
1Faculty, Department of
Mathematics, Indian
Institute of Science,
Bangalore, India

REVIEWS

BranchingParticle Systemsand
Superprocess

Srikanth K. Iyer

Abstract | In this paper, we describe a system of particles that perform independent random

motions in space and at the end of their lifetimes give birth to a random number of offspring.

We show that the system in the large density, small mass, rapid branching or long time scale

limit converges to a measure-valued diffusion called the superprocess.

1. Introduction
In this paper, we describe a system of branching-
diffusing particle system and a high density measure-
valued diffusion limit for such systems. The limiting
measure-valued process is called the Dawson-
Watanabe process or the superprocess. Branching-
diffusing particle systems and their high density
limits have been studied intensively in the last 30
years of so. Interest in these processes stems from
their application in population genetics, or from
the fact that they arise as limits of the rescaled
voter model and critical oriented percolation. The
particle as well as the limiting superprocess are
also of interest since their log-Laplace functionals
are associated with a class of non-linear partial
differential equations. These processes satisfy the
Markov property and so the rich mathematical
machinery developed for the study of such processes
become available. Though these processes are built
from individual particles performing Markovian
or diffusion motion, the limiting process exhibits
significantly different path behaviour as compared
to the individual particles. For example, if individual
particle motions are Brownian, then they “hit”
points only in dimension 1, whereas the limiting
superprocess does so for dimensions 3 and below. In
dimensions larger than 2, even if the initial measure
has a density with respect to the Lebesgue measure,
the process instantaneously becomes singular.

For a detailed description of these processes,
we refer the reader to Ref. [4] or the expository

article by Perkins14. A highly readable introduction
to superprocesses can be found in Ref. [9].
Dynkin (1993)8 and Le Gall12 explore connections
between superprocesses and partial differential
equations. There are other constructions of a
superprocess, for example, the construction
using the Browian snake11, via convergence of
rescaled lattice trees to a variant of the super
Brownian motion called the Integrated super
Brownian motion7, the rescaled voter model2, or
as limits of the critical oriented percolation10.
Superprocesses in random environment3,17,
catalytic superprocesses5 and superprocesses over
stochastic flows1, superprocesses with interactions
are examples of some of the generalizations
that have been explored. Many properties such
as propagation and dimension of the support,
continuity, persistence and local extinction,
genealogy of particles and their connections to
random trees have been studied. We restrict ourself
in this article to two approaches to construction of a
simple superprocess.

2. Branching-Diffusing Particle Systems and
their High Density Limits

In this section, we will describe a simple branching-
diffusing particle system and the conditions under
which we can obtain a high density measure-valued
diffusion limit for these systems. In order to describe
the processes of interest, we need the following
notations: For any function φ and measure µ
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defined on some measure space, we denote by 〈φ,µ〉

the integral of φ w.r.t. µ. LetMF (<d) be the space
of finite measures on <

d . LetMa(<
d) be the subset

ofMF (<d) of purely atomic measures on <
d . Let

f (a,x) ∈ C2
b(<

d) be the space of positive bounded
continuous functions that are twice differentiable in
x ∈<

d respectively. C+

b (<d) be positive bounded

continuous functions on <
d .

Consider a system of particles that start at time
t = 0 distributed according to a Poisson random
measure πl with intensity measure l ∈MF (<d).
Note that the Poisson random measure specifies
both the number and location of the initial particles.
These particles then start performing independent
random motions according to a diffusion with
generator A with Feller semigroup Tt . For example if
individual particles perform independent Brownian
motion, then the generator is the Laplacian with the
associated semigroup being the heat semigroup.

Each particle lives an independent lifetime with
exponential distribution with parameter γ . At the
end of its lifetime, each particle independent of
everything else, gives birth to a certain number of
offspring according to a distribution {pk,k ≥ 0},

with generating function

F(s) =

∞∑
k=0

pk sk .

The offspring distribution is assumed to be critical,
that is the mean of the offspring distribution,
m :=

∑
∞

k=1 kpk = 1. A simple example of a critical
generating function is

F(s) = s+ c(1− s)2, 0 < c ≤
1

2
. (2.1)

The offspring immediately upon birth, start moving
independently from the location of death of their
parents. The newborn particles evolve in the same
way as the parent particles and this process continues
till the system becomes extinct. Our interest is in
the measure-valued stochastic process Xt , where
Xt (A) is the total number of particles in set A at
time t . Define the Laplace transform of the particle
system by

Lt (φ,ν) = E
[

e−〈φ,Xt 〉|X0 = ν
]
,

φ ∈ Cb(<
d), ν ∈ Ma(<

d). (2.2)

We also use the notation Lt φ(x) = Lt (φ,δx). The
following property is referred to as the branching
property:

Lt (φ,ν1 +ν2) = Lt (φ,ν1)Lt (φ,ν2).

From this it follows that

Lt (φ,ν) = e〈logLt (φ),ν〉, ν ∈ Ma(<
d). (2.3)

We now describe the Dawson-Watanabe measure-
valued process that is obtained as the high density
limit of the above particle system. To do this
we consider for any n ≥ 1, the above branching-
diffusing particle system with the following
parameters:

1. The initial distribution of the particles is
Poisson with intensity measure nl. We will
denote it by πnl. The mean number of
particles generated will be nl(<d). The
Laplace transform of the distribution of
particles under such a Poisson measure is given
by

Eπl

[
e−〈φ,X0〉

]
=

∫
Ma(<d )

e−〈φ,ν〉πl(dν)

= e−〈1−e−φ ,l〉. (2.4)

2. We will consider such a high density—small
mass system at time nt . Thus we need to
slow down the diffusion in order to obtain a
meaningful limit. The diffusion semigroup of
the particle motion for the nth system is given
by T n

t = Tt/n.
3. The lifetime distribution G is exponential with

parameter γ .
4. The generating function of the offspring

distribution Fn satisfies

lim
n→∞

sup
u≤N

‖ n2(F(1−u/n)− (1−u/n))

−cu2
‖→ 0, (2.5)

for all N > 0. Note that (2.1) satisfies the above
condition.

5. Each particle has mass n−1. We will study the
mass process,

Xn
t (A) :=

1

n

∑
α∈Int

1A(Xα
nt ), (2.6)

where It is the index set of all the particles that
are alive at time t .

Theorem 2.1 (Roelly-Coppoletta, 198615). The
process Xn converges weakly on the Skorokhod
space D(<+,MF (<d) to a measure-valued Markov
process Y which is the unique solution of the following
martingale problem: For each φ ∈D(A), the process

Zt (φ)=〈φ,Zt〉 :=〈φ,Yt〉−〈φ,l〉−

∫ t

0
〈Aφ,Ys〉ds,

(2.7)
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is a martingale with increasing process

〈Zt (φ)〉t = cγ

∫ t

0
〈φ2,Ys〉. (2.8)

The Laplace functional of the process Y is given by

El

[
e−〈φ,Yt 〉

]
= e−〈ut ,l〉, l ∈MF (<d), (2.9)

where ut is the unique strong solution of the initial
value problem

∂

∂t
ut (x) = Au(x)− cγu2

t ; u0(x) = φ(x),

φ ∈ C+

b (<d). (2.10)

3. Sketch of Proof of Theorem 2.1
We first show convergence via the Laplace functional
approach.

Lemma 3.1. For any t ≥ 0, and x ∈<
d the Laplace

function Lt φ(x) = Eδx [exp(−〈φ,Xt〉] satisfies the
integral equation

Lt φ = Tt eφ
+γ

∫ t

0
Ts(F(Lt−sφ)−Lt−sφ) ds

(3.1)

Proof. Condition on the disjoint but covering
events

{T d > t}, {T d
= s, for some 0 ≤ s ≤ t},

where T d is the time of death of the ancestor, which
we recall is an exponential random variable with
parameter γ . We obtain, by the branching property,

Lt φ(x) = e−γ t Tt e−φ(x)+

∫ t

0
γe−γ s Ts

×[F(Lt−sφ)](x) ds

Using the identity exp(−γ t) = 1 −
∫ t

0 γ exp(−γ

(t − r))dr, we get,

Lt φ(x) = Tt e−φ(x)+γ

∫ t

0
Ts

×[F(Lt−sφ)](x) ds−At (x),

where

At (x) =

∫ t

0
γe−γ(t−s) dsTt e−φ(x)

+γ2
∫ t

0

∫ s

0
e−γ(s−r) dr Ts

×[F(Lt−sφ)](x) ds.

Interchange the order of integration in the last term
above. The second term now becomes

γ2
∫ t

0

(∫ t

r
e−γ(s−r) Ts[F(Lt−sφ)](x) ds

)
dr

Shift s to s− r:

γ2
∫ t

0

(∫ t−r

0
e−γ s Ts+r[F(Lt−(s+r)φ)](x) ds

)
dr

Notationally switch s and r to obtain,

At (x) =

∫ t

0
γe−γ(t−s) dsTt e−φ(x)

+γ2
∫ t

0

(∫ t−s

0
e−γr Tr+s

× [F(Lt−s−r )φ](x) dr) ds

= γ

∫ t

0
Ts

(
e−γ(t−s)Tt−se−φ(x)

+γ

∫ t−s

0
e−γr Tr[F(Lt−s−rφ)] dr

)
(x) ds

=

∫ t

0
Ts(γLt−sφ)(x) ds

To complete the proof, substitute the above
expression in the equation for Lt φ(x)

Lemma 3.2. The Laplace transform of the branching
particle system Xt described above under the Poisson
initial measure πl is given by

Eπl

[
e−〈φ,Xt 〉

]
= e−〈vt (φ),l〉, (3.2)

where vt (φ) = 1− Lt (φ), and Lt is as defined in
(2.2).

Proof. Proof follows from (2.3) and (2.4).

Eπl

[
e−〈φ,Xt 〉

]
=

∫
Ma(<d )

Eν

[
e−〈φ,Xt 〉

]
πl(dν)

=

∫
Ma(<d )

e−〈vt (φ),ν〉πl(dν)

= e−〈e1−logLt (φ) ,l〉

= e−〈1−Lt (φ),l〉

Let vt (φ) = 1−Lt (φ). Then, following (3.1) we can
write an evolution equation for vt as

vt (φ)(x) = Tt (1− e−φ)(x)

−γ

∫ t

0
Ts(F(1− vt−sφ)−1+ vt−sφ)(x) ds

(3.3)
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We now write the Laplace transform for the
approximating high density—small mass particle
system Xn:

Eπnl

[
e−〈φ,Xn

t 〉

]
= e−〈vn

t (φ),l〉, (3.4)

where vn satisfies the evolution equation,

vn
t (φ)(x) = T n

nt n(1− e−φ)(x)

−nγ

∫ nt

0
T n

s

(
F

(
1−

1

n
vn

t−s/nφ

)
−1

+
1

n
vn

t−s/nφ

)
(x) ds

= Tt n(1− e−φ)(x)

−n2γ

∫ t

0
Ts

(
F

(
1−

1

n
vn

t−sφ

)
−1

+
1

n
vn

t−sφ

)
(x) ds (3.5)

(2.10) now follows from the assumptions on the
offspring distribution function, the contraction
property of Tt and an application of the Gronwall’s
inequality.

This proves the convergence of the marginal
disributions of the process Xn to those of the
limiting superprocess Y . Convergence of the finite
dimensional distributions can be shown using
the Markov property and the convergence in

distribution of
∑k

i=1〈φi,Xn
ti
〉 to

∑k
i=1〈φi,Yti 〉 (see

Dynkin, 19938 or Dawson, Gorostiza and Li, 20026

for details on the construction of a more general
superprocess).

To complete the proof of weak convergence, we
need to show that the sequence of approximating
particle processes Xn are tight in D(<+,MF (<d)

for which we refer the reader to Ref. [9],
Proposition 1.19.

Worms Eye View
Finally we give a microscopic description of

the particle system, leading to the stochastic
evolution equation for the limiting superprocess
given in (2.7). Thus the microscopic birth, evolution,
branching and death of the individual particles
can be assimilated and represented in a neat
form in terms of smooth stochastic differential
equations. This representation enables one to
extend the superprocess directly by adding terms
corresponding to interaction etc. without reference
to the particle system.

We start with a particular labeling system for the
particles. Define the family of multi indices,

A := {α = (α0,α1, . . . ,αN ) : α0 ∈ {1,2, ..},

αi = 1,2, i ≥ 1,N ∈ {0,1,2, ..}}.

For example, the label (1,2,2) will stand for the
second child of the second child of the first particle,
etc. Let | α |= N denote the length of the string
(α0,α1, . . . ,αN ). Further, let α |i := (α0, . . . ,αi)

and α− i = (α0, . . . ,α|α|−i), i = 1, . . . ,| α |−1, be
the predecessors of α. We provideA with a partial
ordering

β ≺ α ⇐⇒ β = α |i for some i ≤| α |.

We simplify matters by assuming that the lifetimes
are deterministic and equal 1/n. For any t > 0 write
α ∼ t , if and only if

| α |

n
≤ t <

1+ | α |

n
.

Let {ξα
t , α ∈ A} be a family of <

d-valued
independent diffusions with generator A on the
interval [0,1/n) with ξα

0 = 0. Let {Nα,α ∈A} be a
family of i.i.d. random variables taking values 0 and
2 with equal probabilities. ξα

t describes the spatial
motion of the particle, while Nα gives the number
of offsprings of the particle α.

At time t = 0, we have K , particles distributed
independently in <

d according to the Poisson
measure with intensity measure nl. Label these
particles 1,2, . . . , K , and let their locations be
y1, . . . ,yK respectively. Define processes Y 1, . . . ,Y K

on the interval [0,1/n) by

Y i(t) = yi + ξi(t).

The families {ξα
}, {Nα

} and {Y i
0} are independent.

We now define recursively a binary tree of processes,
for each α, by

Y α(t)=


lim

s→ k
n

−
Y α−1(s)+ ξα

(
t −

k
n

)
if α ∼ t ,k =| α |

3 otherwise.

Here 3, called the cemetery, is a point disjoint
from <

d , and, as usual, the convention is that any
function on <

d is extended to <
d
∪3 by f (3) = 0.

Thus the process Y α(t) is alive only if α ∼ t . We still
need to take into account the fact that the particle α

is alive in the interval [|α|/n,(|α|+1)/n) provided
each of its predecessor α− i, i = 1, . . . ,| α |−1, gave
birth to two offsprings. To this end we define, for
each α, the killing times

τα
=


0 if α0 > K

min
{

i+1
n : Nα|i = 0, i ≤| α |

}
if this set is

non-empty and α0 ≤ K
1+|α|

n otherwise.
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Note that Y α(t) gives the position of the particle
α, if the particle is alive at time t ≥ 0. Therefore we
can define the path of any particle α ∈A as

Xα
t =

{
Y α(t) if t < τα

3 if t ≥ τα .
(3.6)

Finally, we define the measure valued process
for the above particle system as

Xµ
t (A) =

#{Xα
t ∈ A : α ∼ t}

n

=
1

n

∑
α∼t

1A(Xα
t ). (3.7)

3.1. Martingale Measures
Definition 1. Let {Ft} be a right continuous
filtration. A process {Mt (A),Ft , t ≥ 0,A ∈B(<d)}

is a martingale measure if

(i) M0(A) = 0;

(ii) For each t ≥ 0, Mt is a σ-finite L2-valued
measure;

(iii) {Mt (A),Ft , t ≥ 0} is a martingale.

Definition 2. A martingale measure M is orthogonal
if, for any two disjoint sets A and B in B(<d), the
martingales {Mt (A), t ≥ 0} and {Mt (B), t ≥ 0} are
orthogonal.

Equivalently, M is orthogonal if Mt (A)Mt (B) is
a martingale for any two disjoint sets A and B. This
in turn is equivalent to having < M(A),M(B) >t ,

the predictable process of bounded variation,
vanish.

3.2. An Integral Equation for Xµ
t

Let {Bα
: α ∈A} be a family of d-dimensional <

d-
valued Brownian motions on the same probability
space such that

ξα
t =

∫ t

0
b(ξα

s )ds+

∫ t

0
σ (ξα

s ) ·dBα
s , (3.8)

where σ = (σij)1≤i,j≤d is such that aik(x) =

1
2

∑d
j=1 σijσjk. aij and bj satisfy the following

assumptions.

A1. The coefficients aij , bi (i, j = 1, . . . d) are

bounded and satisfy a Hölder condition on <
d .

A2. There exists a constant C > 0 such that for all
x ∈ <

d and arbitrary real numbers l1, . . . ,ld

d∑
i,j=1

aij(x)lilj ≥ C
d∑

i=1

l2
i .

Define two martingale measures W n and Zn as
follows:

W n
t (A) =

1
√

n

∑
α

∫ t

0
1A(Xα

s )σ (ξα
s ) ·dBα

s

(3.9)

Zn
t (A) =

1

n

∑
α

(
1A(Xα

β(α))1(β(α) ≤ t)

−1A × (Xα
ζ(α)−

)1(ζ(α) ≤ t)
)

=
1

n

∑
α

(Nα
−1)

(
1A(Xα

ζ(α)−
)

×1(ζ(α) ≤ t)
)
, (3.10)

where β(α) is the birth time and ζ(α) is the death
time of the particle α. The measure W n keeps track
of the diffusion and ignores branching, while Zn

does just the opposite. It measures the births minus
the deaths and ignores the diffusion. Following
the procedure in Walsh (1986) (applying the Itô
formula for each particle using (3.8) and then
suitably summing over all α) Xµ

t can be shown
to satisfy the following evolution equation:

Xµ
t (f ) = Xn

0 (f )+

∫ t

0
Xn

s (Af )ds

+

∫ t

0

∫
<d

f (x)Zn(dx,ds)

+
1

√
n

∫ t

0

∫
<d

5f (x) ·W n(dx,ds),

f ∈ C2
b(<

d). (3.11)

Proposition 3.3. W n and Zn are orthogonal
martingale measures. W n is continuous and <

d-
valued while Zn is purely discontinuous and real
valued. Moreover,

(i) < W n(f )>t=
1
n

∑
α

∫ t
0 f 2(Xα

s )σ (ξα
s )σ ′(ξα

s )ds

(ii) < 1
√

n

∫ t
0

∫
<d 5f (x) ·W n(dx,ds) >

=
1

n

∑
α

∫ t

0
5f (Xα

s )σ (ξα
s )σ ′(ξα

s )(5f (Xα
s ))′ds

(iii) < Zn(f ) >t=
∑

k<[tn]
η k

n
(f 2) 1

n =∫ t
0 ηs(f 2)ds+O( 1

n )

Proof. The orthogonality of W n and (i), (ii) follow
immediately from the definition of W n and the fact
that the {Bα

} are independent (see Walsh (1986),
Prop. 8.1). The computations for Zn are given in
Ref. [14] (see proof of Theorem 2.13).
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Remark 1. The martingale measures W n and Zn

are mutually orthogonal since W n is continuous and
Zn is purely discontinuous. The diffusion and the
branching are conditionally independent given η0.

Remark 2. Let σ ?
= max1≤k≤d ‖

∑d
j=i σ

2
kj ‖∞.

The following inequalities are a straightforward
consequence of Proposition 3.3.

E

{(∫ t

0

∫
<d

5f (x) ·W n(dx,ds)

)2
}

≤ σ ?E

{∫ t

0
Xn

s (|5 f (x)|2)ds

}
(3.12)

E

{(∫ t

0

∫
<d

f (x)Zn(dx,ds)

)2
}

= E

{∫ t

0
Xn

s (f 2)ds

}
+O

(
1

n

)
(3.13)

Equation (3.11) along with the above moment
formula gives an idea as to why the superprocess
(which is the limit of the above particle process, as
n → ∞) is a solution of the martingale problem
of Theorem 2.1. The measure W n converges to
a Gaussian measure. However, because of the
additional normalization by 1

√
n
, the term in W n

vanishes in the limit. On the other hand Zn

converges to a martingale measure, thus yielding the
superprocess as a solution of the desired martingale
problem (see Walsh (1986) for the details).

Any solution to the martingale problem can
be shown via the Ito’s formula to satisfy the log-
Laplace functional equation given by (2.9), (2.10).
Further, using the Markov property, one can
extend this representation to the finite-dimensional
distributions of the process. Since (2.10) and
its finite-dimensional extension has a unique
solution, it follows that the solution to the
martingale problem is unique. For more general
superprocesses, a nice representation in terms of the
log-Laplace equation does not exist. In such cases,
the uniqueness problem is more difficult.

Uniqueness of the solution to the martingale
problem is guaranteed by the convergence of the
log-Laplace functionals shown earlier.

Several extensions of the above superprocesses
have been studied, for example, multi-type
superprocesses, superprocesses in random
environment, superprocesses with catalytic
branching, superprocesses with age dependent
branching and diffusion, multi-level superprocess
where each particle itself is a superprocess,
competing species superprocess etc. Interesting
questions in the area include the uniqueness of
solutions to martingale problems characterizing

these processes, problems of local extinction or
persistence, long term behaviour of the associated
branching particle systems etc. Superprocesses can
be a powerful tool in the study of the certain elliptic
boundary value problems.

Received 03 September 2007; revised 03 December 2007.
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