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Abstract | Homogenization of partial differential equations is relatively a new area and has

tremendous applications in various branches of engineering sciences like: material science,

porous media, study of vibrations of thin structures, composite materials to name a few.

Though the material scientists and others had reasonable idea about the homogenization

process, it was lacking a good mathematical theory till early seventies. The first proper

mathematical procedure was developed in the seventies and later in the last 30 years or so it

has flourished in various ways both application wise and mathematically.

This is not a full survey article and on the other hand we will not be concentrating on a

specialized problem. Indeed, we do indicate certain specialized problems of our interest

without much details and that is not the main theme of the article. I plan to give an

introductory presentation with the aim of catering to a wider audience. We go through few

examples to understand homogenization procedure in a general perspective together with

applications. We also present various mathematical techniques available and if possible some

details about some of the techniques. A possible definition of homogenization would be that it

is a process of understanding a heterogeneous (in-homogeneous) media, where the

heterogeneties are at the microscopic level, like in composite materials, by a homogeneous

media. In other words, one would like to obtain a homogeneous description of a highly

oscillating in-homogeneous media. We also present other generalizations to non linear

problems, porous media and so on. Finally, we will like to see a closely related issue of optimal

bounds which itself is an independent area of research.

1. Introduction
The mathematical theory of homogenization gained
its significance in the seventies when rigorous
mathematics to understand the procedure was
introduced. The main motivation was from the
study of composite materials, more generally any
medium or domain which involves microstructures.
Simply speaking, homogenization is a mathematical
procedure to understand heterogeneous materials
(or media) with highly oscillating heterogeneties (at
the microscopic level) via a homogeneous material.
Mathematically, it is a limiting analysis. The physical
problems described on such materials leads to the

study of mathematical equations like: differential or
integral equations, optimization problems, spectral
problems, and so on, will exhibit high oscillations
in the coefficients present in the equation or in the
domain. This high frequency oscillations, in turn,
will reflect in the solutions. Thus, even if the well
- posedness of the problems were guaranteed, a
numerical computation (to predict the behaviour of
such heterogeneous media) of such solutions will be
highly non-trivial; in fact, it is almost impossible.

The homogenization deals with the study of
asymptotic analysis of such solutions and obtain the
equation satisfied by the limit. This limit equation
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will characterize the bulk/overall behaviour of the
material, which doesn’t consists of microscopic
heterogenities and can be solved or computed. This
solved and computed solution will then, be a good
approximation, in a suitable sense, to the original
solution.

Composite Materials
These materials are obtained by fine mixing of two
or more materials with different physical properties.
The study of composite material is an important
aspect in material science. The problems modeled on
such materials leads to homogenization problems.
Composite materials arise plenty in nature: e.g.;
wood, bone, lungs, soil, sand stone, granular media,
any porous media and so on. Moreover, the material
scientists/engineers are engaged for many years in
constructing composites (e.g. concrete, reinforced
concrete, plywood, steel etc.) of desired properties.
For example, one would like to construct good
conducting materials in large quantities in an
optimal way by mixing two or more materials, where
the availability of given good conducting material
may be limited. Or one may prefer to develop
elastic materials of a combination of contradictory
properties, say stiffness and softness in different
directions or high stiffness and low weight etc. The
pore structure of the bonds, trunks of wood, leaves
of trees provide examples when mixtures of stiff
and soft tissues can be treated as a composite. The
honey-comb structures are light and possess a high
bending stiffness.

Porous Media
An example of another important micro-structure is
the porous media where the porosity is at a fine scale.
Examples are fluid flow through porous media; like
flow of ground water, oil, flow of resin in mould
industries. We will see the limiting equation depends
heavily on the size of the porosity at the micro scale.

Layered materials (like plywood etc.)
This also can be viewed as a composite with
oscillations only in one direction.

Micro-structure of phase transition
The crystal structure of materials changes at a
critical temperature while cooling. This happens
at the atomic level and the structure moves from
Austenite (high temperature) state to Martensite (low
temperature) state.

Analysis of vibrations of thin structures
The characteristic in all these structures is that
locally inhomgeneous material behaves as a
homogeneous medium when the size of the

inclusions is much smaller than the size of the whole
sample. In such a situation the properties of the
composite can be described by the effective modulli
by special kind of averaging of the properties of the
components. We will see soon by a one dimensional
example that the effective property of the medium
is not the arithmetic average of the same properties
of the components. The branch of mathematics that
study the effective behaviour of such phenomena is
known as homogenization theory.

Fore more details, we refer the readers to the
literature: Refs [1,4,7,9,13,17,18,26,28].

Shape optimization or Optimal shape design
Shape optimization is a branch of calculus of
variations, where we look for optimal shapes under
certain criteria. The typical problem is to minimize
a class of functionals over the characteristic functions
(shapes). It may be cost or energy functionals. The
standard variational methods do not work here due
to following reasons:

(i) The minimizing sequence of characteristic
functions may not converge to a characteristic
function.

(ii) It may not be possible to derive optimality
conditions (the sum of two characteristic
functions need not be a characteristic function
and hence one cannot do variations on the
functionals.

To remove these difficulties, the so called
relaxation methods are used. Enlarge the class of
admissible functions and also the functional without
loosing too much information. Homogenization
is a systematic method for computing a relaxed
formulation, where the cost functional is defined via
PDEs. Furthermore homogenization gives a physical
meaning to the relaxation process by associating
to minimizing sequence and generalized designs,
the concrete notion of infinitely fine mixtures and
composite materials.

2. Elliptic Problems
We now introduce homogenization problem related
to a class of elliptic operators. We begin with the
mathematical description and later we will see
how such problems arise in literature. Let � be a
bounded domain in Rn with smooth boundary ∂�.
Define, for α,β > 0, the class of matrix functions:

E(�) = E(α,β,�) = {A = [aij(x)] : A

is symmetric and satisfies (2.1)}.

We assume the matrix A satisfies

α|ξ|2 ≤ 〈A(x)ξ,ξ〉 = aijξiξj ≤ β|ξ|
2,∀ξ ∈ Rn .

(2.1)
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The first inequality is nothing but the uniform
ellipticity.

The aim is to introduce certain convergence
in the above class relevant to the homogenization
theory. This will become more clear as we go further.
Given an element A ∈ E(�), introduce the elliptic
boundary value problem

Au = f in �

u = 0 on ∂�.
(2.2)

Here A = −
∂

∂xi
(aij

∂

∂xj
) is the PDE operator

associated to A.

Definition 2.1 (G-convergence or H -convergence).
We say a family {[aεij]}ε>0, H-converges to [a∗

ij] as
ε→ 0 if

i) uε ⇀ u in H1
0 (�) weak

ii) aεij(x)
∂uε
∂xj

⇀ a∗

ij(x)
∂u

∂xj
in L2(�) weak.

Here uε, u are, respectively, the solution of (2.2)
corresponding to the operatorsAε,A∗ and we write

[aεij]
H
⇀ [a∗

ij] or simply Aε
H
⇀ A∗.

There is a very general compactness theorem
(See9,13) which is given below.

Theorem 2.2 (Compactness Theorem). Let
[aεij]ε>0, ε→ 0 be any family from E(�). Then there

is a subsequence εn → 0 and a matrix [a∗

ij] ∈ E(�)

such that

[aεij]
H
⇀ [a∗

ij].

Remark 2.3. If we do not include the symmetry
assumption in the class E(�), one can still have a
compactness theorem. In this case we can only conclude

that A∗
∈ E(α,

β2

α
,�). Observe that β

2

α
≥ α.

At first sight, from the above theorem, it may
seem that the limiting analysis has been over.
But, it is far from complete in the sense that, in
general, we do not know the characterization of
[a∗

ij]. The general theorem is not very useful as
far as applications are concerned as the problems
arising from physical and engineering models and
needs to calculate the limiting coefficients which
represents the physical modeling. However, there
are some special cases, where a∗

ij can be explicitly
characterized. For example, in the periodic case
as well as in composites of thin sheets (layered
materials). The following two questions are of

utmost importance; (i) Either explicitly give methods
to evaluate A∗ or (ii) Give appropriate lower and
upper estimates (known as optimal bounds) on the
limiting matrix. Few examples where (i) can be
answered will be given soon. We do present certain
optimal estimates in the last section of this article.
Before the examples, let me say few words on a
related issue.

G-Closure Problem
In general the homogenized cannot be calculated,
but by the general theorem, various sub-sequential
G-limits or H-limits exist. The major open problem
for the material scientists is to describe all the limits.
More precisely, describe the set of all effective property
tensors of the composite which can be obtained from
the given amount of the component materials. This
is the famous G-closure problem. This is largely
depend on the following three information; namely
the properties of the component materials, their
volume fractions and more importantly the micro-
structure. In general the first two are known to us,
where as the third one is delicate and not available.
Indeed, given a micro-structure, finding the effective
modulli is the process of homogenization. But in
practice the micro-structure is not known and
describing G-closure set is open.

The next step is to obtain bounds on G-closure
set from above and below which are independent
of the micro-structure. More precisely, bounds are
valid for a composite material of any structure
with fixed volume fractions of the components.
Also look for the effective property tensors of
particular structures from component material (e.g.
laminate composite, laminate composite of laminate
composite, Hashin-Strikman type structure etc.).
We refer the readers to Refs [10–12,30].

Composite of two materials; A mathematical
modeling
Let two homogeneous materials with physical
property (say conductivity) γ1 and γ2 occupies
a fixed domain � which is a bounded set in Rn.
At a fine mixing of these two materials, it will
occupy some parts of � which we denote by
�ε

1 and �ε
2, respectively. Here ε represents the

micro geometry of the mixing which in general is
unavailable or unknown, but fine-ness is indicated
by the smallness of ε. The volume ratio of the

materials fixed and constant, that is θ1 =
|�ε

1 |

|�|
and

θ2 =
|�ε

2 |

|�|
are independent of ε. Of course one can

think of more complicated problems where these
quantities itself may change. The property of the
medium at the micro level is then given by

γε(x) := γ1χ�ε
1
+γ2χ�ε

2
.
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Here χA is the characteristic function of the subset
A of �. As is well known to the material scientists
that for a fine mixing, that is when ε is small, the
composite may behave like a homogeneous material
with certain physical property (conductivity) γ . The
aim is to describe this γ as limit of γε in some suitable
sense which is precisely the homogenized limit. In this
case the elliptic equation, which is the modeling of
various physical phenomena in such a composite,
takes the form as in (2.2) withA=Aε(x)= γε(x)I .

Remark 2.4. The two material described has an
isotropic microstructure. But I would like to remind
that the composite limit need not be isotropic in the
sense thatA∗ need not be of the form γ I . This will
be clear from the examples to be studied soon.

More generally, an elliptic problem in a
composite of two or more materials with isotropic
or non isotropic can be written in the form as in
(2.2), with appropriate boundary conditions.

We end this section with a notion of correctors.

Correctors
The compactness theorem tells us that the solution
uε ⇀ u in H1

0 (�) weak, which means that uε ⇀ u
strongly in L2(�), but the ∇uε converges weakly
in L2(�). But the weak convergence is not good
for numerical computations and the gradient is
equally an important physical quantity. In general,
the weak convergence cannot be improved and can
be seen from the one dimensional example to be
presented below. The aim of correctors is to add
suitable lower order terms to obtain ’some sort
of ’ strong approximation to ∇uε which will be
extremely useful in practical applications.

3. Examples
Example 3.1 (One Dimensional case). Let aε ∈

L∞(c,d). Consider one-dimensional problem:{
−

d
dx (aε duε

dx ) = f in (c,d)

uε(0) = uε(1) = 0
(3.1)

where f ∈ L2(c,d) is given.

Assume that

0 < α≤ aε(x) ≤ β a.e. x.

We set

ξε = aε(x)
duε
dx

,

so that

−
dξε
dx

= f . (3.2)

Since aε is bounded in L∞(c,d) and uε is bounded
in H1

0 (c,d), we have duε
dx is bounded in L2(c,d).

Thus, ξε is bounded in L2(c,d). We can derive upto
a subsequence, duε

dx ⇀ du
dx and ξε ⇀ ξ weakly in

L2(c,d) and aε ⇀ a∗ in L∞(c,d) weak∗. Hence,
we get the equation −

dξ
dx = f . It remains to find the

relation between ξ and u to complete the analysis.
From the relation between ξε, uε and aε we may

tend to conclude that ξ= a∗ duε
dx . Unfortunately this

is not true in general as the weak convergence do
not preserve nonlinearities. This is the major issue
not only in homogenization problems, it is an issue
in other non linear problems as well.

The present one dimensional situation can be
handled with a simple trick. By the above analysis,
we see that ξε is bounded in H1(c,d). Thus, upto
a subsequence, ξε ⇀ ξ weakly in H1(c,d) and so
strongly in L2(c,d). We may write

duε
dx

=
1

aε
ξε .

Note that {
1

aε } is bounded in L∞(c,d) and so
converges upto a subsequence to some b in L∞(c,d)

weak∗. Now, we can pass to the limit on the RHS
as ξε having strong convergence to get ξ=

1
b

duε
dx .

Finally we get the equation{
−

d
dx

(
1
b

du
dx

)
= f in (c,d)

u(0) = u(1) = 0 .

Remark 3.2. Contrary to intuition, we got the
limiting coefficient as 1

b and not the intuitive limit a∗.
We remark that in general these two quantities are not
equal.

Periodic case
In this situation, one can explicitly compute the
limiting coefficient. Periodic case is settled in general
case as well, but the proof is different. Let Y = [0,1]
and let a ∈ L∞(Y ) be a Y -periodic function,
i.e. a(0) = a(1) and satisfies the ellipticity and
boundedness. Using the scaling map x 7→ x/ε from
[0,ε] → [0,1] we define aε(x) = a(x/ε) on [0,ε]

and then extend it periodically to all of R. We
continue to denote this function by a(x/ε). Then
aε(x) = a(x/ε) and 1

aε(x)
=

1
a
ε
(x) are bounded in

L∞(c,d)).

We have the following general lemma and for a
proof see5.

Lemma 3.3. Let aε(x) = a( x
ε
) be as above, then

aε(x) ⇀
∫ 1

0 a(y)dy in L∞(c,d) weak∗.

From the above lemma for the periodic case,
we get b =

∫ 1
0

1
a(y)

dy. It is clear that in general∫ 1
0

1
a(y)

dy 6=
1∫ 1

0 a(y)dy
.
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Example 3.4 (General Periodic case). The higher
dimensional case is very delicate and as explained
earlier, there is no explicit representation for
the homogenized coefficients in the general case.
However, when there is a periodic structure for the
geometry, one can obtain the formula and prove it
mathematically.

Let aεij(x) : Rn
→ R be ε- periodic given by

aεij(x) = aij(
x
ε
) where aij is defined on the unit cell

Y =[0,1]n as a periodic function, that is it takes the
same values on the opposite sides. Then extend aij

periodically to all of Rn and we denote the extension
by aij itself as it doesn’t cause any confusion. Thus
aεij(x) gives the material property tensor of the
microstructure.

Remark 3.5. The above Lemma 3.3 holds good in the
higher dimensional case as well.

In this example, as expected the limiting
coefficients a∗

ij are constants indicating the
homogeniety of the limit structure and is given
by

a∗

ij =
1

|Y |

∫
Y

[
aij(y)−aik

∂χj

∂yk
(y)

]
, (3.3)

The unknown functions χj for 1≤ j ≤n are obtained
by solving n elliptic problems in periodic cell Y as:
for fixed k, define χk by

−
∂

∂yi

(
aij(y)

∂χk

∂yj

)
=

−∂aik

∂yi
, χk Y −periodic.

Equivalently

−
∂

∂yi

(
aij(y)

∂(χk
− yk)

∂yj

)
= 0, χk Y −periodic.

We remark that the functions χk actually
captures the oscillations in the solutions. This
particular point may not be very transparent at
this stage and requires further analysis. We do not
go through the proof, however we do indicate some
of the methods developed to study such problems.

Example 3.6 (Layered Composite; Rank 1 materials).
Indeed these composites can be treated as a special
case, but it has its own practical significance. These
are created by stacking together, say alternatively thin
homogeneous materials of different physical properties.
That is the material property changes rapidly only in
one direction.

By a suitable rigid motion, mathematically it
amounts to the condition that the coefficients
aij and aεij depends only on one variable; that is
aij(y) = aij(y1). The homogenized coefficient has
a very simple representation as follows:

1
a∗

11
=M

(
1

a11

)
a∗

1j = a∗
11M

(
a1j

a11

)
, a∗

j1 = a∗
11M

(
aj1

a11

)
, 2 ≤ j ≤ n

a∗

ij =
a∗

1i a
∗

j1

a∗
11

+M
(

aij −
a1i aj1

a11

)
, 2 ≤ i, j ≤ n.

Here M(f ) represents the average of the
function f over the unit cell Y .

We now briefly describe various methods
developed in the last 3 decades.

1. Formal asymptotic expansion
In any asymptotic problem, the first step is to look
for a suitable asymptotic expansion and try to guess
the correct limit from the formal analysis. The
normal expansion like in any other asymptotic
problems is as follows:

uε(x) = u0(x)+ εu1(x)+···.

Indeed this expansion leads to the anticipated, but
wrong answer{

−
d

dx

(
a∗ du

dx

)
= f in (0,1)

u(0) = u(1) = 0.

Keeping the particular problem in mind one looks
for:

uε(x) = u0(x,y)+ εu1(x,y)+···,

where x is the slow variable and y =
x
ε

is the
fast variable. Then, if possible, see that u0 is
independent of y and obtain the equation satisfied
by u0 (Refs [4,5]).

2. Energy method via test functions
The idea is to construct suitable test functions having
same oscillations as the solutions to control the
trouble creating oscillating terms to pass to the
limit. In the process, the energy of the original
system converges to the energy of the homogenized
system4,5. This was essentially carried out by
J. L. Lions for the periodic case.

3. Compensated Compactness
This method, actually, was introduced to pass
to the limit in non-linear problems under weak
convergence. We have already remarked in general,
we may not be able to conclude the convergence

Journal of the Indian Institute of Science VOL 87:4 Oct–Dec 2007 journal.library.iisc.ernet.in 479



REVIEW An Overview of Homogenization

of unvn to uv from the weak convergence of un

and vn. This may be due to the oscillations in
un and vn and its interactions. But if un and vn

oscillates in transverse directions, then the non
linear functional unvn behaves nicely. For example
if un and vn are functions on complementary
variables i.e., un = un(x′) and vn = vn(x′′), where
x = (x′,x′′), then the convergence of unvn to uv
can be concluded easily. i.e., one needs a sort of
compensation to achieve the compactness. This is
the basic motivation of compensated compactness,
though the theory is much more involved6,18,29. We
state a fundamental lemma towards this direction.
If we look at our problem, we see that our interest is
in the convergence of σεi

∂uε
∂xj

and σεi = aεij
∂uε
∂xj

.

Lemma 3.7 (Div-Curl Lemma). Let un ⇀ u and
vn ⇀ v in L2(�)N weakly. Further assume {div un}

and {curl vn} remains in a compact subset of
H−1(�). Then

unvn → uv in distribution.

We remark that this can be used to prove H-
compactness and the proof involves lot of specific
details, in particular periodic case can be derived.

4. Gamma Convergence
This is a variational convergence developed to study
optimization problems. Gamma convergence is a
very powerful notion introduced in the seventies
and have applications in several problems including
homogenization problems9.

5. Two Scale (Multi-scale) Convergence
This was specially introduced for studying
homogenization problems. It makes the formal two
scale asymptotic analysis mathematically rigorous.
The two-scale limit captures the oscillations involved
in a weakly convergent sequence. Here I would
like to bring to the attention of the readers that
rapid oscillations and concentrations are main cause
which prevents the weakly convergent sequence to
become strongly convergent. In this direction, we
state the following theorem due to Nguetseng24 (see
also Allaire1 and Nandakumaran20).

Lemma 3.8 (Two-scale Convergence). Let {uε} be
a uniformly bounded sequence in L2(�). Then there
is a subsequence of ε, denoted again by ε, and

u0 = u0(x,y) ∈ L2(�,L2
p(Y ))

such that∫
�

uε(x)ψ
(

x,
x

ε

)
→

∫
�×Y

u0(x,y)ψ(x,y)dxdy

(3.4)

as ε→ 0, for all ψ ∈ Cc(�̄,Cp(Y )). Moreover∫
�

uε(x)v(x)ω
( x

ε

)
→∫

�×Y
u0(x,y)v(x)ω(y)dxdy (3.5)

as ε→ 0,∀v ∈ Cc(�̄) and ∀ω ∈ L2
p(Y ). Further, if

u is the L2 weak limit of uε, then by taking ω≡ 1 in
((3.5)) we get

u(x) =

∫
Y

u0(x,y)dy. (3.6)

Here L2
p(Y ) denotes the space of L2-periodic

functions and Cp(Y ) denotes the space of
continuous periodic functions on Y .

6. Fourier (Bloch wave) method
The latest addition is the Bloch wave method.
Initially, problems from fluid–solid interaction were
studied using bloch wave analysis8. The basic idea is
to work in phase space than in the physical space
represented by x variable. Essentially one diagonalize
the operator Aε and transform the equations
Aεuε = f into a sequence of scalar equations
without the derivatives. The concept of Fourier
decomposition when the medium is homogeneous
is that the operator can be diagonalized in the basis
of plane waves. In the current periodic situation,
one requires Bloch waves.

4. Nonlinear Problems
One can also study homogenization of various
non-linear problems. We present a special class of
non-linear problem which we have studied21–23.

Now we consider the following initial-boundary
value problem described in the beginning of the
talk.

∂t b
( x

ε
,uε

)
−div a

( x

ε
,uε,∇uε

)
= f (x, t) in �T ,

a
( x

ε
,uε,∇uε

)
.ν= 0 on 02,T ,

uε = g on 01,T ,

uε(x,0) = u0 in �.
(4.1)

Weak formulation gives the solution uε ∈

E := Lp(0,T;V ), where V = {v ∈ W 1,p(�) : v =

0 on 01} and let V∗ be the dual of V . Moreover

b
( x

ε
,uε

)
∈ L∞(0,T;L1(�)), and

∂t b
( x

ε
,uε

)
∈ Lp∗

(0,T;V∗).
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Homogenized Equation and the Main Theorem
Let uε be a family of solutions of (4.1). Assume

that there is a constant C > 0, such that

sup
ε

‖uε‖L∞(�T ) ≤ C (4.2)

Under, the assumptions (A1)–(A4), there exists a
subsequence of ε, still denoted by ε, such that for
all q with 0 < q < ∞, we have,

uε → u strongly in Lq(�T )

∇uε ⇀ ∇u weakly in Lp(�T )

b
( x

ε
,uε

)
−b

( x

ε
,u
)

→ 0 strongly in Lq(�T )

b
( x

ε
,uε

)
→ b(u) weakly in Lq(�T ) for q> 1,

and u solves,

∂t b(u)−divA(u,∇u) = f in �T ,

A(u,∇u).ν= 0 on 02,T ,

u = g on 01,T ,

u(x,0) = u0 in �,

The assumption is true in special cases and it is
reasonable on physical grounds. The functions b
and A are defined by

b(s) =

∫
Y

b(y, s) dy

and for µ ∈ R,l ∈ Rn,

A(µ,l) =

∫
Y

a(y,µ,l+∇8µ,l(y)) dy,

where 8µ,l ∈ W
1,p
per (Y ) solves the periodic

boundary value problem∫
Y

a(y,µ,l+∇8µ,l(y)).∇φ(y) dy = 0

for all φ ∈ W
1,p
per (Y ). Here Y = (0,1)n .

Correctors: let U1 ∈ Lp(�T ;W
1,p
per (Y )) be the

solution of the variational problem,∫
�T

∫
Y

a(y,u,∇x u+∇y U1(x, t ,y)).

∇y9(x, t ,y) = 0,

for all 9 ∈ Lp(�T ; W
1,p
per (Y )). If u, U1 are

sufficiently smooth, i.e. belong to C1(�T ) and
C(�T ;C1

per (Y )), then

uε−u− εU1

(
x, t ,

x

ε

)
→ 0

and

∇uε−∇u−∇y U1

(
x, t ,

x

ε

)
→ 0,

strongly in Lp(�T ).

We have improved the convergence of ∇uε by
adding the corrector term. If U1 were to be
differentiable in x, then ∇(u − ε∇U1(x, t , x

ε
))

would approximate ∇uε.

5. Optimal Bounds
So far, we were discussing about the limiting analysis
of micro-structures. The explicit calculation of
homogenized coefficients is available only for certain
situations. Though the general theorem assures us
the existence of limiting equation, it is no loner
possible, in general, to get them explicitly which has
utmost importance for engineers and experimental
scientists. They need more information about the
homogenized coefficients. This is the subject of
optimal bounds.

Having failed to capture exact coefficients, one
proceeds to get estimates known as optimal bounds
on the coefficients or effective tensors. These bounds
will be very useful in most of the experimental
situations, where a complete knowledge of the
composite geometry may not be available. Even
when an accurate determination of complex micro-
geometry is possible, obtaining this information
and parameterizing it can be a very time consuming
process. Cross-sectional photographs may give only
a limited information and it is difficult to predict the
3-dimensional micro-geometry. Many situations the
optimal bounds may be a very good approximation.
More importantly, the validation of numerical
schemes can be done via such bounds. For example,
if the numerical solution is outside the bounds, it
can be rejected outright.

In this section, we present certain bounds
available in the literature without any proofs.
The main aim, of course, to construct bounds
independent of the geometry of the domain.

First consider two material composite.

1. Bounds from General Theory (G-convergence)
The Theorem 2.2 tells that if the homogenized
coefficient matrixA is in E(α,β,�) (we skip ε in
this discussion), then the homogenized coefficient
matrixA∗ is also in E(α,β,�). Thus we have the
crude estimate

αI ≤A∗
≤ βI . (5.1)

Interpretation
Consider 2-material isotropic composite with
properties γ1 and γ2 with 0 < γ1 < γ2. Let l1,l2
be the eigenvalues of A∗, then (5.1) states that
the pair (l1,l2) is in the square [γ1, γ2]×[γ1, γ2]

(see Fig. 1).
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2. Reuss–Voigt Bounds
Voigt proposed that the arithmetic mean would be a
good approximation to the effective modulli, where
as Reuss suggested the harmonic mean. In fact in one
dimension, we have seen that the harmonic mean
is attained and in laminates, the first component
is the harmonic value and all other components
are arithmetic means if the laminates is in the x1-
direction.

Define the harmonic and arithmetic averages
of two materials with volume ratios m1 and m2,
respectively as γh =

γ1γ2
m1γ2+m2γ1

and γa = m1γ1 +

m2γ2. Then the eigenvalues of the effective modulli
lie in the square [γh, γa]×[γh, γa]. Note that this
square is inside the square given by the general
theory (see Fig. 1).

More generally, if we have composite of k-
materials with material property tensorsA1,···,Ak

with volume ratios m1, ···,mk, then we have the
Reuss-Voigt inequalities

〈A−1
〉
−1

≤A∗
≤ 〈A〉. (5.2)

Here 〈A〉 =
∑

miAi is the arithmetic mean and
〈A−1

〉 =
∑

miA−1
i is the harmonic average. We

remark that the above inequality can be proved
using variational principle.

3. Hashin–Shtrikman Bounds
This is derived in connection with problems
mechanics and it is also known from physics and

chemistry etc as Clausius–Mossoti, Lorentz–Lorenz,
Maxwell–Garnett bounds.

Consider 2-composite material as earlier and
note that m2 = 1−m1 and put θ= m1.

Assumption
The homogenized matrix is isotropic. That is
A∗

= γ∗I .
The assumption is crucial and we remark that

even if the component materials are isotropic,
the effective modulli need not be isotropic.
Indeed under the assumption and by the Reuss–
voigt estimate, the eigenvalues coincide with γ∗

and (γ∗, γ∗) lies on the diagonal B1B2. The
following Hashin-Shtrikman bounds gives better
estimate:

γ− ≤ γ∗
≤ γ+ (5.3)

where

γ− =
θγ1 + (1− θ)γ2 +γ2

θγ2 + (1− θ)γ1 +γ1
γ1,

γ+ =
θγ1 + (1− θ)γ2 +γ1

θγ2 + (1− θ)γ1 +γ2
γ2.

The above estimate shows that (γ∗, γ∗) lies on
the diagonal EF (see Fig. 2) which is contained in
B1B2. This will be explained in the next general
estimate without the previous assumption.

4. General Case
Let the materials with properties γ1 and γ2

occupying the regions �ε
1 and �ε

2 respectively so
that � = �ε

1

⊎
�ε

2, then γε = γ1χ
ε
1 + γ2χ

ε
2 is the

material property of composite at the microscopic
level andAε = γεI is the coefficient matrix. Here
χεi = χ�ε

i
is the characteristic function of �ε

i .
Since χεi is L∞(�) bounded uniformly in ε, we
assume that χε1 → θ(x) in L∞(�) weak ∗, and
hence χε2 → 1− θ(x) in L∞(�) weak ∗.

We remark that θ(x) is a function which need
not be a characteristic function.

Theorem 5.1 (Murat–Tartar). Let γε be given as
earlier so that Aε ∈ E(γ1,γ2,�). Let A∗ be the
homogenized limit with eigenvalues l1(x),···,ln(x).
Then they satisfy the following inequalities:

γh(x) ≤ li(x) ≤ γa(x), 1 ≤ i ≤ n∑n
i=1

1
li(x)−γ1

≤
1

γh−γ1
+

n−1
γa−γ1∑n

i=1
1

γ2−li(x)
≤

1
γ2−γh

+
n−1
γ2−γa

,

(5.4)

where γa(x) = θ(x)γ1 + (1−θ(x))γ2 and γh(x) =

(
θ(x)
γ1

+
1−θ(x)
γ2

)−1.

482 Journal of the Indian Institute of Science VOL 87:4 Oct–Dec 2007 journal.library.iisc.ernet.in



A. K. Nandakumaran REVIEW

Figure 2:

r2

r1

rl

C1 h1

h2

h3

h4

C2B2

B1

rh ra r2

S

P

R

F

E

Q

Conversely, if the eigenvalues of some matrix of
functions A satisfy (5.4) for some function θ(x),
0 ≤ θ(x) ≤ 1 a.e. in �, then there exist a sequence of
matricesAε of the form γεI which H-converges toA.
In conclusion the estimates given are optimal.

Geometric Interpretation when n = 2
As θ varies from 0 to 1, the point C1(θ) :=

(γh, γa) = (
γ1γ2

(γ2−γ1)θ+γ1
, γ2 − (γ2 − γ1)θ) traces

a part of the hyperbola x =
γ1γ2

γ1+γ2−y denoted by h1,

from the point R = C(0) = (γ2, γ2) to the point
P = C(1) = (γ1, γ1). The point C2(θ) := (γa, γh)

is the reflection of C1 with respect to the diagonal
line which again traces a part of the hyperbola as in
Fig. 2.

So for a fixed volume fraction θ, we get two
points C1 = C1(theta) and C2 = C2(theta) on the
hyperbolae as in the fig. 2. Let B1 = B1(theta) =

(γa, γa) and B2 = B2(theta) = (γh, γh).
In conclusion, we have:
1. As remarked earlier, the general theorem says

that the eigen values are contained in the square
PORS, where as the Reuss-Voigt (the first inequality
in the above theorem) gives it is in the smaller square
B1C1B2C2.

2. The other two inequalities in the theorem, the
eigenvalues are actually contained in shaded region
FC1EC2 which is bounded by the two hyperbolae
(obtained by equating the inequalities):

1

x −γ1
+

1

y −γ1
=

1

γh −γ1
+

1

γa −γ1

and

1

γ2 −x
+

1

γ2 − y
=

1

γ2 −γh
+

1

γ2 −γa
.

Indeed, under the isotropic assumption as in
Hashin-Shtrikman of the homogenized coefficients,
the eigenvalues are equal and hence it lies on the
line EF.

The converse, merely indicates that every point
in the shaded region is achievable by a micro-
structure and hence optimality. In fact, Hashin-
Shtrikman constructed certain micro-structures,
known as Hashin-Shtrikman assemblages of coated
circles to obtain the limiting values E and F. Further,
a minor modification of the assemblages lead to
any value from E to F and more generally, using
assemblages of coated ellipsoids instead of circles
one can attain any point in the shaded region. When
one moves towards the points C1 or C2, the ellipses
become more and more stretched in one of the
directions and the elliptic assemblages will turn into
a stratified (laminate) composite of Rank 1.

Received 06 September 2007; revised 21 November 2007.
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