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Vacuum field fluctuation: is
the fluctuation arising out of
zero point energy of a
quantum system which has
no classical analog.

Ratchet effect: is the
appearance of a systematic
directional motion generating
useful work from random
motion in absence of any
macroscopic static forces,
gradient or biased time
dependent perturbations.
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Abstract | Ratchet models provide an useful mechanism for directed transport using

nonequilibrium fluctuations of the surrounding. In the dynamics of micro-particles quantum

effect is likely to make its presence felt in appropriate situations, particularly at low

temperature. In this review we have discussed the aspects of ratchet motion in quantum

domain. Making use of a Wigner canonical thermal distribution for description of the statistical

properties of the noise, we explore the generic effects of quantization like vacuum field

fluctuation and tunneling in fluctuation-induced quantum transport both in the overdamped

and the underdamped limits and the energetics of quantum ratchet.

I. Introduction
A. Preliminary remarks
Efficient extraction of useful work from heat has
remained a key theme over the last couple of
centuries. Guided by two laws of thermodynamics
we know how an engine works between two
temperatures and how and to what extent
conversion of heat to work is possible. Recent
developments in biology and in other areas which
involve transport problems, however, have shown
that an engine or motor at a molecular level
can act at a single temperature. The working
of such a motor/device is based on rectification
of non-equilibrium fluctuations in an open
system when certain physical conditions are
appropriately maintained. Loosely speaking, such
devices currently constitute a field — molecular
motors or ratchets. Since the characteristic length
scale over which a molecular motor or in general
a microscopic ratchet works is much smaller
compared to that for macroscopic devices, it is
imperative that quantum effects are important for
appropriate description of situations, particularly
at low temperature. The relevant length scale
important for the present problem is determined
by thermal wave length l = h/

√
2πmkT , which

takes care of quantum effect (h, Planck constant)
as well as thermal fluctuations (of the order kT ,
k and T being Boltzmann constant and absolute

temperature, respectively) and mass (m) of the
system. This article is a brief account of some
general features of the ratchet problem with a
special emphasis on its quantum aspects. The areas
of application of the concept of quantum ratchet
motion cover Josephson-junction arrays, optical
lattices, superconductor among others.

B. Molecular motors and ratchet devices; an
historical background

The progress in the field of ratchet effect and
Brownian motors owes its origin in rediscoveries of
some of the basic principles in different contexts.
Although certain aspects of ratchet effect are
contained in early works of Seebeck, Maxwell, Curie
and others1, an important step influencing the
field came from Feynman’s focus2 on the ratchet
and pawl machine operating between two thermal
baths. After the discovery of Brillouin paradox3,
an explanation of the Seebeck effect based on the
Feynman ratchet model becomes straight-forward
(Seebeck’s discovery in 1822, of course was without
the idea about ratchet mechanism).

The most important direction of the theory
of Brownian motor that leads us to the realm
of intercellar transport reserach mainly concerns
the biochemistry of and underlying physics of
the movement of the molecular motors in living
cells and molecular ion pumps. In many cases
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Detailed balance: is a balance
between backward and
forward transition from a
local minima. It is a rule to be
obeyed strictly at equilibrium.

Brownian motion: is an
irregular and aminated
movement of small
microparticles in a fluid
medium.

Overdamped limit: is the limit
in which the damping
constant far exceeds the
characteristic frequencies of
the system.
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of biomolecular transport the concept of ratchet
mechanism has been explored. In biomolecular
transport Huxley made a seminal contribution to
muscle contraction4, and further research continued
in the late 1980s due to Braxton and Yount5,6 and
in the 1990s due to Vale and Oosawa7, Leibler and
Huse8,9, Cordova, et al.10, Magnasco11,12, Prost et
al.13,14, Astumian and Bier15,16, Peskin et al.17,18

and many others. In the case of molecular pumps,
important development started with the theoretical
interpretation of previously known experimental
finding19,20 as a ratchet effect in 1986 by Tsong,
Astumian and coworkers21,22.

From the physical side, a ratchet effect in voltage
rectification by DC-SQUID (super-conducting
quantum interference device) in presence of a
magnetic field and an unbiased AC-current has
been experimentally verified along with theoretical
interpretation by Waele et al.23,24. Since mid-1970s,
directed transport induced by time-periodic forces
in a spatially periodic structures with broken
symmetry has been the subject of several hundred
experimental and theoretical works. A seminal
work in the experimental investigation of so-called
photovoltaic and photorefractive effect was done by
Glass et al.25 in 1974. A few years later Belinicher,
Sturman and coworkers26,27 suggested a general
theoretical framework to identify the two main
ingredients of ratchet effect in periodic systems
as the breaking of thermal equilibrium (detailed
balance symmetry) and the spatial symmetry. The
much more general validity of a tilting ratchet
scheme was also explored beyond the specific
experimental system.

Generation of a DC-output by two
superimposed sinusoidal AC-inputs in a spatially
symmetric and periodic system was experimentally
verified by Seeger and Maurer28. This phenomenon
was theoretically analyzed by Wonneberger29. The
occurrence of a ratchet effect had been predicted
by Bug and Berne30 for the simplest variant of a
pulsating ratchet scheme. Around this time a ratchet
model with a symmetric periodic potential and
state dependent temperature with same periodicity
(but out of phase) had been studied theoretically by
Büttiker31 and van Kampen32.

The independent investigation of the on-off

ratchet scheme by Ajdari and Prost33 and tilting
ratchet scheme by Magnasco11 provided the a new
impetus to theoretical and experimental activities
in statistical physics and bio-physics community.
Although initially the modeling of molecular motors
was one of the main motivations, the scope of the
ratchet effect has subsequently been broadened
to cover an increasing number of physical and
technological applications.

In order to understand the underlying
mechanism of the generation of unidirectional
motion from non-equilibrium fluctuations, several
models have been proposed34–37,39–56. A recent
ratchet effect for fluxons in Josephson-junction
array61, a ratchet effect in cold atoms using an
asymmetric optical lattice62, and the lowering
of vortex density in superconductors using the
ratchet effect63 are worthy of special attention. The
efficiency of ratchet devices64–67 and comparison
with different types of bio-molecular motors
comprise a recently developing field.

The study of the ratchet system is motivated in
recent years by the recognition of the effect in the
quantum domain. Reimann et al68 investigated an
adiabatically rocked ratchet system to show that
quantum corrections enhance classical transport at
low temperature. Two models of quantum ratchet
have also been proposed by Yukawa et al69. Based on
the perturbative approach Scheidl and Vinokur70

have investigated quantum Brownian motor in
ratchet potentials to identify the characteristic
scales of response functions of the system. Carlo
et al71 have studied a typical model quantum
chaotic dissipative ratchet to analyze the directed
transport from a quantum strange attractor. The
latter research analyzes a quantum ratchet based
on an asymmetric (triangular) quantum dot72, an
asymmetric antidot array73, and surface electro-
migration74.

C. Scope and plan of the review
Our object in this review is to discuss some basic
aspects of quantum ratchet and the related problems
of quantum transport. Since the underlying issues
are based on the theories of Brownian motion in
thermodynamically open systems, our aim here is
to develop systematically a scheme for quantum
Brownian motion followed by an extension to
transport problem, keeping in view of the inherent
thermodynamic consistencies. The outlay of the
review is as follows:
(1) In the next section (Sec. II) we have
systematically developed the basic principle of
ratchet motion and directed transport in classical
domain.
(2) In Sec. III we have derived the basic equations
describing quantum stochastic dynamics on a
general footing followed by an overdamped
description. Thermodynamic consistency has been
stressed to avoid the pitfalls of fictitious current
generation.
(3) In Sec. IV we show how an external non-
equilibrium fluctuation can break the condition
of detailed balance inducing a directed quantum
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Figure 1: A schematic illustration for a typical
heat engine.

engine

transport. An analysis of the essential features of
quantum ratchet devices and their efficiencies in
overdamped limit is made.
(4) In Sec. V we discuss the quantum ratchet
problem in the underdamped regime and its
utility in the separation of quantum particles. The
rectification efficiency in weak friction regime is
also formulated.
(5) The review is concluded in Sec. VI.

II. The Ratchet motion
A. The basic principle of ratchet motion
Let us start from a statement of second law of
thermodynamics “heat can not be converted into work
in a cyclic process at a single temperature”. To convert
heat into work we need at least two heat reservoirs
at temperature T1 and T2 (T1 > T2). If Q1 amount
heat energy flows out from the hot reservoir, a part
of the heat energy is partially converted to work by
the heat engine and rest of the heat is gained by the
cold reservoir (schematically presented in Fig. 1),
the work done W and efficiency of the heat engine
η are given by

Q1 − Q2 = W ; η=
T1 −T2

T1
. (2.1)

Now our question is “can an engine work at a single
temperature ?”. Answer to this question concerns
underlying mechanism of the movement of the
molecular motors in the living cells. Molecular
motors are amazing biological machines that are
responsible for most forms of movement, e, g,
myosin is a cytoplasmic motor, which moves on
acting filaments and carries the essential materials
into the different parts of the cell and outside the
cells as required for a living organism. All biological
motors work at a single temperature. To explain this
type of movement and the underlying mechanism
we would like to look for a typical machine which
can work at a single temperature.

Figure 2: A schematic illustration of input
output device.

We now proceed from a statistical point of view.
A system interacting weakly with surrounding can
be described by a Gibbs state. An alternate approach
to describe thermodynamic equilibrium state (may
be stationary state of the system) is the Langevin
approach. Let us consider a Brownian particle driven
by a thermal or/and non-thermal stochastic forces.
In absence of deterministic potential force, the
particle diffuses and the motion remain unbiased.
If the Brownian particle is additionally driven by
a nonzero bias force one can obtain the directed
motion determined by this force. This is a trivial
example of transport. The nontrivial case, the
focal theme of this section (and Sec. IV and V
in quantum mechanical context) is the transport
when a bias force is zero and all random forces are
of zero-mean values. The fundamental question
is: can transport be induced by a stochastic force,
random perturbation or by noise. The problem is
schematically illustrated as an input–output device
in Fig. 2. As input we may consider thermal and non-
thermal fluctuations, noise or a periodic external
force; all of zero averages over many realizations,
〈G〉 = 0 and as an output we want to retrieve
something with non-zero average 〈H〉 6= 0.

In our chosen system we consider a Brownian
particle moving in a spatially periodic potential,
V (x) = V (x + L), so that the average potential
force is zero over a period L. In output we want to
obtain a non-zero average valued quantity which
characterizes transport or directed motion of the
Brownian particles. A simple quantifier is the
average velocity of the particles. If the velocity
is zero then the particles are not macroscopically
transported. Or in other words macroscopic directed
motion is observed only when 〈v〉 6= 0.

We may summarize the problem in the following
form: how to convert diffusive random motion
of the Brownian particles into a directed motion
without any biasing force or gradient.

B. Feynman ratchet and directed motion
Let us consider briefly the Feynman ratchet and
pawl device (illustrated in Fig. 3). For a detailed
discussion we refer to2. The machine consists of an
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: Fokker–Planck equation
describes the time evolution
of probability distribution
function of one or more
stochastic variables.
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Figure 3: A schematic illustration of ratchet
and pawl mechanism.

axle with vanes in one side and a ratchet (a wheel
with asymmetric teeth) in the other end. The two
ends of the device are inserted into two gas reservoirs
at different temperatures T1 and T2, respectively.
Due to pawl mechanism the axle of the device can
rotate only in one direction. Because of the random
collision with gas molecules of the reservoirs, vanes
as well as the ratchet undergo random motion.
So one can expect a net directed motion of the
ratchet even at same temperature which means an
average directed motion is generated out of thermal
fluctuations. But, this is in contradiction with the
second law of thermodynamics. The paradox is
resolved in the following way2. The pawl is first
accidentally raised up by gaining the required energy
at a temperature T and the jumps back to its
original position and executes jittering motion
and undergoes friction with ratchet and eventually
gets heated. The friction as a consequence leads
to heating of the gas molecules. Thus even if one
starts with two different temperatures for the two
reservoirs, dissipation through the pawl leads to
equalization of temperature. If the temperatures
T1 and T2 are not same, then the case is trivial
and an average directed motion is observed as
a consequence of temperature gradient. Based
on this analysis of the Feynman ratchet we shall
construct a mathematical model with specific
minimal desired features. We therefore note the
following requirements.
(a) Ratchet is a spatially periodic system. It
corresponds to a spatially periodic potential
V (x) = V (x +L).
(b) The symmetry of the ratchet is broken with
respect to pawl mechanism (teeth are asymmetric).
It corresponds to breaking of the reflection
symmetry of the potential, V (x − c) 6= V (x + c)
where in c is any real number except zero.
(c) The average force acting on vanes caused by
collisions of gas molecules is zero. It corresponds to
zero-mean thermal fluctuations.

(d) The directed motion is induced due to a
temperature gradient. It is trivial and instead of this
we assume that a driving non-thermal force of zero
mean acts on the system.

C. Formulation of the ratchet model
We now describe the ratchet model in the following
way: consider a Brownian particle under the action
of a periodic potential (V (x) = V (x + L)). The
length and barrier height of the potential are L and
1V = Vmax −Vmin, respectively. The equation of
motion for the particle is given by

mẍ +γ ẋ = −V ′(x)+0(t)+ ε(t). (2.2)

The first term of left hand side of the above equation
represents the inertial term and the second term
describes the force due to friction, which is directly
proportional to the velocity of the particle, γ is the
friction coefficient, −V ′(x) is the potential force,
which has a zero average value over a period L.

〈(−V ′(x))〉L = −
1

L

∫ x+L

x
V ′(x)dx

=
1

L
[V (x)−V (x +L)] = 0. (2.3)

The stochastic term 0(t) describes thermal
fluctuation and is modeled by a δ− correlated
Gaussian white noise with the properties.

〈0(t)〉 = 0; 〈0(t)0(t ′)〉 = 2γkTδ(t − t ′). (2.4)

where k stands for Boltzmann constant and T is the
temperature of the system. Another stochastic term
ε(t) describes non-thermal and non-equilibrium
fluctuation. We shall select specific prescription for
ε(t) in the next section. We begin by examining
the equilibrium situation by dropping the second
stochastic term from Eq. (2.2). The equation of
motion is then given by

mẍ +γ ẋ = −V ′(x)+0(t). (2.5)

The Fokker-Planck equation corresponding to
Eq. (2.5) is given by

∂P(x, ẋ, t)

∂t
=

[
−
∂

∂x
ẋ +

∂

∂ẋ

(
γ

m
ẋ −

f (x)

m

)]
+
γ kT

m2

∂2

∂x2

]
P(x, ẋ, t), (2.6)

where f (x) = −V ′(x) presents the potential force.
The above equation can be solved in the stationary
state. The stationary probability density is

Pst (x, ẋ) = N exp

[
−

mẋ2

2
+

∫ x

0

f (y)

kT
dy

]
, (2.7)
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Figure 4: Schematic illustration of the generalized potential. (a) A periodic
potential with zero slope; in this case transition probability from a local
minimum of the generalized potential to the left valley and right valley are
equal (r+ = r−) and so net directed movement of the particle is not
possible (v ∼ r+ − r− = 0). (b) A periodic potential with non-zero slope; so in
that case r+ 6= r− and v ∼ r+ − r− 6= 0 .

where N is the normalization constant which can
obtained as∫

+∞

−∞

dẋ

∫ L

0
dx Pst (x, ẋ) = 1. (2.8)

The mean velocity is

〈ẋ〉s =

∫
+∞

−∞

ẋ dẋ

∫ L

0
dx Pst (x, ẋ). (2.9)

It is easy to check that in the stationary state the
mean velocity is equal to zero. So there is no directed
motion of the Brownian particle for the potential
V (x), which is a consequence of the principle of
detailed balance38. To induce transport we require
intervention of some non-thermal force.

An overdamped situation is a condition of
interest in many situations. The overdamped
equation of motion for the Brownian particle is
given by

γ ẋ = −V ′(x)+0(t). (2.10)

The equation for probability density function
P(x, t) corresponding to Eq. (2.10) is given by

∂P(x, t)

∂t
= −

∂J(x, t)

∂x
. (2.11)

where the probability current is

J(x, t) = f (x)P(x, t)−D
∂P(x, t)

∂x
. (2.12)

(D = kT). In the stationary state P(x) =

Ltt→∞P(x, t), J is a constant as given by

J = f (x)P(x)−D
∂P(x)

∂x
. (2.13)

The solution of above equation for P(x) reads as

P(x) = −
J

D
exp[−ψ(x)]

∫ x

0
exp[ψ(y)] dy

+ N exp[−ψ(x)], (2.14)

where

ψ(x) = −

∫ x

0

f (y)

D
dy, (2.15)

or ψ(x) =
V (x)

D and N is a constant. Periodic
boundary condition implies that

ψ(x) =ψ(x +1). (2.16)

For periodic boundary condition on (2.14) and
from (2.16) it follows that,

J

D

∫ x+1

x
exp[ψ(y)] dy = 0. (2.17)

Since the above integral is non-zero an overdamped
Langevin equation with periodic boundary
condition shows J = 0. Therefore we have

P(x) = N exp[−ψ(x)]. (2.18)

Normalization constant N is [
∫ 1

0 exp[
∫ x

0
f (y)

D dy]]
−1.

The zero current situation can be physically
explained in the following way: the generalized
potentialψ(x) has no slope (Fig. 4(a)). It means that
the transition rates from a state of local minimum
of generalized potential ψ(x) to the left valley and
right valley are same. The stationary mean velocity
depends on the difference between transition rates
in the positive and negative directions. Hence
J = 0, implies detailed balance. Now the question
is how to break this detailed balance? The hint
comes from the expression for generalized potential
(2.15). It is easy to check that a non-zero slope for
generalized potential 1ψ 6= 0 (Fig. 4(b)) may result
if D becomes space-dependent, i. e., D(x). So for a
directed motion we must have to break the condition
of detailed balance by introducing non-equilibrium
fluctuation or noise or an external periodic force.
Addition of any external non-equilibrium fluctuation
to the system is not sufficient to break the detailed
balance for generation of directed transport but also
the external non-equilibrium fluctuating force must be
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sufficiently correlated to make the diffusion coefficient
space dependent which makes generalized potential
asymmetric.

While in the recent context of ratchet a major
emphasis is laid on molecular pumps and motors
in the realm of biophysics and chemistry, it would
seem that a Brownian particle being a microscopic
object80, quantum effect is likely to make its
presence felt in appropriate situation, particularly
at low temperature. One thus expects the directed
current or rectification of noise to be important in
transport of quantum particles in quantum dots,
wires related nanodevices51,68 and also in the context
of superionic conductors81–83. Furthermore such
studies are important also from the point of view of
quantum-classical correspondence. To incorporate
the elements of quantum theory in a ratchet device
it is necessary to satisfy two basic requirements. First,
any approximation in the treatment of quantization
of classical motion must not break the symmetry
of the ratchet device, or in other words, more
specifically, quantization should not bring in any
additional tilt to the potential or break its inversion
symmetry or symmetry of the detailed balance.
Second, the forcing must be unbiased, so that after
appropriate averaging over ensemble or over the
period of space or time no directional component
should remain. Any approximation pertaining to
the problem must conform to these requirements in
any correct quantum formalism.

Keeping in view of the above considerations
we first formulate in the next section the quantum
stochastic dynamics and its approach to equilibrium.
The introduction of the non-equilibrium fluctuating
force with a sufficient correlation breaks the
symmetry of the detailed balance to produce
directed quantum transport. The aim of the present
review is to explore the quantum effect arising out
in a quantum ratchet device76,78,79.

III. A quantum system in a periodic
potential at equilibrium

A. General aspects
We consider a particle of mass m moving in a
periodic classical potential V (x). The particle is
coupled to a set of harmonic oscillators of unit mass
acting as a bath. This is represented by the following
system-reservoir Hamiltonian84,85

Ĥ =
p̂2

2m
+V (x̂)+

N∑
j=1

{
p̂2

j

2
+

1

2
κj(q̂j − x̂)2

}
.(3.1)

Here x̂ and p̂ are the coordinate and momentum
operators of the particle and {q̂j , p̂j} are the set
of coordinate and momentum operators for the
reservoir oscillators coupled linearly through the

coupling constants κj(j = 1,2, ...). For the spatially
periodic potential, we have V (x)= V (x+L), where
L is the length of the period. The coordinate
and momentum operators follow the usual
commutation rules {x̂, p̂}= ih̄ and {q̂i, p̂j}= ih̄δij .
Eliminating the bath degrees of freedom in the usual
way we obtain the operator Langevin equation for
the particle

m ¨̂x +

∫ t

0
dt ′γ(t − t ′) ˙̂x(t ′)+V ′(x̂) = 0̂(t),(3.2)

(Overdots refers to differentiation with respect to
time t) where noise operator 0̂(t) and the memory
kernel are given by

0̂(t) =

∑
j

[
{q̂j(0)− x̂(0)}κj cosωj t

+ κ
1/2
j p̂j(0)sinωj t

]
, (3.3)

and

γ(t) =

∑
j

κj cosωj t , (3.4)

respectively, with κj = ω2
j . Following Ref85–88 we

then carry out a quantum mechanical average
〈...〉 over the product separable bath modes with
coherent states and the system mode with an
arbitrary state at t = 0 in Eq. (3.2) to obtain a
generalized quantum Langevin equation as

mẍ +

∫ t

0
dt ′γ(t − t ′)ẋ(t ′)+V ′(x)

= 0(t)+Q(x,〈δx̂n
〉), (3.5)

where the quantum mechanical mean value of the
position operator 〈x̂〉 = x and

Q(x,〈δx̂n
〉) = V ′(x)−〈V ′(x̂)〉, (3.6)

which by expressing x̂(t) = x(t)+ δx̂(t) in V (x̂)

and using a Taylor series expansion around x may
be rewritten as

Q(x,〈δx̂n
〉) = −

∑
n≥2

1

n!
V n+1(x)〈δx̂n

〉, (3.7)

The above expansion implies that the nonzero
anharmonic terms beyond n ≥ 2 contain quantum
dispersions 〈δx̂n

〉. Although we develop this section
in general terms, we are specifically concerned here
typically with periodic nonlinear potentials of the
type sin 2πx

L or cos 2πx
L or their linear combinations
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and the like which have been used earlier in
several contexts. The nonlinearity of the potential
is an important source of quantum correction in
addition to the quantum noise of the heat bath. The
calculation of Q rests on the quantum correction
terms 〈δx̂n

〉 which one determines by solving a
set of quantum correction equations as given in
Ref.76,85. Furthermore the c-number Langevin force
is given by

0(t) =

∑
j

[{
〈q̂j(0)〉−〈x̂(0)〉

}
ω2

j cosωj t

+ωj p̂j(0)sinωj t
]
, (3.8)

which must satisfy noise characteristics of the bath
at equilibrium,

〈0(t)〉S = 0, (3.9)

〈0(t)0(t ′)〉S =
1

2

∑
j

ω2
j h̄ωj

(
coth

h̄ωj

2kT

)
cosωj(t − t ′), (3.10)

Eq. (3.10) expresses the quantum fluctuation-
dissipation relation. The above conditions (3.9)–
(3.10) can be fulfilled provided the initial shifted co-
ordinates {〈q̂j(0)〉−〈x̂(0)〉} and momenta 〈p̂j(0)〉

of the bath oscillators are distributed according to
the canonical thermal Wigner distribution94,95 of
the form

Pj([〈q̂j(0)〉−〈x̂(0)〉],〈p̂j(0)〉) =

N exp

{
−

1
2 〈p̂j(0)〉2

+
1
2ω

2
j [〈q̂j(0)〉−〈x̂(0)〉]2

h̄ωj[n(ωj)+
1
2 ]

}
,

(3.11)

so that the statistical averages 〈...〉s over the
quantum mechanical mean value O of the bath
variables are defined as

〈Oj〉s =

∫
Oj Pj d〈p̂j(0)〉 d{〈q̂j(0)〉−〈x̂(0)〉}.

(3.12)

Here n(ω) is given by Bose–Einstein distributions

(e
h̄ω
kT − 1)−1. Pj is the exact solution of Wigner

equation for harmonic oscillator94,95 and forms
the basis for description of the quantum noise
characteristics of the bath kept in thermal
equilibrium at temperature T . In the continuum
limit the fluctuation-dissipation relation (3.10) can
be written as

〈0(t)0(t ′)〉 =
1

2

∫
∞

0
dω κ(ω) ρ(ω) h̄ω

× coth

(
h̄ω

2kT

)
cosω(t − t ′), (3.13)

where we have introduced the density of the modes
ρ(ω). Since we are interested in the Markovian limit
in the present context, we assume κ(ω)ρ(ω) =

2
π
γ

and the variation of coth function with frequency
to be very slow, Eq. (3.13) then yields89,90,99

〈0(t)0(t ′)〉 = 2Dqδ(t − t ′), (3.14)

with

Dq =
1

2
γ h̄ω0 coth

h̄ω0

2kT
, (3.15)

ω0 refers to static frequency limit. Furthermore
from Eq. (3.4) in the continuum limit we have

γ(t − t ′) = γ δ(t − t ′), (3.16)

γ is the dissipation constant in the Markovian limit.
In this limit Eq. (3.5) therefore reduces to

mẍ +γ ẋ +V ′(x) = 0(t)+Q(x,〈δx̂n
〉). (3.17)

It is useful to work with dimensionless variables for
the present problem to keep track of the relations
between the scales of energy, length and time. The
period L of the periodic potential V (x) determines
in a natural way the characteristic length scale of
the system. Therefore the position of the Brownian
particle is scaled as

x = x/L.

Next we consider the timescales of the system. In
absence of the potential and the noise term the
velocity of the particle ẋ(t) ∼ exp(−t/τL) with
τL = m/γ , which represents the correlation time
scale of the velocity the Brownian particle. To
identify the next characteristic time τ0 we consider
the deterministic overdamped motion due to the
potential as γ dx

dt =−
dV (x)

dx . Then τ0 is determined

from γ L
τ0

= −
1V

L as τ0 =
γL2

1V where 1V is the
barrier height of the original potential. Hence time is
scaled as t =

t
τ0

. Furthermore the potential, the noise
and the quantum correction terms are re-scaled
as V (x) = V (x)/1V , 0(t) = 0(t)/(1V/L) and
Q/(1V/L), respectively. Hence dimensionless
quantum Langevin equation reads as

µ∗ ẍ + ẋ = f (x)+0(t). (3.18)

Here x is x and the t is t and the over-dot(.) refers
to differentiation with respect to scaled time t .
Dimensionless mass µ∗

=
m
γτ0

=
τL
τ0

and

f (x) = −V ′(x)+Q(x,〈δx̂n
〉). (3.19)
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The noise properties of the quantum bath are then
rewritten as

〈0(t)〉s = 0,

〈0(t)0(t ′)〉s = 2Dqδ(t − t ′),

where

Dq =

1
2 h̄ω0 coth h̄ω0

2kT

1V
.

B. Quantum ratchet under equilibrium condition
The Fokker–Planck equation corresponding to
Eq. (3.18) is given by

∂P(x, ẋ, t)

∂t
=

[
−
∂

∂x
ẋ +

∂

∂ẋ

(
ẋ

µ∗
−

f (x)

µ∗

)
+

Dq

µ∗2

∂2

∂x2

]
P(x, ẋ, t). (3.20)

The above equation can be solved in the stationary
state. The stationary probability density is

Pst (x, ẋ) = N exp

[
−
µ∗ ẋ2

2
+

∫ x

0

f (y)

Dq
dy

]
,(3.21)

where N is the normalization constant which can
obtained as∫

+∞

−∞

dẋ

∫ L

0
dx Pst (x, ẋ) = 1. (3.22)

It is easy to check that in the stationary state the
mean velocity is equal to zero;

〈ẋ〉s =

∫
+∞

−∞

ẋ dẋ

∫ L

0
dx Pst (x, ẋ). (3.23)

Several points are now in order: (i) Eq. (3.23)
suggests that the stationary distribution (3.21) is
an equilibrium distribution because of the zero
current condition. (ii) The equilibrium distribution
Eq. (3.21) formally contains quantum corrections to
all orders in Q(x,〈δx̂n

〉). (iii) Since Q(x,〈δx̂n
〉)

essentially arises due to nonlinear part of the
potential the nonlinearity and the quantum effects
are entangled in this quantity modifying the classical
part of the potential. Thus the classical force −V ′(x)

is modified by the quantum contribution. (iv) Since
in the present scheme one may express the quantum
mechanical operator x̂ = x+δx̂ or ˙̂x = ẋ+δ ˙̂x where
x and ẋ are quantum mechanical mean values and
〈δx̂〉= 〈δ ˙̂x〉= 0 by construction and [δx̂,δ ˙̂x]= ih̄
as noted earlier, it follows that

〈 ˙̂x〉qs = 〈ẋ + δ ˙̂x〉qs = 〈ẋ〉s +〈〈δ ˙̂x〉〉s = 〈ẋ〉s .(3.24)

The relation between three types of averages e.g.,
〈...〉qs, quantum statistical; 〈...〉s statistical average
over quantum mechanical mean and 〈...〉, quantum
mechanical mean must be clearly distinguished. The
relation Eq. (3.24) expresses the usual quantum
current as a simple statistical average of the
quantum mechanical mean value in the present
c-number scheme and the decisive advantage of
using this formalism is quite apparent. (v) In
absence of quantum correction term Q(x,〈δx̂n

〉)

and Dq →
γkT
1V as one approaches the classical limit

(kT � h̄ω), the quantum Langevin equation (3.18)
reduces to classical Langevin equation. (vi) The zero
current situation or equivalently the equilibrium
distribution function (3.21) ensures the condition of
detailed balance in absence of any external driving.
This condition is a necessity in the present context
and the formalism since it guarantees that the
quantum correction term does not give any tilt
or bring any asymmetry on the classical periodic
potential generating any unphysical current.
Under overdamped condition the inertial term may
be neglected and one obtains from Eq. (3.18)

ẋ = f (x)+0(t), (3.25)

where over-dot (.) refers to differentiation with
respect to dimensionless time t defined as t =

t
τ0

and x =
x
L . Therefore Eq. (3.25) gives the relation

〈
dx
dt 〉s =

L
τ0

〈ẋ〉s = v0〈f (x)〉s or〈
dx

dt

〉
s
= v0

∫ 1

0
f (x)Pst (x)dx. (3.26)

Here we have denoted the characteristic velocity
v0 = L/τ0. The equation for probability density
function P(x, t) corresponding to Eq. (3.25) is
given by

∂P(x, t)

∂t
= −

∂J(x, t)

∂x
, (3.27)

where the probability current

J(x, t) = f (x)P(x, t)−Dq
∂P(x, t)

∂x
. (3.28)

In the stationary state P(x) = Ltt→∞P(x, t) , J is
constant as

J = f (x)P(x)−Dq
∂P(x)

∂x
. (3.29)

The solution of above equation for P(x) reads as

P(x) = −
J

Dq
exp[−ψ(x)]

∫ x

0
exp[ψ(y)] dy

+N exp[−ψ(x)], (3.30)
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stochastic process in which a
random variable can assume
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where

ψ(x) = −

∫ x

0

f (y)

Dq
dy,

or ψ(x)=
V (x)−V (x)+〈V (x̂)〉

Dq
and N is constant. The

last relation follows from (3.6) and (3.19). Since
V (x) is periodic, i.e. V (x) = V (x + 1) we must
have

ψ(x) =ψ(x +1). (3.31)

For periodic boundary condition on (3.30) and
from (3.31) it follows that,

J

Dq

∫ x+1

x
exp[ψ(y)] dy = 0. (3.32)

Since the above integral is non-zero an overdamped
Langevin equation with periodic boundary
condition shows J = 0. This corresponds to an
equilibrium situation with probability density
function from (3.30),

P(x) = N exp[−ψ(x)]. (3.33)

Normalization constant N is [
∫ 1

0 exp[−ψ(x)]]−1.
Therefore the quantum correction Q(x, 〈δx̂n

〉)

in ψ(x), as expected, can not break the detailed
balance in the quantum system, nor the symmetry of
the potential. This conclusion is an important check
of the present formalism for a correct description of
the equilibrium.

IV. Breaking of detailed balance by
non-equilibrium external fluctuation
and noise-induced quantum transport
under overdamped condition

Since at equilibrium detailed balance in the
quantum stochastic system under overdamped
condition forbids any transport we introduce an
external forcing agency on the system. The dynamics
of the particle is described by the equation

ẋ = f (x)+0(t)+ ε(t), (4.1)

where 0(t) is the quantum internal noise of the
bath with the properties as noted earlier. ε(t) is
the an external non-equilibrium fluctuation. In
our present analysis of quantum ratchet problem
we have chosen two specific forms of ε(t), (A) an
asymmetric exponentially correlated telegraphic
noise (B) a periodic force, e.g., sinωt .

A. Generation of directed motion by a random
telegraphic noise

In our first analysis, ε(t) is a random telegraphic
noise also known as dichotomous noise, which takes
two possible values ε(t)={−a,b}. If the probability
of jumps per unit time from one state are given by
P(−a → b) =µa and P(b →−a) =µb and if we
assume aµb = bµa, then this external stochastic
process can be described by the first two moments
as

〈ε(t)〉 = 0, (4.2)

〈ε(t)ε(s)〉 =
QI

τ
exp

[
−

| t − s |

τ

]
, (4.3)

where the correlation time of the noise τ=
1

µa+µb

and the noise intensity QI = τab, τa and τb
are mean waiting times in the states a and b
(µa =

1
τa

,µb =
1
τb

) respectively. Therefore the three
parameters intensity QI , correlation time τ, and
asymmetry θ= b−a are the characteristics of the
noise. For symmetrical noise a = b. The quantum
corrections in f (x) which we consider in principle
are in all orders. The quantum equation of motion
for joint probability densities can be mapped into a
classical setting by defining

P+(x, t) = P(x,b, t); P−(x, t) = P(x,−a, t),

so that Fokker–Planck equation with jump processes
are given by

∂P+(x, t)

∂t
= −

∂

∂x
[f (x)+b]P+(x, t)

+ Dq
∂2

∂x2 P+(x, t)−µbP+(x, t)

+µaP−(x, t), (4.4)

∂P−(x, t)

δt
= −

∂

∂x
[f (x)−a]P−(x, t)

+ Dq
∂2

∂x2 P−(x, t)+ µbP+(x, t)

−µaP−(x, t). (4.5)

The total probability density P(x, t) at any time is
given by

P(x, t) = P+(x, t)+P−(x, t). (4.6)

Eqs. (4.4) and (4.5) yield the equation of the motion
for P(x, t) as

∂P(x, t)

∂t
= −

∂

∂x
[f (x)]P(x, t)

−
∂

∂x
W (x, t)+Dq

∂2

∂x2 P(x, t), (4.7)
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where W (x, t) is an auxiliary distribution function

W (x, t) = bP+(x, t)−aP−(x, t), (4.8)

which follows the equation

∂W (x, t)

∂t
= −

∂

∂x
[f (x)+ θ]W (x, t)

+ Dq
∂2

∂x2 W (x, t)−
1

τ
W (x, t)

− ab
∂

∂x
P(x, t). (4.9)

The normalization conditions are∫ c+1

c
P(x, t)dx = 1;∫ c+1

c
W (x, t)dx = 0. (4.10)

In the stationary state we obtain an expression for
the constant current J as

−DqP′(x)+ f (x)P(x)+W (x) = J , (4.11)

and also we have

τDqW ′′(x)− τ[θ+ f (x)]W ′(x)

−[1+ τf ′(x)]W (x) = QI P′(x),(4.12)

P(x) and W (x) are the stationary solutions of the
coupled equations (4.7) and (4.9). It is difficult
to solve analytically the above two equations for
arbitrary potential. In what follows we consider
the solutions under two specific cases (a) large
correlation time and (b) small correlation time.

1 Large correlation time
We return to Eqs. (4.11) and (4.12) and rewrite

(4.12) as

Dq
d2W (x)

dx2
−

d

dx
{θ+ f (x)}W (x)−

1

τ
W (x)

= ab
dP(x)

dx
. (4.13)

For τ� 1 we neglect the term with 1
τ

. Integration
over Eq. (4.13) then leads to

DqW ′(x)−[θ+ f (x)]W (x)

= abP(x)+D. (4.14)

D is constant. We now put the equilibrium solution
for P(x), Eq. (3.33) in (4.14) and solve it for W (x)

to obtain (we put D = 0 to make the system free
from bias due to external fluctuating force averaged
over a period)

W (x) = exp[−ψ1(x)]

×

{
abN

Dq

∫ x

0
expψ2(y)dy +Cm

}
, (4.15)

Cm = −
abN

Dq

×

∫ c0+1
c0

exp[−ψ1(x)]
∫ x

0 exp[ψ2(y)] dy dx∫ c0+1
c0

exp[−ψ1(x)] dx
,

(4.16)

ψ1(x) = −

∫ x

0

θ+ f (y)

Dq
dy ;

ψ2(x) = −

∫ x

0

θ

Dq
dy ;

ψ(x) = −

∫ x

0

f (y)

Dq
dy. (4.17)

Here N is given by normalization constant in (3.33).
Putting the solutions for W (x) and P(x) (4.15)
and (3.33) in (4.11) as a first approximation we
obtain the expression for current as the lowest order
iterative solution which is given by

J =∫ x+1
x exp[−ψ2(y)] {

abN
Dq

∫ y
0 exp[ψ2(z)] dz +Cm} dy∫ x+1

x exp[−ψ(y)] dy
.

(4.18)

The expression for current is valid for large
correlation time of the dichotomous noise but
formally takes into consideration of quantum effects
to all orders. In order to check the consistency
of the above expression we now examine the
following limiting situations. First, we consider
the dichotomous noise to be symmetric, i.e., θ= 0.
J then reduces to

J =

∫ x+1
x {

abN
Dq

y +Cm} dy∫ x+1
x exp[−ψ(y)] dy

, (4.19)

and

Cm = −
abN

Dq

∫ c0+1
c0

xexp[−ψ(x)] dx∫ c0+1
c0

exp[−ψ(x)] dx
.

(4.20)

If now V (x) is assumed to be of inversion
symmetric, then 〈V (x̂)〉 is also symmetric and Cm
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Figure 5: Variation of current (J ) with quantum diffusion coefficient Dq in
the large correlation time limit for θ= 1.0 and (i) a = 1.0 and b = 2.0 (solid
line), (ii) a = 1.25 and b = 2.25 (dashed line), (iii) a = 1.5 and b = 2.5 (dot
line) and (iv) a = 1.75 and b = 2.75 (dash-dot line).
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would be zero and J = 0 in such situation since∫
+1/2

−1/2
xexp[−ψ(x)] dx = 0 ;

∫
+1/2

−1/2

abN

Dq
x dx = 0. (4.21)

Therefore with symmetric potential and symmetric
dichotomous noise, the current is zero even in
the presence of quantum corrections. To obtain
a quantum current it is necessary that either the
periodic potential should be asymmetric and/or
noise ε(t) should be asymmetric and vice-versa.

We now proceed to analyze the current under
non-equilibrium condition and the related quantum
effects. One of the prime quantities for this analysis
is the potential V (x) or the corresponding force
term f (x) given by

f (x) = −[V ′(x)−Q(x,〈δx̂n
〉)] =−

∂

∂x

[
V (x)

+

∑
n≥2

1

n!
V n(x)〈δx̂n

〉

]
. (4.22)

Taking up to leading order quantum correction the
effective potential force f (x) is given76,89,90,78,

f (x) = −[V ′(x)+1qV ′′′(x)[V ′(x)]2
]. (4.23)

where 1q =
h̄/ω0

[V ′(qc )]2 , qc is a reference point, where

quantum correction term 〈δx̂2
〉 has a minimum

value (h̄/ω0). We now emphasize an important
point. If the potential is symmetric, then the
quantum correction in Eq. (4.23) is an odd function

just as V ′(x). This implies that quantum correction
to classical potential has not destroyed the inversion
symmetry of V (x). Thus the approximation in
deriving the leading order quantum effect is
consistent with symmetry requirement of the
problem. For a symmetric cosine potential with
period 2π

V (x) =
1

2
(cosx +1). (4.24)

The f (x)[= π{sin2πx + 1q sin3 2πx}] and other
related quantities ψ1(x), ψ2(x) and ψ(x) can be
calculated explicitly in the usual way. In Fig. 5
we illustrate the variation of current for a fixed
value of the system non-linearity 1q(= 0.04) and
asymmetry parameter θ(= 1.0) as a function of
quantum diffusion coefficient Dq. One observes
that with increase of Dq the magnitude of current
increases to a maximum followed by a decrease.
For a fixed Dq with increase of the strength of
the external dichotomous noise (proportional to
the product ab) the current increases.The effect
of quantization of a classical ratchet is shown in
Fig. 6, where we make a comparison of the current
vs temperature profile for the classical and the
quantum cases for a = 1.75, b = 2.75. One observes
that in the low temperature region the classical
current is significantly lower in magnitude than the
quantum current, and at high temperature the effect
of quantization become insignificant.

2 Short correlation time
In the regime of short correlation time τ� 1

of dichotomous noise we follow Kula et al93 to
expand P(x), W (x) and J in power series with τ as
a smallness parameter;

P(x) =

∞∑
n=0

τnPn(x); W (x) =

∞∑
n=0

τnWn(x) and

J =

∞∑
n=0

τnJn . (4.25)

Making use of the above expressions in (4.11) and
(4.12) we obtain the following set of equations,

Jn = − DqP′(x)+ f (x)Pn(x)

+ Wn(x), (4.26)

Wn(x) = DqW ′′
n−1(x)−[θ+ f (x)]W ′

n−1(x)

− f ′(x)Wn−1(x)−QI P′
n(x), (4.27)

with n = 1,2,3...

W0(x) = −QI P′
0(x).

Journal of the Indian Institute of Science VOL 87:3 Jul–Sep 2007 journal.library.iisc.ernet.in 411



REVIEW Quantum Ratchet motion

Figure 6: Comparison of quantum (solid line) and classical ( dotted line)
current (J ) vs temperature (T ) profile for the parameter set a = 1.75,
b = 2.75, in the large correlation time limit.
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The probability functions Pn(x) obey the
periodicity conditions and they are normalized
over dimensionless period (L = 1). We thus obtain
the zero order contributions as

J0 = 0, (4.28)

P0(x) = N exp

[∫ x

0

f (y)

Dq +QI
dy

]
, (4.29)

with normalization constant

N−1
=

∫ 1

0
exp

[∫ x

0

f (y)

Dq +QI
dy

]
dx. (4.30)

The higher order contributions can be obtained
following Kula et al. For the present purpose the

Figure 7: Variation of current (J ) with nonthermal noise strength (QI ) for
different values of quantum diffusion coefficients Dq = 0.25 (solid line),
Dq = 1.5 (dashed line), Dq = 3.0 (dotted line) and Dq = 7.0 (dash-dot line)
for the parameter set θ= 1.0 and τ= 0.01 in the short correlation time
limit.
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leading order current is given by

J1 =

[∫ 1

0
N−1P0(x)dx

∫ 1

0
N P−1

0 (x)dx

]−1

×

[
θQI

(Dq +QI )2

∫ 1

0
f 2(x)dx

+
Q2

I

(Dq +QI )3

∫ 1

0
f 3(x)dx

]
. (4.31)

The key quantity for the above equation is the force
term f (x) with leading order nonlinear correction
(4.23). For the symmetric smooth cosine potential
of the form V (x) =

1
2 [cos2πx +1], f (x) is an odd

function. For asymmetric dichotomous fluctuations
(θ 6= 0) and symmetric potential the leading order
current is proportional to the integral f 2(x); the
integral over f 3(x) being zero. On the other hand
the current is proportional to the integral over f 3(x)

for symmetric(θ= 0) dichotomous noise. Therefore
it is apparent that in the short correlation time
limit it is not possible to obtain any noise induced
transport with symmetric noise and symmetric
potential.

For f (x) given earlier one obtains explicitly the
quantum current

J1 =
π2

2I1 I2

θQI

(Dq +QI )2

[
5

8
12

q −
3

2
1q +1

]
.(4.32)

I1 and I2 are given by

I1 =

∫ 1

0
exp

[
−

∫ x

0

f (y)

(Dq +QI )
dy

]
dx;

I2 =

∫ 1

0
exp

[∫ x

0

f (y)

(Dq +QI )
dy

]
dx.

We now numerically illustrate the behavior of
quantum current given by Eq. (4.32). The effect of
quantization of the reservoir is apparent in Fig. 7
in the variation of current with QI for several
values of quantum diffusion coefficient Dq of the
heat bath for fixed θ(= 1.0) and τ(= 0.1). For
small Dq, the current falls off monotonically after
reaching maxima. The maxima and the current
drops for higher values of quantum diffusion
coefficient since thermalization prevails over the
dynamics, in general. In Fig. 8 we compare the
current vs temperature profile for the classical
and the quantum (1q = 0.3) cases for fixed
a(= 1.0), b(2.0) and τ(= 0.1). We observe again
that in the low temperature range the current is
significantly higher for the quantum case. In order
to examine the influence of the correlation time
τ of the nonthermal noise on current we plot
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typical crystal lattice, where
the mobile ions are
constrained to flow through
a confining network of voids
and narrow channels as
defined by the interaction
potential.

Square wave: is a basic kind
of non-sinusoidal wave form
encountered in electronics
and signal processing. In the
present problem we have
used zero mean square wave
force for generation of
directed motion.
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in Fig. 9 the variation of current as a function
of Dq for several values of τ for fixed values of
a(= 1.0), b(= 2.0), θ(= 1.0) and 1q(= 0.04). All
the bell-shaped curves exhibit maxima at optimal
Dq values. Increase in correlation time τ results
in enhancement of directed motion, and shift
of the maxima, towards the origin. Physically
this implies that departure from equilibrium is
increasingly favored for larger correlation time
of the external noise in this region. A possible
experimental realization of the distinctive behavior
of this quantum ratchet in contrast to its classical
counterpart in a superionic conductor driven by a
dichotomous noisy electric field at low temperature
may be suggested. A schematic diagram for the
superionic conductor in a dichotomous noisy
electric field is given in Fig. 10. A typical superionic

Figure 8: Comparison of quantum (solid line)and classical (dotted line)
current (J ) vs temperature (T ) profile for the parameter set a = 1.0,b = 2.0
and τ= 0.1 in the short correlation time limit.
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Figure 9: Variation of current (J ) with quantum diffusion coefficient for
different values of correlation time τ of nonthermal noise τ= 0.05 (solid
line), τ= 0.07 (dashed line) and τ= 0.1 (dotted line) for the parameter set
a = 1.0, b = 2.0 and θ= 1.0 in the short correlation time limit.
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Figure 10: Highly mobile Ag+ ions (solid
circles) in the nearly fixed iodide lattice (hollow
circle).

conductor may be AgI . This system has been
traditionally used81–83 for measurement of current
in presence of an external electric field directly or in
terms of frequency dependent mobility. Typically in
a superionic conductor like AgI, I− ions form the
lattice allowing the Ag+ ions to move in a periodic
potential of the form cos 2πx

L , L being the lattice
spacing. The lattice vibrations contribute to both
the Langevin force as well as the frictional force on
the Ag+ ions maintaining the detailed balance at
the thermal equilibrium. For slowly moving Ag+

ions compared to lattice vibrations, white noise
approximation is sufficient. At very low temperature
the thermal fluctuation gets suppressed making
thermal wave length much longer. At the same time,
the average thermal photon number n̄ leads to zero
and vacuum fluctuations come into play. In this limit
the current is significantly enhanced in the quantum
domain. An application of an external electric field
at both ends of the conductor which fluctuates
randomly between two values in an asymmetric way
obeying the prescribed noise statistics, is expected
to result in an observable current.

B. Generation of directed motion by an external
periodic force

In this section we analyze the essential features of a
quantum ratchet device where we use an external
periodic signal,

ε(t) = A(t) = A0 sinωt , (4.33)

to break the detailed balance of the system. The
stochastic dynamics of the particle is given by
Eq. (4.1). We replace the external fluctuating force
term by A(t))

ẋ = f (x)+0(t)+A(t). (4.34)
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Figure 11: A plot of quantum current vs T for different strength of
external periodic force (i) A0 = 1.0 (dotted line), (ii) A0 = 1.2 (solid line), (iii)
A0 = 1.5 (dash-dot line) and l = 0.01. (All the quantities are dimensionless).
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f (x) and 0(t) are same as discussed in the earlier
section. The Fokker-Planck equation corresponding
to Eq. (4.34) is given by

∂P(x, t)

∂t
= −

∂J(x, t)

∂x
, (4.35)

where

J(x, t) = −Dq
∂P(x, t)

∂x
+[f (x)+A(t)]P(x, t).

(4.36)

If the forcing frequency is very low, there is enough
time for the system to reach the steady state during
the period τ and the above equation can be solved

Figure 12: A currentJsqr vs temperature (T ) plot comparing classical
(dashed line and solid line) and quantum (dotted line and dashed dot line)
limit for different strength of external periodic force (i) A0 = 1.3 (dotted line
and dashed line), (ii) A0 = 1.0 (dashed dot line and solid line) and l = 0.0.
(All the quantities are dimensionless).
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analytically for J as a function of A, using periodic
boundary and normalization conditions

P(x +1) = P(x);

∫ c+1

c
P(x)dx = 1. (4.37)

We then obtain

J(A) = [exp[ψ(1)]−exp[ψ(0)]]

[N

[
{exp[ψ(1)]}[

∫ 1

0
exp[ψ(x)]dx −C2]

+ C2 exp[ψ(0)]]]−1, (4.38)

where

N =
1

Dq

∫ 1

0
exp[ψ(x)]dx;

C2 =

∫ 1
0 exp[ψ(x)]dx

∫ x
0 dyexp[ψ(y)]∫ 1

0 exp[ψ(x)]dx
,

(4.39)

ψ(x) =

∫ x

c

f (y)+A

Dq
dy;

ψ(1) =

∫ 1

c

f (x)+A

Dq
dx. (4.40)

The average current over a forcing period is given
by

Jav =
1

τ

∫ τ

0
J(A(t))dt . (4.41)

Average square wave current of amplitude A0 is
given by

Jsqr =
1

2
[J(A0)+ J(−A0)]. (4.42)

We now proceed to analyze the current under non-
equilibrium condition and the related quantum
effects. One of the prime quantities for this analysis
is the potential V (x) or the corresponding force
term f (x). Taking quantum correction up to a
leading order, the effective potential force is given
by

f (x) = −[V ′(x)−Q(x,〈δx̂n
〉)] =−[V ′(x)

+1qV ′′′(x)[V ′(x)]2
]. (4.43)

In present problem we consider an asymmetric
potential of period 2π,

V (x) = −sinx −0.25sin2x. (4.44)
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If the potential is symmetric, then the quantum
correction is an odd function just as V ′(x).
This implies that quantum correction to classical
potential has not destroyed the inversion symmetry
of V (x) as in the previous case. It also clear that
if the potential is periodic then the contribution
due to quantum correction to the classical potential
i.e.,

∫ x
0 Q(x,〈δx̂n

〉)dx is a periodic function of x.
Assuming the form of potential of Eq. (4.44), the
expression for quantum correction can be calculated
in the usual way76,85,89,90. Physically the correction
terms account for the quantum fluctuation or
dispersion around the classical path of a dynamical
system. In presence of strong dissipation these
fluctuations are small since it is well-known that
dissipation enhances classicality96. The role of
effective potential of the similar nature which gives
rise to leading order quantum correction to classical
Langevin force had also been noted earlier, e. g.,
in the analysis of strong friction limit of quantum
stochastic processes etc.91,92,100. We emphasize that
the approximate forms of quantum correction
must satisfy the basic symmetry requirement,
appropriate equilibrium distribution and other
thermodynamic consistency condition as pointed
out in the earlier section. In Fig. 11 we illustrate the
variation of current as a function of temperature (T)
for different values of the amplitude of external
derive (A0). One observes that with increase of
Dq (proportional to temperature) the magnitude
of current increases to a maximum followed by
decrease and a current reversal at high temperature.
At higher temperature the system is thermalized as a
result of which organized motion in a preferential
direction decreases and the motion towards the
load dominates. For fixed Dq with increase of the
value of A0 the magnitude of the current increases.
The effect of quantization of a classical ratchet is
shown in Fig. 12, where we present a comparison of
the current vs temperature profile for the classical
and the quantum cases. One observes that at the
low temperature region the classical current is
significantly lower in magnitude than quantum
current and at the higher temperature the effect
of quantization becomes insignificant. This may
be interpreted in terms of an interplay between
quantum diffusion coefficient Dq and the potential
force term f (x). f (x) contains quantum correction
arising due to nonlinearity of the potential. As
temperature T → 0, Dq approaches to the value
1
2 h̄ω0, the vacuum limit in deep tunneling region.
The anharmonic terms in f (x) do not contribute
significantly. So the integrand in effective potential
ψ(x) increases sharply. On the other hand, as
temperature increases, Dq increases and also Dq and
f (x) compete with each other to merge quantum
current to its classical counterpart.

C. Efficiency of ratchet devices
1 General aspect

To analyze the energetics of directed quantum
transport, we now introduce an external load to
work against the global motion of the forced thermal
ratchet system. From Eq. (4.34) it follows that
the dynamics of the particle under overdamped
condition is described by the scaled equation (we
have dropped the over-bar)

ẋ = f (x)+0(t)+A(t)−
∂Vl

∂x
. (4.45)

The quantum mechanical mean of the position
operator, x represents the state of the energy
transducer, that is the state of the ratchet. 0(t) is the
internal quantum noise of the thermal bath with the
properties as noted earlier. A(t) is an external field
with temporal period τ, A(t + τ) = A(t), in the
present problem. We consider A(t) = A0sinwt . It is
important to note that for a movement of transducer
in a preferential direction A0 must lie between
two threshold values, maxx f (x) and -minx f (x)11.
∂Vl
∂x = l, is a load against which transducer performs

work.
From Sec. IV (B) the expression of current

corresponding to Langevin dynamics (4.45)

Jsqr =
1

2
[J(A0)+ J(−A0)]. (4.46)

This is average square wave current (assuming
external modulation A(t) is a very slow square
wave of amplitude A0) where

J(A) = [exp[ψ(1)]−exp[ψ(0)]][
N

[
{exp[ψ(1)]}

[∫ 1

0
exp[ψ(x)]dx −C2

]

+C2 exp[ψ(0)]

]]−1

, (4.47)

N =
1

Dq

∫ 1

0
exp[ψ(x)]dx, (4.48)

C2 =

∫ 1
0 exp[ψ(x)]dx

∫ x
0 dyexp[ψ(y)]∫ 1

0 exp[ψ(x)]dx
, (4.49)

and

ψ(x) =

∫ x

c

f (y)+A− l

Dq
dy;

ψ(1) =

∫ 1

c

f (x)+A− l

Dq
dx. (4.50)
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Now we restrict our attention to the analysis of
the efficiency of ratchet devices. Depending on
the degree and presence of an external load two
distinct approaches have been advocated. It has
been shown that although in many widely accepted
cases efficiency is measured by applying the constant
external force, there are situations, where molecular
motors are designed not to pull loads (e. g., protein
transport within a cell). In such cases a minimum
energy input is required to move a particle in a
viscous medium. We therefore discuss the two
different situations separately.

2 Conventional efficiency in presence of an external
load

To discuss the energetics of quantum transport
induced by zero mean external derive we consider
the energy transducer which interacts with the
external derive and the load so that the potential
takes the following form

U (x, t) = V (x)−

∫
dx Q(x,〈δx̂n

〉)

+A(t) x + lx, (4.51)

where V (x) is the classical potential, second
term represents the quantum corrections due to
nonlinearity of the classical potential and last
two terms are due to external system and the
load, respectively. The interaction of transducer
with heat bath is assumed to be stochastic, as
usual. Thus for the movement of transducer from
xi(ti) → xf (tf ) the total potential energy change
(1U) and dissipation energy (Ed), during the
period ti < t < tf are formally given by64

1U = U (xf (tf ), tf )−U (xi(ti), ti), (4.52)

and

Ed =

∫ tf

ti

[−ẋ +0(t)]dx(t)

=

∫ tf

ti

−

[
∂U (x, t)

∂x

]
dx(t), (4.53)

respectively.
Because of the conservation law, the sum of

the potential energy change and dissipation energy
must be equal to the total consumption of energy Ec

(4U +Ed ≡ Ec), due to the external system A(t).

Ec =

∫ tf

ti

∂U (x, t)

∂t
dt . (4.54)

In the present case the external system is a periodic
function of time, so that the ensemble average

of total consumption energy (Ec) and dissipation
energy (Ed) is given by

〈Ec〉 =

∫ tf

ti

dt

∫
space

∂U (x, t)

∂t
P(x, t)dx(t)

=

∫ tf

ti

dt

∫
space

A(t)J(A(t))dx(t), (4.55)

and

〈Ed〉 =

∫ tf

ti

dt

∫
space

dx

[
−
∂U (x, t)

∂x

]
J(A(t)),(4.56)

respectively. For the square wave with the amplitude
A0,

〈(Ec)sqr〉 =
1

2
A0 [J(A0)− J(−A0)], (4.57)

〈(Ed)sqr〉 =
1

2
[A0{J(A0)− J(−A0)}

− l{J(A0)+ J(−A0)}]. (4.58)

Hence the work, that the ratchet system extracts
from the external system A(t) is given by

〈Wsqr〉 = 〈(Ec)sqr〉−〈(Ed)sqr〉 =
1

2
l[J(A0)

+ J(−A0)] = l × Jsqr . (4.59)

So the work extracted from external system is
directly proportional to square wave current. The
conventional efficiency of the ratchet system is
thus calculated on the basis of external load can be
written as

η =
lJsqr

Ec

=
l[J(A0)+ J(−A0)]

A0 [J(A0)− J(−A0)]
. (4.60)

We now numerically illustrate the behavior of
efficiency of the quantum ratchet system as given
above. The effect of quantization of the reservoir is
apparent in Fig. 13 in the variation of efficiency (η)
as a function of temperature for different values of
amplitude (A0) of the external periodic system. The
efficiency is a decreasing function of temperature
for any value of A0 and it decreases with increase of
A0 for a fixed value of temperature. The distinctive
behavior of efficiency of a quantum system is evident
from the nature of quantum current that can attain
a maximum value for a finite temperature. On
the other hand the maximum efficiency is realized
at the zero strength of thermal fluctuation. It is
thus apparent that the equilibrium fluctuation due
to thermal heat bath is an hindrance for efficient
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Figure 13: A plot of quantum efficiency vs T for different strength of
external periodic force (i) A0 = 1.0 (dotted line), (ii) A0 = 1.5 (solid line), (iii)
A0 = 2.0 (dashed line) and l = 0.01. (All the quantities are dimensionless).
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extraction of useful work from non-equilibrium
fluctuations. To have a closer look at the behavior
of efficiency we present in Fig. 14 the dissipation
energy and total consumption energy as a function
of temperature. At very low temperature the energy
loss due to dissipation (Ed) during the movement
of energy transducer is small compared to the
total energy consumed from the external system,
because for a finite net displacement xi → xf it
covers minimum path at low thermal fluctuation.
On the other hand at high temperature the path of
energy transducer is more chaotic. So for a finite
net displacement it covers maximum path and loses
a greater amount energy due to dissipation. With
increase of the temperature dissipation energy and
total energy consumption from external system
both are increased and the difference between two

Figure 14: A comparison between dissipation energy Ed (dotted line) and
total energy consumption Ec (solid line) as a function of temperature for
the parameter set l = 0.05 and A0 = 1.0. (All the quantities are
dimensionless)
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energies (Ed and Ec) become insignificant at higher
temperature.

The condition for maximum conventional
efficiency can be realized by rearranging Eq. (4.60)
as a function of J(−A0)

J(A0)

η=
l

A0

(
1−

2|
J(−A0)
J(A0)

|

1+|
J(−A0)
J(A0)

|

)
. (4.61)

In the limit |
J(−A0)
J(A0)

| → 0, the maximum efficiency
of the energy transform for a given load and force
amplitude is given by (the limit can be achieved by
suitable adjustment of parameters)

ηmax =
l

A0
. (4.62)

Now we have two important conclusions regarding
the maximum efficiency of a ratchet system, (i) it is a
simple ratio of load to a parameter of external system
(strength of external system) and it is independent
of the characteristics of the bath. (ii) ηmax being
independent of the nature of the bath and the system
potential, is same both in quantum and classical
systems.

In Fig. 15 we compare the conventional efficiency
vs temperature profile for the classical and the
quantum cases for different values of A0. We observe
that the efficiency of quantum ratchet is significantly
lower than classical one and the difference becomes
insignificant at higher temperature. Since the
vacuum fluctuations tend to be effective in the
quantum system as one approaches the zero
temperature limit, the transducer loses a higher
amount of dissipation energy than the classical one.

3 Efficiency in absence of an external load and
generalized efficiency

We now consider the situation where the motor
works without any external load. The task is not
only to translocate the motor over a distance L but
also to do this with a given average velocity it must
work against the viscous force γ〈v〉. Now replacing
the load by γ〈v〉 we can define an efficiency (Stokes
efficiency)

ηS =
γ〈v〉2

Ec
. (4.63)

By combining the contribution due to (4.63) and
(4.60), it is possible to define further a generalized
efficiency for the quantum system

ηG =
lJsqr +γ〈v〉2

Ec
. (4.64)
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Figure 15: Conventional efficiency (η) vs temperature (T ) plot comparing
classical (dotted line and solid line) and quantum (dashed line and dashed
dot line) limit for different strength of external periodic force (i) A0 = 1.3
(dotted line and dashed line), (ii) A0 = 1.0 (solid line and dashed dot line)
and l = 0.0. (All the quantities are dimensionless).
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The above expression is the quantum generalization
of the classical generalized efficiency as given earlier
by Suzuki and Munakata67 and Derényi et al66. This
account for both the work that the motor performs
against the external load l as well as the work that is
necessary to move the particle over a given distance
in a viscous environment at the average velocity 〈v〉.

In Fig. 16 we the present variation of Stokes
efficiency ηS as a function of temperature. It is
important to observe that efficiency reaches a
maximum at a particular temperature both for
classical as well as for the quantum case. However,
again at low temperature the efficiency of the
classical system drops to zero in sharp contrast

Figure 16: A comparison between classical (dashed dot line and dashed
line) and quantum (solid and dotted line) Stokes efficiency for different
strength of external periodic force (i) A0 = 1.3 (solid line and dashed dot
line), (ii) A0 = 1.0 (dotted line and dashed line) and l = 0.0. (All the
quantities are dimensionless).
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to quantum case. At high temperature the system
however, tends to classical regime as expected.

V. Quantum ratchet device under weak
damping limit

Inertia plays an important role, in dictating the
nature of motion which can be deterministic
as well as chaotic, in separation of particles of
different mass104,105,97,106,107, where it has been
shown to affect the direction of flux and in several
other issues108. In view of these developments it is
worthwhile to realize an explicit quantum version of
an underdamped ratchet. Our aim in this section is
to address this specific issue.

We investigate the quantum Brownian dynamics
in an underdamped ratchet in which the particles
move in a symmetric periodic potential and are
simultaneously driven by an asymmetric rectangular
wave whose temporal average over a period is zero.
In the weak friction limit when the dissipation
constant is much small compared to the system
frequency but still larger than the inverse of the
time period of the rectangular wave, we observe that
finite inertia gives rise to a net directed quantum
current. While under overdamped condition the
motion of the particles is spatial diffusion-limited,
the small friction allows the particles to experience
the temporal modulation of the rectangular wave
many times so that the energy diffusion takes place
very slowly for the escape process. We generalize
the approach of Risken and Vollmer98 to take care
of the appropriate quantum correction in our
formalism and derive the analytical expression for
quantum current for an inertial ratchet. Numerical
simulations have been carried out to corroborate
the theoretical analysis.

A. Quantum transport induced by slow external
modulation in an weakly damped system

Since equilibrium thermal fluctuations due to heat
bath can not break the detailed balance in the
quantum stochastic dynamics, we introduce an
external derive with zero mean and with sufficient
correlation to generate drift motion on an average
in one direction. In presence of external derive
Eq. (3.17) can be rewritten as

ẋ = v, (5.1a)

mv̇ = − γv + f (x)+0(t)+A(t). (5.1b)

The quantum mechanical mean of the position
operator, x represents therefore the state of a ratchet.
0(t) is the internal quantum noise of the thermal
bath with the properties as given earlier. f (x)

is the potential force term which in addition to
classical potential force (−V ′(x)) contains quantum
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Figure 17: Schematic illustration of (a) an asymmetric rectangular wave (as
given by Eq. (5.3)) and (a) a periodic potential (one period of the potential
given by Eq. (5.5)).

(a)

(b)

correction due to nonlinearity of the potential, so
that the modified potential felt by the quantum
particle is given by

U (x) =

∫ x

f (y)dy =

∫ x

[−V ′(y)

+ Q(y,〈δŷn
〉)]dy. (5.2)

A(t) is an external field with temporal period τ,
A(t+τ)=A(t). In the present problem we consider
A(t) is an asymmetric rectangular wave(Fig. 17(a))
of the following form:

A(t) =

{
A0 nτ≤ t < nτ+ τ1

−aA0 nτ+ τ1 ≤ t < (n+1)τ
(5.3)

The period τ is assumed to be much larger than the
time scale of the system in the bath environment. τ
and τ1 are connected though a in such a way that
the temporal average of A(t) over a period τ is zero.
This implies that we must have

τ1 =
aτ

1+a
. (5.4)

Throughout the paper we assume a = 2 and
a symmetric cosine potential(Fig. 17(b)) with
amplitude E0 and a period L = 2π

V (x) =
E0

2
(1−cosx) . (5.5)

The quantum nature of the problem therefore
manifests itself in two ways; first, through quantum
corrections in f (x) which we consider, in principle,
to all orders and secondly in quantum diffusion
coefficient Dq for the noise of the bath. The
equivalent description for the corresponding
probability density is governed by Fokker-Planck
equation in two variables of the following form

∂P(x,v, t)

∂t
= −

{
−m

∂v

∂x
+
∂

∂v

[
γv − f (x)

− A(t)+Dq
∂

∂v

]}
P(x,v, t). (5.6)

Eq. (5.6) describes a stochastic process where P is
a function in a ’quantum’ phase space (quantum
mechanical mean value space) and the quantum
dispersions due to system potential contained in
Q of f (x). Since the potential here is periodic in
nature we have formally incorporated quantum
correction to all orders at this stage. An important
approximation, however is the assumption of non-
Markovian character of the bath embedded in the
nature of Dq. The classical potential V (x) is a
periodic function with a length of period L. For
simplicity we assume V (x) has only one minimum
per period. The amplitude of the potential is
E0/2 and the zero of energy is chosen at the
minimum of the potential and the points x =±L/2
correspond to potential maxima as shown in
Fig. 17(b). The distribution function P(x,v,t) must
be supplemented by the boundary conditions. For
E> E0 the distribution follows periodic structure
in space, that is

P(−L/2,v) = P(+L/2,v).

For the energies below the height of the potential
well all particles are reflected from the potential
barrier to the points x1,2(E). So for the E < E0

regime the boundary condition requires that at the
turning points the distribution function of incoming
particles is the same as that of reflected particles.
To proceed further we consider the approach of
Risken and Vollmer98. In the weak friction limit
the external forcing must be small otherwise the
energy gained by the system due to forcing is not
appropriately dissipated and no steady state solution
can be obtained. To ensure stationarity Risken and
Vollmer have used a scaled force, scaling factor being
the dissipation constant. In our present problem
where γ� 1/τ, the limit γ→ 0 can not realized
for a finite τ. However to ensure stationarity we
make τ to be very long so that its inverse is much
less than γ . At the same time the usual weak friction
limit, i.,e., the inequality ωs � γ , retains its validity.
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And though we do not express the driving force
A0 explicitly scaled by dissipation constant γ as
Risken and Vollmer98, we do assume that A0 should
be small in magnitude for ensuring stationarity.
For small friction the energy will slowly vary in
course of time. So in the low friction limit the
energy will be relevant or slow variable and x or
v will become irrelevant or fast variable. Hence it
is more convenient to express98,97 the distribution
function P(x,v,t) by space coordinate x and energy
E. For this purpose we replace the velocity v by
energy variable E and introduce the energy and
space distributions W+ and W− for positive and
negative velocities, respectively,

v(x,E) =

√
2m(E −U (x)),

W+(x,E, t) = W (x,v(x,E), t),

W−(x,E, t) = W (x,−v(x,E), t).

For further calculation it is more convenient to
introduce the sum and difference of W± and we
define

WS,D = W+(x,E, t)±W−(x,E, t). (5.7)

Then the boundary conditions for the energy space
distribution function WS,D can be rewritten as

WS(+L/2,E, t) = WS(−L/2,E, t)

E> E0, (5.8a)

WD(x1,E, t) = WD(x2,E, t) = 0

E < E0. (5.8b)

And the relevant equations in the energy and
coordinate space are given by

1

v(x,E)

∂WS,D(x,E, t)

∂t
= −

∂WS,D(x,E, t)

∂x

+ γ
∂

∂E

[
v(x,E)

(
1+D0

∂

∂E

)]
WD,S(x,E, t)

−
∂

∂E

[
A(t)WS,D(x,E, t)

]
. (5.9)

where D0 = Dq/γ . Both functions WS,D and their
energy derivatives are continuous for E = E0. The
normalization condition is∫

∞

Emin

dE

∫ x2(E)

x1(E)

dx
WS(x,E, t)

v(x,E)
= 1. (5.10)

and the expectation value of the drift velocity, the
quantity of prime interest is given by

vd = 〈v〉 =

∫
∞

Emin

dE

∫ x2(E)

x1(E)

dx WD(x,E, t). (5.11)

If we choose the forcing frequency of external derive
to be very small (γ� 1/τ), there is enough time for
the system to reach the steady state during the period
τ and one can obtain the stationary solution of
distribution and hence the stationary drift velocity
as a function of A(t). So in the stationary limit
Eq. (5.9) reduces to

∂WS,D(x,E)

∂x
= γ

∂

∂E

[
v(x,E)

(
1+D0

∂

∂E

)]
WD,S(x,E)−

∂

∂E

[
A(τc)WS,D(x,E)

]
.

(5.12)

(To represent a very slow external periodic
modulation we replace temporal periodic function
A(t) by a quasi-static function A(τc).)

Following Ref98,97we use the following ansatz

WS,D = W̃S,D(E)+wS,D(x,E). (5.13)

Here W̃S,D(E) are the slowly varying functions
in E only and wS,D(x,E) are rapidly varying in E
and slowly varying functions in x that contribute
only in a thin boundary layer around E = E0. The
role of wS,D(x,E) is to ensure the continuity of
WS,D(x,E) for E = E0. Now the modified boundary
conditions are

wS,D(+L/2,E) = wS,D(−L/2,E)

E> E0, (5.14a)

wD(±L/2) = W̃D(E) = 0

E < E0. (5.14b)

Following98 one obtains the expression of current
as a function of A(τc) as follows

vd(A) =
2N L[ I3 + ε χ I4]

I0 + I1 + εχI2
. (5.15)

The integrals of the expression for current are given
by

I0 =

√
2πDq

m

∫
+L/2

−L/2
exp

[
−

f (x)

D0

]
,(5.16)

I1(A) = 2L

∫
∞

E0

v̄′(E)exp

[
−

E

D0

]
{

cosh

[
µA(τc)g(E)

Dq

]
−1

}
dE, (5.17)

I2(A) = 2L

∫
∞

E0

v̄′(E)exp

[
−

E

D0

]
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Wigner canonical thermal
distribution shows how the
quantum mechanical mean
values of coordinate and
momentum operator of a
Harmonic oscillator are
thermally distributed
(Gaussian), where the width
is given by a sum of energies
due to mean photon number
and vacuum fluctuation.
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Figure 18: Drift velocity (vd)av vs temperature T plot (using Eq. (3,21))
comparing quantum (the profile with open circle) and classical (the profile
with solid circle) cases for the parameter set A0 = 0.1, γ = 0.1, m = 1.0 and
the barrier height E0 = 6.0.

sinh

[
µA(τc)g(E)

D0

]
dE, (5.18)

I3(A) =

∫
∞

E0

exp

[
−

E

D0

]
sinh

[
µA(τc)g(E)

D0

]
dE, (5.19)

I4(A) =

∫
∞

E0

exp

[
−

E

D0

]
cosh

[
µA(τc)g(E)

D0

]
dE, (5.20)

where µ = 1/γ , χ is a perturbation as given in
the Ref98 whose approximate value is 0.84. The
expressions for g(E), v(E) and ε are given by

g(E) =

∫ E

E0

dE′

v̄(E′)
; v̄(E) =

1

L

∫
+L/2

−L/2
v(x,E) dx

and ε=

[√
2µA(τc)

√
v̄(E0)D0

]
√
γ ,

respectively. Here the point to be noted is that
the x-dependent solutions enter in our calculation
of current and normalization constant via the
continuity condition in such a way that the corrected
x-independent solutions deviate from pure energy
dependent distribution functions by terms of the
order

√
γ . The average velocity over a forcing period

is given by

(vd)av =
1

τ

∫ (n+1)τ

nτ
vd(A(τc)) dτc

=

(
a

1+a

)
vd(+A0)

+

(
1

1+a

)
vd(−aA0). (5.21)

The above expression has a standard form one
expects for the current in an adiabatic ratchet;
classical101 or quantum alike. For a symmetric
potential and symmetric external derive i,e,. a = 1
τ1 =

1
2 τ the period average drift velocity is zero

since I3(+A) = −I3(−A) and ε(+A) I4(+A) =

−ε(−A) I4(−A). Therefore to obtain a net flow of
quantum particles in a preferential direction the
potential or the temporal external derive must be
asymmetric in nature. To understand the quantum
feature of the current it is pertinent to note that
the quantum characteristics due to nonlinearity of
the system potential is reflected in I0 through f (x).
Furthermore all the integrals Ii (i = 0, 4) contain
D0 the effective quantum temperature as expressed
in (3.15) (D0 = Dq/γ). Its origin may be traced
to the Wigner canonical thermal distribution94

used to describe the harmonic oscillator bath. As
T → 0 this distribution goes over to a pure state
distribution and as a result it renders validity
of the expression for quantum current due to
non-equilibrium fluctuations even in the deep
tunneling regime. We believe that this validity is
a necessary requirement for an inertial quantum
ratchet for which the quantum fluctuations due to
surrounding have to be appropriately accounted
for. The analytical expression (5.21) for the current
due to underdamped quantum ratchet is illustrated
in a typical drift velocity vs. temperature plot in
Fig. 18 which exhibits a bell-shaped profile. With
increase of noise strength Dq of the bath which
is also measure of temperature the magnitude of
drift velocity increases to a maximum followed by a
decrease. At high temperature all the particles are
thermalized as a result of which their organized
motion in a preferential direction gets hindered.

B. Numerical simulations of drift velocity
Equation (5.21) is the central analytical result of
this paper. To analyze the essential features of the
directed motion of underdamped quantum particles
we now resort to direct numerical simulation of
Eq. (5.1a)–(5.1b) and the equations for quantum
correction (5.26)–(5.32) simultaneously using
standard Heun’s algorithm. We use in our numerical
simulation a slowly varying time dependent quantity
A(τc) to correspond to the stationary solution
of the distribution function WS,D(x,E) of our
analytical scheme. For the entire calculation we
set τ= 3×103 and barrier height 1V = 6.0 and
take care on the inequality ωs � γ � 1/τ where
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Figure 19: Drift velocity (vd)av vs temperature T plot (numerical results)
comparing quantum (the profiles with open circles and boxes) and classical
(the profiles with solid circles and boxes) cases for different strength of
external modulation (i) A0 = 1.0 (the profiles with solid and open boxes)
and (ii) A0 = 0.8 (the profiles with solid and open circles) and the other
parameter set γ = 1.0, m = 1.0,τ= 1500 and E0 = 6.0.

ωs is the characteristic frequency of the system. A
very small time step (1t) of 0.001 for numerical
integration has been used. For the initial conditions
we have assumed that at t = 0 all the particles
are in the potential minimum at x = 0 with zero

Figure 20: Drift velocity (vd)av vs temperature T plot for different values
of the mass of the particle (i) m = 0.4 (the profiles with open triangles)
and (ii) m = 1.0 (the profiles with open circles) (iii) m = 1.6 (the profiles
with solid boxes) and the other parameter set γ = 1.0, A0 = 1.0,τ= 1500
and E0 = 6.0.

velocity. Throughout our simulation, we focus
on the asymptotic, periodic regime where the
effects due to the influence of initial conditions
and transient processes have been smoothed out.
The time homogeneous statistical properties are
obtained in the long time limit after the temporal
(period of driving) and the ensemble averaging are
performed. The calculated velocities are averaged
over 5,000–10,000 trajectories depending on the
values of parameters. The trajectories are allowed to
evolve over a time of the order of 150–1000 periods
depending on length of the period and the strength
of the periodic external force and dissipation of
the medium. We present our numerical results in
Fig. (19–21) for different parameters, such as, mass
(m) and amplitude of external drive (A0).

The effect of quantization of a classical inertial
ratchet is shown in Fig. 19, where we present a
comparison of the drift velocity vs temperature
profile for the classical and the quantum cases. One
observes that in the low temperature region the
classical current is significantly lower in magnitude
than the quantum current and at higher temperature
the effect of quantization becomes insignificant. This
may be interpreted in terms of an interplay between
quantum diffusion coefficient Dq and the potential
force term f (x). It has been pointed out earlier that
f (x) contains quantum correction arising due to
nonlinearity of the potential. As temperature T → 0,
Dq approaches to 1

2 h̄ω0, the vacuum limit in deep
tunneling region. The anharmonic terms in f (x) do
not contribute significantly. On the other hand, as
the temperature increases, Dq increases and also
Dq and f (x) compete with each other to reduce the
quantum current to its classical counterpart.

Our theoretical and numerical calculations show
that depending upon their mass the drift velocity of
the particles changes markedly. This is shown in
the Fig. 20. For increasing mass of the particles the
drift velocity decreases and the maxima are slightly
shifted. With appropriate control of the time period
of the external derive one can amplify the current
due to mass dependence of the drift velocity of the
quantum particles. This dependence of the drift
velocity of quantum particles on their masses can
be used to separate the mesoscopic particles with
different masses. Apart from the size dependent
separation of the particles due to different friction
coefficients, the separation by mass by periodic
driving is thus a new and independent possibility. In
Fig. 21 we make a comparison between numerical
simulation and the corresponding theoretical result.
The theoretical results on the variation of current
on temperature for varied strength of drive agree
fairly well with the corresponding numerical results
in the very slow modulation regime.
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Figure 21: A comparison between numerical (the profiles with blank stars,
boxes and triangles) and analytical (the profiles with dark stars, boxes and
triangles) results of drift velocity vd vs temperature T plot for different
values of driving strength (A0 = 0.08 (star); A0 = 0.10 (box); A0 = 0.12
triangle) and the other parameter set γ = 0.1, m = 1.0, τ= 3000 and
E0 = 6.0.

C. Efficiency of ratchet device in underdamped
limit

Finally we proceed to analyze the effectiveness of
the rectification process and identify a suitable
parameter that tells us how noisy the rectification
signal is and how long one has to be wait until an
appreciable net signal can be detected with sufficient
confidence. To this end we define rectification
efficiency in absence of an external bias (load)102 as

η=
(vd)2

av

|(v2
d)av −Dq|

. (5.22)

η denotes rectification efficiency, γ(vd)2
av is the

dissipated power due to directed motion of the
particle against friction and the total input power
from the time periodic forcing is γ|(v2

d)av − Dq|

(corresponding to kinetic energy in presence of
forcing—kinetic energy in absence of forcing). We
calculate numerically η and (vd)av as a function
of the external derive A0 and it is shown in
Fig. 22(a,b) for Dq = 0.5 and 0.1 for the parameter
set γ = 1.0, m = 1.0, E0 = 6.0 and τ = 50. It is
apparent that for an amplitude A0 ' 0.12, the
directed inertia transport for Dq = 0.5 sets in before
the lower threshold of the ratchet force is reached.
Below this threshold at A0 ' 0.12 (for the case
Dq = 0.5), the system mainly dwells in the locked
state. Upon further increasing the amplitude of
driving, A> 0.12 the Brownian motor generates net
directed current. This type of behavior of current
physically implies that at low value of A0 (< 0.12),
jumps between the neighboring wells are rare due

to the fact that input energy from external source is
pumped into the kinetic energy of intrawell motion
and eventually dissipate (since our observation is in
presence of small noise). As A0 is increased further,
the Brownian motor starts working and some part
of input energy contributes to net motion of the
particle. Above A0 ' 0.3, input force crosses the
upper threshold value of potential force, the average
drift velocity of the particle decreases because of the
weakening influence of the ratchet potential at large
rocking amplitude. Rectification efficiency shows a
qualitatively similar behavior as the average drift
velocity.

D. Appendix A: calculation of Q(x,〈δx̂n
〉)

It may recalled that our analytical expression for
current (5.21) contains quantum corrections Q up
to all orders. For numerics we, however, proceed
to estimate Q order by order as follows. From
Eq. (3.6) quantum correction of the potential due
to nonlinearity is given by

Q(x,〈δx̂n
〉) = −

1

2!
V ′′′(x)〈δx̂2

〉

−
1

3!
V ′′′′(x)〈δx̂3

〉− ...... (5.23)

The quantum correction terms can be determined
as follows. We return to the operator equation (3.2)
and put

x̂(t) = x(t)+ δx̂(t) and p̂(t) = p(t)+ δp̂(t),

where x(t) = 〈x̂(t)〉 and p(t) = 〈p̂(t)〉 are the
quantum mechanical mean values of the operators
x̂ and p̂ respectively. By construction [δx̂,δp̂]= ih̄
and 〈δx̂〉= 〈δp̂〉= 0. We then obtain the quantum
correction equations (Markovian limit)

mδ ¨̂x +γδ ˙̂x +V ′′(x)δx̂ +

∑
n≥2

1

n!
V n+1(x)

(δx̂n
− 〈δx̂n

〉) = 0̂(t)−0(t). (5.24)

We then perform a quantum mechanical average
with initial product separable coherent states of the
oscillators of the bath only to get rid of the internal
noise term and to obtain the reduced operator
equations for the system as

mδ ˙̂x = δp̂, (5.25a)

δ ˙̂p = −γδp̂−V ′′(x)δx̂

+

∑
n≥2

1

n!
V n+1(x)(δx̂n

−〈δx̂n
〉).(5.25b)
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Figure 22: (a) Efficiency vs driving strength plot at two different
temperature and for the parameter set γ= 1.0, m = 1.0, τ= 50 and E0 = 6.0.
(b) Drift velocity vs driving strength plot for the same parameter set

D=0.5

D=0.1

With the help of (5.25a) and (5.25b) we then obtain
the equations for 〈δx̂n(t)〉

d

dt
〈δx̂2

〉 =
1

m
〈δp̂ δx̂ + δx̂ δp̂〉, (5.26)

d

dt
〈δp̂ δx̂ + δx̂ δp̂〉 = −γ〈δp̂ δx̂ + δx̂ δp̂〉

−V ′′(x)〈δx̂2〉

− V ′′′(x)〈δx̂3〉+
1

m
〈δp̂2〉,

(5.27)

d

dt
〈δp̂2

〉 = −2γ〈δp̂2〉−2V ′′(x)〈δp̂ δx̂

+ δx̂ δp̂〉

−V ′′′(x)〈δx̂ δp̂ δx̂〉, (5.28)

d

dt
〈δx̂3

〉 =
3

m
〈δx̂ δp̂ δx̂〉, (5.29)

d

dt
〈δx̂ δp̂ δx̂〉 = −γ〈δx̂ δp̂ δx̂〉−V ′′(x)〈δx̂3〉

+
2

m
〈δp̂ δx̂ δp̂〉, (5.30)

d

dt
〈δp̂ δx̂ δp̂〉 = −2γ〈δp̂ δx̂ δp̂〉

− 2V ′′(x)〈δx̂ δp̂ δx̂〉

+
1

m
〈δp̂3〉, (5.31)

d

dt
〈δp̂3〉 = −3γ〈δp̂3

〉

− 3V ′′(x)〈δp̂ δx̂ δp̂〉, (5.32)

(in the quantum correction equations we take
up to third order terms, since the higher order
contributions are small). We solved the above
quantum correction equations numerically to
calculate quantum correction terms and hence Q.

VI. Conclusion
We have formulated the quantum stochastic
dynamics of Brownian particle and analyzed the
problem of a ratchet device in the overdamped
and the underdamped limits. The quantization
of the dynamics is manifested in two different
ways. First, the harmonic oscillator reservoir is
quantum mechanical in character and its internal
noise characteristics and the fluctuation-dissipation
relation are described by the canonical thermal
Wigner distribution. Secondly, the nonlinearity
of the potential brings in additional quantum
contribution since the nonlinear terms of the
potential beyond the harmonic one are entangled
with quantum corrections. Therefore the system
experiences an effective force term f (x) comprising
a classical −V ′(x) plus a quantum correction term
Q(x,〈δx̂n

〉) as f (x) =−V ′(x)+Q(x,〈δx̂n
〉). This

consideration leads us to the form of a generalized
equilibrium distribution in terms of a nonlocal
potential. The implication of this factor in ratchet
effect or in Landauer blow-torch effect has been
thoroughly examined11,32,36,93 by Van Kampen,
Büttiker and others. A close look into the expression
for current in Eq. (4.18) or Eq. (4.31) reveals that
the origin of fluctuation induced current essentially
rests on this factor and therefore the contribution of
the nonlinearity induced quantum effect on this
current becomes quite apparent. It is important
to note that the essential requirements demanded
by symmetry considerations and thermodynamic
consistency condition have to be fulfilled in the
treatment.We also have analyzed the efficiency of the
quantum ratchet device under various conditions.
We now summarize the main conclusions:

(a) We note that quantization can not break the
symmetry of the ratchet device but, in general,
may change the superposition of amplitudes
of the periodic nonlinear function so that the
current is significantly affected. This is apparent
from the structure of the force term f (x)

pointed out earlier. For example, for a pendulum
potential V (x) =

1
2 (cos x + 1), which has been

used for superionic conductors, f (x) [= −V ′(x)−

1qV ′′′(x)
(
V ′(x)

)2
for the leading order quantum

correction where 1q ∼ O(h2)] is a superposition of
sinx and 1q sin3 x, a classical and a quantum part,
respectively. It therefore follows from the previous
discussions that the quantum part of potential
affects ψ(x) and consequently the current.
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(b) We observe that while at low temperature
quantization significantly enhances the classical
current, at higher temperature the difference is
insignificant. This may be interpreted in terms
of an interplay between the quantum diffusion
coefficient Dq and the force term f (x) appearing

in the effective potential ψ(x) as
∫ x

0
f (x′)

Dq
dx′. As

the temperature T → 0, Dq approaches to the
value 1

2 h̄ω0, the vacuum limit and also in the
deep tunneling region the anharmonic terms in
f (x) do not contribute significantly, the integrand
increases sharply. On the other hand, as the
temperature increases, Dq increases resulting in
a decrease of ψ(x). Since for the classical current,
the quantum contribution to f (x) is absent, one
observes a crossover of the of the classical and the
quantum current in an intermediate region of the
temperature, where Dq and f (x) compete with each
other and beyond which the quantum current is
marginally lower than the classical current. For a
further increase of temperature the classical and the
quantum current merge identically, as expected.

(c) In contrast to the behavior of quantum
current at low temperature, the conventional
efficiency of a classical ratchet in presence of a
load is higher at low temperature as compared to
its quantum counterpart and again the efficiency
in the two cases tends to merge at higher
temperature. Furthermore the maximum efficiency
is independent of the nature of the system
potential and the bath and is thus independent
of quantization. We have also examined a quantum
version of Stokes efficiency in absence of load where
energy due to frictional resistance is considered as a
part of expenditure of useful energy. A significant
quantum enhancement of Stokes efficiency at
low temperature has been observed. The careful
consideration of the total energy consumption
and dissipation reveals that the generation of
higher current and Stokes efficiency may not always
imply the higher efficiency of thermal ratchet in a
conventional sense although the generic features
of the device in its classical and quantum versions
remain the same.

(d) We have demonstrated that finite inertia
significantly affects the magnitude of quantum
current, an issue which has found importance in
separation of particles according to their masses. We
believe that the observations on quantum ratchet
operating in the energy diffusion regime as well
as overdamped regime would be of significance in
applications on devices on mesocopic scale.

Motivated by a number of experimental
observations on molecular motors, ratchet models
have been exploited in the quantum realm in several
issues. Mennerat-Robilliard et. al62, have been

demonstrated directed motion of cold Rubium
atom evolving in an asymmetric optical bipotential,
exemplifying a link between statistical physics
and laser cooling. It has been agrued63 that
the phase across an asymmetric DC SQUID
in presence of a magnetic flux can admit an
effective ratchet potential. In order to probe its
selected characteristics of tunneling dynamics,
fluctuation-induced voltage rectification in a
Josephson junction61 has been analyzed where
one uses a point contact with a defect tunneling
incoherently between two states as a source
asymmetric dichotomous noise. The study of
these evidences illustrates how the quantum effect
in ratchet motion are to be looked into in the
related contexts involving mechanical motion on a
microscale e. g., in electroconformational coupling,
fluxinalrotational motion on metal surface109–111.
The ratchet motion is thus likely to remain an active
area for some more years to come.
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