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Abstract | In this paper, we investigate the controllability property of a class of semilinear
non-autonomous system described by the difference equation

x(t+1)=A)x(t) +B()u(t) +f(t,x(t)), teNy={0,1,2,...}

under the assumption that its linear part is controllable and the nonlinear function f satisfies
Lipschitz condition. We also give an algorithm to compute steering control for the above

system. Numerical example is given to illustrate the result.

1. Introduction
In [1], Krabs studied the controllability of a general
difference system of the form

x(t+1) =f(x(t), u(?)).

Further, they have also obtained a controller that
steers a given initial state to a desired final state for
the linear system (1.2). In this paper we consider
a semi-linear system of difference equation of the
form

x(t+1) = A(D)x(t)+B@)u(t)+f(t,x(1)),

x(0) = x9, teNp (1.1)

and the corresponding linear system:

x(t+1) = A(D)x(t) +B(H)u(t),

x(0) = xg9, t€Np. (1.2)
Here, (A(t))¢en, and (B(t)):en, are sequences
of real n x n and n x m matrices, respectively,
and (x(t))¢en, and (u(t));en, are sequences of
state vectors in R” and control vectors in R™,

respectively, f(.,.) : No Xx R” — R" is a nonlinear
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function satisfying Lipschitz condition with respect
to the second argument.

We introduce a steering controller for system
(1.1) and prove that it is well-defined and it steers
any initial state xo of system (1.1) to a desired
final state x; in N € Ny time steps under certain
conditions.

We define the problem of controllability and
reachability as follows.

Problem of Controllability

Let xo,x1 € R" be given arbitrarily. We say that
the system is controllable if there exists a sequence
of control vectors (u(t) € R™, te€ Ny), such that
for some N € Ny the the solution (x(t))¢en, of
equation (1.1) starting from the initial state x (0) =0,
also satisfies the end condition x(N) = x;.

Problem of Reachability
We say that the state x; € R” is reachable in N time
steps, if there exist a sequence of control vectors
u(t) € R™, te Ny, such that the corresponding
solution starting from x(0) = 0, also satisfies
x(N) =x;.

We now express the solution of (1.1) and (1.2)
in terms of the state-transition matrix ® (¢, tg)
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associated with the homogeneous linear part of
(1.2).
The state transition matrix ® (¢, tp) is given by

2]
D(t, 1) =A(t—1)A(t—2)...A(tp) ¥V t>1
It can be shown that the solution of (1.1) is given by

t—1

x(t) = O(t,00x0+ Y _ (t.j+1)B(G)u(j)
j=0
t—1
+) i+ DfGx()) (13)
j=0

and the solution of (1.2) is given by

t—1

x(1)=®(t,00x0+ Y _P(t,j+DBGu() (14)
j=0

In this article, we give the computational scheme
for the steering control. For t=0,1,...,N —1, we
define a controller

u(t) := B(t)*®(N,t+1)*W,(0,N) ™!

[xl — CI)(N, O)X()

N-1
-y @(N,j+1>f<j,x<j)>} (1.5)

j=0

for the nonlinear system (1.1), where W, (0, N) is
called reachability Grammian defined by

W.(0,N) :=
N-1

> O(Nj+1DBGH)BG)*R(N.j+1D* (1.6)
j=0

We will prove that this control is well-defined and
steers the nonlinear system (1.1) from x to x;. We
make the following assumptions to obtain the result.

Assumptions

[L] : The linear system (1.2) is controllable.

[N]: The nonlinear function f (¢, x) is Lipschitz
continuous with respect to x. That is, there exists
o > 0 such that

Ift.x)—ft.ylI<e lx—yll Vx,yeR"

Under the above assumptions, we prove in Section 2
that the system (1.1) is controllable and also prove
that controllability and reachability of the system

Raju K George and Trupti P Shah

(1.1) are equivalent. Numerical example for steering
control of system (1.1) is provided in Section 3.

Further, let Sy = Sy(R") (N > 0) be
the linear space of terminating sequences
{x(t)}g\I:O, (x(t) € R") and denote by S% =
S (R™), the corresponding Banach space with
norm || . | :

X = sup [[x(t)l
0<t<N

We denote the linear space of control sequences
by

Uo,N] = {ue Rm(NJrl) :

u:=[u(0),u(l),...,u(N)],
with u(t)eR"™,0<t<N}

The following propositions will be employed to
prove our results.

Proposition 1.1. (Callier and Desoer [3]). Let
(A(1)), (B(t)),t € Ny be given compatible matrix-
sequences. Then the following are equivalent:

(i) The linear system (1.2) is controllable on [0, N].
(ii) detW,(0, N) # 0, where the reachability
grammian W, is as defined as in (1.6).

Proposition 1.2. Ifthe system (1.2) is controllable on
[0, N1, then for all xy,x) € R", there exists u € Uy, N
defined by

u(t) := B(t)*®(N,t+1)*W,(0,N) ™!
x[x1 — @ (N, 0)x0]

that steers the initial state x, to the desired final state
x1 in N time-steps.

2. Main Results
Theorem 2.1. If the the linear system is controllable
in N time-steps and the control u(t) defined by (1.5)
is well-defined, then it steers the nonlinear system
(1.1) from the initial state x to the desired final state
x1 in N time-steps.

Proof: Since the linear system (1.2) is controllable
on [0, N], we have by Proposition 1.1 that
detW,(0,N) #0 . If we substitute the control given
by (1.5) in the solution

t—1
x(t) = ©(t.0)x0+ Y _ (t.j+1)B()u()
=0
t—1 !
+) O j+DfGix()

j=0
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we get,
t—1
x(t) = ®(t,0)x0+ Yy ®(t,j+1)BGB(G)*
j=0

x®(N,j+1)*W,(0,N)~!

{xl — (D(N,O)XO

N-1
—Z@(N,ﬂl)f(j,x(j))}

j=o

t

—1
+ ) @t j+Df (. x(j))

j=0

(2.1)

It can be easily verified that at t =0, x(0) = x¢ and
at t = N, x(N) = x1. Thus, the control u defined in
(1.5) steers the non-linear system from the given
initial state xq to the desired final state x;.

We now prove that the control defined in (1.5)
is meaningful. This control u is well-defined if there

is a solution to the equation (2.1) with this control.

We will prove existence and uniqueness of solution
of (2.1).

We make use of the following notations and
definitions:

Let C = maxnzs>j>0 | ©(t,5) I, My =
maxn=j>o | B(j) || and
M= W, (0,N)""|.
B=C(1+C?M}IM(N —1))
n=aB(N—1).
Theorem 2.2. Under Assumptions [L],[N] and
n < 1 the steering control defined by

u(t) = B()*®(N,t+1)*W,(0,N)~!

X |:x1 —®(N,0)xp

N-1
—Zcb(N,jH)f(f,x(j))}

=0
is well-defined.

Proof: We prove this by showing that the nonlinear
system with this control has a unique solution. In
Theorem 2.1 we have shown that this control does
the required steering. We show that the following
nonlinear equation has a unique solution.

t—1
x(t) = ©(t.0)xo+ Y _ P (t.j+1)B()B(1)*
j=0

xD(N,t+1)*W,(0,N)!
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{xl — CD(N,O)X()

N-1
-3 <I>(N,j+1)f(j,x(j))}

j=0

t—1

+)O(1j+DfGox ()

j=0

To prove the existence of the solution, we define a

mapping
T:ST(R") — SF(R") by

t—1

T(x(t)) = ®(t.00x0+ Y _®(t.j+1)
7=0

xB(j)B()*®(N,t+1)*W,(0,N)!

{xl — @(N, O)xo

N-1
-3 ©(N,j+1)f(j,x(j))}

j=0

t—1
+Y O+ D GLx()),

=0

t=0,1,...,N.
Since SYY (R") is a complete Banach space, we show
that operator T has a fixed point by using Banach

Contraction mapping theorem.
Consider

t—1
1T (x(8) = TGE®) 1<)l (¢, j+1)

j=0
<{f G, x()) =G, G} I
t—1
+) @i+ 1DBG)BG)*
j=0

®(N,j+1)*W,(0,N)~!

N-1

D RN i+ D{f (i, x())

i=0

—fEx@O)}

t—1
CY If&GN—fE I

j=0

IA

+C*MIM,
t—1 N

—1
D CY U IfGLEG) — 3L x(0) |

=0 i=0
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t—1

aCY I x()—x() |

j=0

IA

+aC M{M,(t—1)

N-1
D IIEG) —x() |
i=0

< aC(1+C*MiM,y(t—1))
N-1
D IlxG)—xG) |
j=0
N-1
< ap)  Ix()—%() I,
j:O
Thus, sup || T(x(t)) —T(x(1))
0<t<N
< aB(N—1) sup [x(t)—%(t) |

0<t<N

ITX)-TE I=nllx—%].

Since n < 1, T is a contraction. Hence T has
a unique fixed point. Therefore, the nonlinear
equation is uniquely solvable. This proves that the
control defined in (1.5) is well-defined.

We now give the following computational result
for the steering control for the nonlinear system.

Theorem 2.3. Under the assumptions of Theorem
2.2, the steering control and controlled trajectory of
the nonlinear system (1.1) driving the system from
x(0) = x¢ to x(N) = x1 can be computed by the
following iterative scheme:

u™(t) = B(t)*®(N,t4+1)*W,(0,N)~!

X [xl —®(N,0)x

N-1
—Z@(N,Hl)f(j,xmo))] (22)

j=0
and

") = d(t,0)x (2.3)
t—1

+Y @i+ DB ()
j=0

t—1

+Y @i+ DG x" () (24)

j=0

starting with arbitrary ), r=0,1,2,...,N—1,
m=0,1,2,...
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Proof: The computational scheme follows directly
from Banach contraction principle and from
Theorem 2.2.

Although for nonlinear systems controllability
and reachability notions are not equivalent, we prove
in the following theorem that for the semilinear
sytem (1.1), the two notions are equivalent.

Theorem 2.4. The two notions of controllability and
reachability are equivalent for the semilinear system

(1.1).

Proof: From definition, it is obvious that for the
system (1.1), controllability implies reachability.
Conversely, let the system (1.1) is reachable on
[0, N]. Thus, the 0 state can be steered to any desired
state X1.

Now, for arbitrary x¢, x; € R", choose

561 = X1 —(D(N,O)X().

Since there exists #(t) € Upo, N7 that steers xo =0 to
X1 for some N. Hence

N—-1
¥ = ®(N,000+ Y ®(N,j+1B()u()
=0
N—-1
+ (N j+Df(G.x() (2.5)
j=0
ie.
N—-1
F1= ) O(N,j+DB(Gu()
j=0
N—-1
+Y PN DG x() (26
j=0
Le.
N-1
x1 = ®(N,0)xo+ Y ®(N.j+1)B(G)u(j)
=0
N—-1
+ O(Nj+Df(G.x() (2.7)
j=0

which shows that the same control steers x; to x;.
Hence the system (1.1) is controllable.

3. Numerical Example
Example 1. Consider the nonlinear system given by
the following equation:

x(t+1)=A®)x(t)+B@u(t)+f(t,x(t)) (3.1)
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Figure

1:

Controlled trajectories.

State (x)
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Time (t)

whereA(t):i(cos(Zt) 1 >’

> cos*(t)

B(t) = ( 551‘) and

iq2
firo =l ( sin’ (3 (1)) )

cos™(x2(1))

Let N = 10. Here the reachability Grammian can be

computed as
1.0774 0.2760
Wr0.100=1 4 3760 0.2078 )
and detW,(0,N) =0.1477 #0.
Hence the linear system is controllable, and

I f(t,x)=f(E.y) I
1 sin? (x1) —sin?(y;)
=3 l 2 l

cos? (x) — cos? (y2)
<2 l l
Zlx—
=3 Y

Hence f is Lipschitz with Lipschitz constant % We
can easily verify the conditions of Theorem 2.2 to
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conclude that the system is controllable. Figure 1
shows the controlled trajectory steering the system

. 4
from the initial state xo = <

-

Received 19 November 2007; revised 28 November 2007.

) to the final state
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