks on transmission 
and receipt at shown. The asymmetry is the dif-
ference in the propagation times of the two mes-
sages, i.e., D

1
–D

2
. In order to solve the equations 

describing this process it is necessary to assume 
that D

1
 = D

2
 i.e., that the path is symmetric. With 

this assumption the equationsfor computing the 

Figure 3: Two way time transfer.
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offset between the two clocks and the mean path 
delay are:

offset = [(t
2
 - t

1
) - (t

4
 - t

3
)]/2 (1)

delay = [(t
2
 - t

1
) + (t

4
 - t

3
)]/2 (2)

The error in the offset is one half of the asym-
metry D

1
–D

2
.

Unfortunately the asymmetry cannot be meas-
ured using an exchange of signals but must be 
determined by some other means. There are three 
principal sources of this asymmetry:

• The transceivers between digital representa-
tions and the signals on the network media, 
i.e., the PHY,c typically have different latencies 
on the transmit and receive paths. Depending 
on the media, the PHY asymmetry can be sev-
eral tens of nanoseconds. These asymmetries 
are extremely difficult to measure and are best 
determined by the PHY manufacturer. A recent 
standard, IEEE 802.3bf, provides an abstract 
interface designed for IEEE 1588 based imple-
mentations that allows PHY manufacturers to 
provide these latency parameters.24

• The communication medium itself may be 
asymmetric. For example the length of the for-
ward and reverse fibers in an optical link, chro-
matic dispersion in a full duplex wave division 
multiplex fiber optic link, or the different twist 
rates in Category 5 twisted pair copper cable 
all introduce asymmetry. Asymmetry can be 
calibrated at installation. For some media it is 
possible to model asymmetry as a function of 
mean path delay which can be measured using 
two way protocols.

• In routed systems, such as the Internet, unless 
careful attention is paid to network design, it 
is possible for the forward and reverse paths to 
take different routes through the system. This 
can produce very large asymmetry. Even with 
identical routes the differences in network 
traffic on the forward and reverse paths may 
produce asymmetry unless on-path time sup-
port is provided, for example via boundary or 
transparent clocks when using IEEE 1588.

If the asymmetry is known then the appropri-
ate correction can be made to the clock offset. A 
detailed discussion of network clock synchroniza-
tion protocols is beyond the scope of this paper. 

c PHY is the term often used to designate a device implement-
ing the physical or lowest layer, i.e., layer 1, of the OSI seven 
layer computernetwork model.

Interested readers should consult the extensive lit-
erature on this subject including papers found in 
the proceedings of the International Symposium on 
Precision Clock Synchronization, the papers of Les-
lie Lamport and Flaviu Christian, as well as more 
recent work of Herman Kopetz,3 and Kumar et al.25

These protocols establish a global sense of pre-
cise time in a networked distributed system. Each 
node of the network has a local clock synchro-
nized to its peers that may be used for a variety of 
purposes as outlined in next section.

4 Explicit Time Techniques in CPS
Until recently the principal uses of time in CPS 
were found in safety-critical systems as the foun-
dation for time triggered architectures3 and in data 
acquisition and SCADA applications where data 
was timestamped upon receipt at a central proces-
sor. Barbara Liskov noted that NTP spurred inter-
est in using global time to improve mainstream 
computer science algorithms and protocols by 
“Examining the messages to identify those that 
could be avoided by using timestamps”.26

Given that accurate global time can now be 
implemented using the protocols discussed in 
Section 3.3, it is appropriate to ask whether the 
techniques suggested by Liskov can be applied to 
CPS. We believe that this is the case and suggest 
the following examples as evidence.

4.1  Replacing messages with reasoning 
about timestamps

Recently the Google “Spanner” project used NTP 
to enable better performance in a global database 
by “Transform(ing) commit order reasoning to 
timestamp order reasoning”.27 While not a CPS, 
Spanner is an example of using timestamps to 
enforce consistent global state which is a common 
requirement in many CPS.

Rockwell reportedly uses timestamps in speci-
fying motion control trajectories of components 
in high speed machinery to reduce the message 
traffic between controllers and actuation devices.28 
The actuator is provided with trajectory specifica-
tion which can replace controller point-by-point 
command to an initialization command and less 
frequent minor trajectory corrections, thus saving 
bandwidth.

4.2  Reducing complexity, signal 
conditioning, and calibration issues

In control systems with thousands of sensors and 
actuators, bringing dedicated analog wiring to 
a central point leads to complexity, signal con-
ditioning, bandwidth, calibration and response 
time problems. Moving to a distributed system 
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with local processing ameliorates many of these 
issues but requires global time to realize tempo-
ral control equivalent to the centralized architec-
ture. General Electric took this approach in their 
MarkVIe control system for power plants and 
wind farms.29 Figure 4 shows one of the MarkVIe 
distributed devices. This device communicates via 
Ethernet, synchronizes a local clock using IEEE 
1588, and includes both a small computer as well 
as local signal conditioning for sensors and actua-
tors. General Electric uses these devices to manage 
the several thousand sensors and actuators used in 
a typical thermal or nuclear power plants replac-
ing long analog sensor cables with local processing 
and timestamping and using Ethernet communi-
cation to centralized supervisory control.

Bruel & Kjaer30 use global time in data acquisi-
tion systems for vibration monitoring to improve 
accuracy, and to simplify wiring and calibration. 
For example, Figure 5 shows a bridge vibration 
monitoring application where a local data acqui-
sition device captures and timestamps sensor data 
and communicates the data to a central analysis 
computer via Ethernet. Boeing has developed a 
similar application for data acquisition used in 
aircraft monitoring.31

Similar efforts are being investigated in the 
power industry for substation automation and 
control of the grid.32,33

Certainly the most exciting example of the use 
of timestamps and a distributed architecture to 
reduce complexity and address signal conditioning 
and calibration issues is the CERN White Rabbit 
project.23,34–36 Figure 6 illustrates a section of the 
accelerator that sends neutrinos from CERN to 
Gran Sasso, a distance of 732 km in an experiment 
to measure the overall neutrino time of flight. The 
White Rabbit timing system was used to verify the 
timing of measurements crucial to determining 
that the neutrinos indeed traveled at less than the 
speed of light.23

5  Design and Execution with Time  
as a First Class Citizen

In this section we discuss recent results in raising 
timing issues to first class citizen status in design 
and execution environments used to create CPS. 
In synchronous programming models,37 logic 
ticks are part of the language semantics. These 
ticks are used to order events and is not necessarily 
related to the actual physical time observed by the 
computing platform.

Figure 5: Bridge vibration monitoring. Photo 
courtesy of Bruel & Kjaer.

Figure 6: CERN to Gran Sasso (CNGS) neutrino 
speed test. Photo courtesy of CERN.

Figure 4: General Electric MarkVIe distributed 
measurement device. Photo courtesy of General 
Electric.



David Broman, Patricia Derler and John C. Eidson

Journal of the Indian Institute of Science  VOL 93:3  Jul.–Sep. 2013  journal.iisc.ernet.in396

5.1 Time-triggered programming models
Explicit modeling of time becomes a fundamen-
tal part in the time-triggered programming para-
digm. In a time-triggered system, certain actions 
such as IO operations take place at fixed, periodic 
time instances. Other actions such as performing 
computations and updating internal states can 
happen at any time between IO operations. Time 
determinism is achieved by specifying the timing 
behavior of the software execution independent 
from the platform. At this point, time is considered 
purely logical and used to define an order on the 
computations. Functional correctness can be veri-
fied by executing the system in a way that obeys the 
order provided by the logical times. When deploy-
ing the software, the logical times are mapped to 
physical times and a check must be performed to 
ensure that the underlying hardware can meet the 
timing requirements. In such time-triggered pro-
gramming models, software is typically separated 
into tasks. For each task, the release time, the time 
for reading inputs, and the time for writing out-
puts, is strictly defined. Time-triggered program-
ming models have been used in PLC designs and 
later formalized in languages such as Giotto,38 the 
hierarchical timing definition language HTL,39 
the timing definition language TDL,40 and oth-
ers. In general, time-triggered systems perform 
more computations than necessary since tasks are 
executed in every period, even when inputs to the 
task remain unchanged. One can think of optimi-
zations to such systems by buffering inputs for the 
next period and only executing if inputs changed. 
However, there is still some overhead in the buff-
ering and the reaction to input changes is delayed 
to the next period start.

5.2  PTIDES, an event-triggered 
programming model

PTIDES (Programming Temporally Integrated 
Distributed Event Systems)41 is a programming 
model that uses timestamps to perform determin-
istic distributed computations. All inputs from the 
environment are received by sensors which assign 
timestamps to each value. These timestamps are 
stored with the values throughout the computation 
path from sensors to actuators. Along the path, the 
timestamps are carefully modified to meet appli-
cationand system timing requirements. First, the 
desired fixed delay between sensing and actuation 
is modeled. Such a delay specification is usually 
given by the control engineer who determines the 
controller performance based on the given time 
delay. Delay requirements between sensing and 
actuation can also come from the characteristics 
of the physical environment. For instance, one can 

estimate the time it takes between two events and 
use this information to perform an actuation on 
the second event. An example is given in,42 where 
a controller for a printing press determines the 
exact time to exchange paper rolls on the fly.

PTIDES is an event-triggered programming 
model that leverages discrete event simulation tech-
niques for execution. In a PTIDES system, compo-
nents communicate via timestamped events. Static 
as well as dynamic analysis leveraging information 
about the structure, the inputs, and the state of 
other components in the system allow an efficient 
execution to be implemented. Unlike in typical dis-
crete event (DE) simulations, the relation of timing 
specification in terms of logical time to physical 
time allows for out of timestamp order process-
ing of unrelated events. Knowing which events 
are unrelated, allows not only out of timestamp 
order processing but also dynamic distribution 
over multiple cores and distribution over multiple 
platforms without changingthe observable behav-
ior at the actuator outputs. Some results on mul-
ticore execution of PTIDES programs are shown 
in Figure 7. The upper trace plots the designed 
events using the Ptolemy simulation platform as 
a PTIDES design environment. From this design, 
code was generated for execution on two different 
platforms one with a Renesas processor and the 
other with a multicore XMOS processor. The mid-
dle and bottom traces are measured results on the 
two platforms. Note that the event timing specified 
at design is reproduced in the execution platform 
to a sub-microsecond accuracy (although this is 
not visible on the timescale of the plots). The grey 
area indicates times when the processors were actu-
ally executing code and clearly shows that whilethe 

Figure 7: Deterministic timing with different 
execution platforms.
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time occupied in instruction set execution differed 
between the two processors, the external actions 
at actuators was identical. Although not shown in 
this figure, the code was compiled for single and 
multicore execution on the XMOS platform with 
no change in the external timing.

In a distributed PTIDES systems, the differ-
ent platforms need to synchronize in order to 
reason about timestamps of events. Synchroniza-
tion messages, such as null messages in Chandy 
and Misra’s work,43 impose a great bandwidth 
overhead. However, by analyzing timestamps and 
given some knowledge about the sending system, 
one can compute how long to wait for new input 
and when input is safe to process. In particular 
when communication media is shared, reducing 
bandwidth is a desirableproperty.

The entire workflow around the PTIDES pro-
gramming model including modeling, simula-
tion, implementation, and analysis is presented in 
Figure 8. A modeling and simulation environment 
has been implemented in Ptolemy II,44 a frame-
work for heterogeneous systems. This tool allows 
for exploring designs of PTIDES models with dif-
ferent distribution of functions to components, 
scheduling strategies and underlying architecture 
components. With this framework it is possible to 
research the interaction of PTIDES-based models 
with models of other system components such as 
plant models and networks. A code generation 
framework is outlined in45 and an implementa-
tion of this approach has been performed by 
extending the Ptolemy code generation function-
ality. PTIDES systems have been implemented on 
bare iron using a light weight operating system, 
PtidyOS, that uses an earliest deadline first (EDF) 
scheduling algorithm to implement the PTIDES 
timing requirements.46 Recent results show that 
the schedulability of PTIDES programs is decid-
able. More precisely, the schedulability problem 
can be reduced to a reachability problem for timed 
automata.

6 Time-Critical Embedded Systems
The cyber part of CPS is inherently a real-time 
system; sensors and actuators are interacting with 
the physical environment at distinct point in time. 
These systems are often realized as embedded sys-
tems—cheap platforms with limited memory and 
computation power. In this section we review dif-
ferent aspects of implementing real-time applica-
tions on embedded systems.

6.1 Tasks, deadlines, and scheduling
A real-time system must react to external or inter-
nal timed events according to specified timing 
constraints. These constraints are often defined as 
deadlines. A real-time program fragment, typically 
referred to as a task, must finish executing before 
its deadline is reached. As a consequence, the time 
it takes for a real-time system to execute a task is 
not just a performance factor; it is also a correct-
ness criterion.

Missed deadlines may have different conse-
quences depending on the type of the real-time 
application. Real-time tasks are often divided into 
three categories:47

• Hard tasks must finish executing before its 
deadline, otherwise catastrophic consequences 
may occur. Example of such systems are sen-
sory data acquisition, image processing, and 
control systems.

• Firm tasks are tasks where missed deadlines do 
no harm, but there is no use of the computa-
tion result after missing the deadline. Network 
and multimedia applications are examples 
where firm tasks may be used.

• Soft tasks are tasks that still have some utility 
even if the deadline is missed. System-user 
interactions are examples of soft real-time 
tasks.

If a single processor executes several concur-
rent tasks or if a multicore system executes more 
tasks than available cores then tasks must be sched-
uled. A scheduling algorithm determines at what 
time, in which order, and on which cores differ-
ent tasks should be scheduled. Besides the timing 
constraints used in forming deadlines, tasks may 
also have precedence and resource constraints. 
A schedule is said to be feasible if all tasks can be 
scheduled to meet all constraints. If there exists 
at least one algorithm that can generate a feasible 
schedule, a set of tasks are schedulable.47

Real-time scheduling theory is a mature but 
still very active area of research. Scheduling poli-
cies are commonly implemented in real-time 
operating systems (RTOS) and are fundamental for 

Figure 8: PTIDES workflow.
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efficiently utilizing limited resources of embedded 
systems.

6.2 Timing analysis
In real-time scheduling theory, the computation 
time of specific tasks are assumed to be known. 
In general, the computation time for a specific 
task is, however, not constant; the execution time 
depends highly on input data, system state, and 
timing behavior of the hardware.

Figure 9 depicts the distribution of execution 
times for a specific task. The upper bound is called 
worst-case execution time (WCET) and the lower 
bound best-case execution time (BCET). In gen-
eral, it is very hard to compute exact numbers of 
WCET and BCET. Instead, the goal is to estimate 
safe upper and lower bounds of WCET and BCET, 
respectively. A safe estimate of the WCET means 
that the estimated number is equal to or larger 
than the real WCET. The upper bound of WCET 
should also be tight, meaning that the uncertainty 
between the real WCET and the estimated upper 
bound is as small as possible.

In industry, it is common to estimate the 
WCET by measuring the execution time for a set 
of test cases with different input data. Measured 
WCET cannot, however, be guaranteed to be safe 
in general.48 The drawback with this approach is 
that measurements cannot be performed for all 
possible inputs and machine states—only a small 
subset can in practice be covered. As a conse-
quence, the estimated values are given extra safety 
marginals, introducing overall pessimistic WCET 
bounds.

An alternative approach is to perform static 
timing analysis on a task’s code. Static WCET 
analysis typically consists of three distinct phases: 
program flow analysis, microarchitectural analy-
sis, and global bound analysis.49 The program flow 
analysis phase identifies loop bounds50 and infea-
sible paths51 of the program. Such constraints on 
the program’s control flow are commonly referred 
to as flow facts. Some WCET tools perform this 
analysis automatically, either on the executable 
binary or on the source code, whereas other tools 

require users to specify these constraints manu-
ally. The microarchitectural analysis determines 
safe time bounds of individual basic blocks.d The 
microarchitectural analysis uses an abstract archi-
tectural model to estimate a safe upper bound for 
each basic block. However, caches and pipelines—
essential for achieving good average case perform-
ance—make static timing analysis particularly 
challenging. Analysis techniques based on abstract 
interpretation52 can be used for analyzing both 
caches53 and pipelines. The strength of these 
methods highly depends on the complexity of the 
underlying hardware. Finally, the global bound 
analysis phase computes an upper bound of the 
WCET by combining the results from the two pre-
vious phases. This computation phase is typically 
solved as an integer linear programming (ILP) 
problem, using the implicit path enumeration 
technique.54

Although significant progress of timing analy-
sis has been achieved during the last two decades, 
several challenges remain. New methods for pro-
gram flow analysis are needed to enable analysis 
of large complex programs. Complex hardware, 
including new multicore platforms with shared 
caches, introduces new analysis challenges.

6.3 Precision timed hardware
Timing analysis can be vastly simplified if the 
underlying hardware has predictable timing behav-
ior. By predictable timing we mean that the size of 
the machine state is limited. The idea of precision 
timed (PRET) machines, a new era of processors 
with predictable timing, was first advocated by 
Edwards and Lee55 in 2007.

One distinguished feature of a PRET machine 
is that the instruction set architecture (ISA) is aug-
mented with timing instructions. For instance, 
PTARM56 is an ARM-based processor devel-
oped at UC Berkeley. The ARM ISA is extended 
with several instructions for programming with 
real-time. The main purpose of extending the ISA 
with timing instructions is to enable portability of 
real-time systems.

Another desirable property of a real-time sys-
tem is testability. Although formal verification of 
embedded systems is a very active area of research, 
testing is the predominate verification technique 
used by industry. However, if a system is exe-
cuted several times with the same input data and 
returns different output for each execution, test-
ing becomes extremely difficult. As a consequence, 
repeatability of both functional and timing 

d A basic block is a sequence of instructions ending with a 
branch instruction.

Figure 9: Probability distribution of execution 
time.
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behavior is vital for testability. A common way for 
PRET machines to achieve repeatability is to use 
thread-interleaved pipelines57 (to remove pipeline 
hazards) and by replacing caches with scratchpad 
memories.58 There exist also other predictable 
processor designs, e.g., ARPRET,59 a reactive proc-
essor based on Xilinx’s MicroBlaze processor, and 
JOP,60 a predictable Java processor.

6.4 Precision timed infrastructure
Many modern modeling environments for CPS,61 
such as Modelica,62 Simulink,63 Ptolemy II,44 and 
Modelyze,64 all include ways of precisely modeling 
and controlling time. Several of these environ-
ments can also compile the functional behav-
ior of a model into C code, but few can give any 
guarantees about timing correctness. In enabling 
correct-by-construction of cyber-physical mod-
els, the challenge is to compile or synthesize a 
model’s cyber parts so that the behavior of a 
simulated model and the real system coincide. 
The key challenge of this model fidelity problem is 
to guarantee the correctness of timing.65

A recent research initiative, called precision timed 
infrastructure,66 addresses this problem. Besides 
PRET hardware, such an infrastructure should 
include both an PRET intermediate language and 
a PRET compiler. The purpose of an intermediate 
language is to act as an abstraction layer between 
the PRET hardware and the modeling language. 
The key advantage of this approach is that the inter-
mediate language exposes timing constructs for 
expressing real-time, but hides machine dependent 
details of the platform. In particular, memory hier-
archies and hardware threads must be abstracted 
away, so that the modeling environment’s code 
generators do not need to consider platform 
dependent details. The benefit with this approach 
is twofold: Firstly, portability is improved; timing is 
now part of the language semantics and is not just 
an accidental consequence of implementation. Sec-
ondly, the PRET compiler—which has the inter-
mediate language as source language and an PRET 
ISA as target language—can now perform timing 
dependent optimizations. In particular, scratchpad 
allocation schemes may be used to improve WCET 
for specified timing constraints.

7 Conclusions and Future Work
In this paper we have provided an overview of 
some of the more important issues and techniques 
related to timing issues in designing and imple-
menting CPS. Oscillator and clock technology for 
CPS is well developed but further work is needed 
to reduce costs, particularly for future mobile 
applications with demanding temporal accuracy 

requirements. GNSS systems play an important 
role in widely distributed CPS but are vulnerable 
to a variety of failures and attacks. Time transfer 
over networks is readily available from NTP at 
millisecond accuracy and with recent protocols 
such as IEEE 1588 to sub-microsecond accuracy. 
However increasing the accuracy of network time 
transfer will require additional work to resolve 
asymmetry problems in a way that is cost effective 
for use in CPS. The design and implementation of 
embedded controllers for CPS that ensure correct 
timing remains a difficult issue. Compact safety-
critical systems are reasonably well understood 
but the design of systems with highly asynchro-
nous inputs, extensive spatial distribution, and 
systems of systems remains problematic although 
significant progress has been made in recent years. 
Additional work on design environments that 
allow better specification and verification of tim-
ing requirements is needed as well as more work in 
controlling processor instruction execution times.
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