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Abstract | Line profile analysis, of X-ray diffraction data collected from samples like metal

oxides, polymers, polymer blends and fibers (both man-made and natural), has become a

common tool to obtain information of microstructure and lattice defects. Such analysis also

have significant effect on the crystal structure of samples. Present review deals with various line

profile analysis techniques including latest developments in the field and their application in

crystal structure determination , especially in the case of fibers.

1. Introduction
Line profile analysis has been in general use
for the investigation of the microstructure of
crystalline materials since 19201. For the peak shape
analysis two fundamental different approaches
that have been developed during the past four
decades2,3. Of the two, Rietveld method has become
a standard procedure except for the determination
of microstructure. There are several attempts to
incorporate the determination of microstructure in
Rietveld method4–7. Normally, broadening of peak
profile occurs due to two fundamentally different
reasons: (i) The effect of crystallite size and (ii) the
effect of lattice distortion. Later being dependent on
the order of diffraction profile, there are various
methods of separating these two effects from the
peak profiles8–12. These are normally referred to
as multiple order method. They can be used when
there are Bragg reflections of the type (110), (220),
(330),. . . etc. Here size broadening is caused by the
finite number of unit cells in a column length of
coherently scattering domains where this number of
unit cells are counted in a direction normal to the
Bragg planes.

Lattice distortion in a crystalline lattice can be
described in two ways13. In the first kind, there is a
certain probability that a lattice point is displaced
from its mean position. However, away from the
origin, the probability of a certain displacement

from the mean position stays the same. Thus long
range order is preserved. This is the kind of disorder
caused by thermal vibrations of atoms/molecules
and is called thermal or type I disorder. In the second
kind, the length of the vectors joining the lattice
points are distributed with a certain probability
function. To construct a lattice, a vector is selected
at random and laid down with one end at the origin.
The location of the other end will have a certain
probability distribution. A second vector is now
selected and laid down with one end on the most
probable end of the first. The other end will have
a different wider probability distribution given by
convolution of two functions. The length of the
vector will have the same distribution. If this is
continued, the probability of finding a lattice point
at a certain distance equivalent to the crystallite size,
from the origin, will be almost zero. The extent of
change in the long range order, is the measure of
lattice distortion or lattice strain expressed interms
of percentage. This is called paracrystalline or type-2
disorder. In addition to these, the broadening are
also caused by the presence of dislocation, stacking
faults, grain boundaries, inclusions, precipitates etc.

2. Theoretical overview
The intensity profile, using the Fourier cosine
series of the Warren and Averbach method11,12

and Hosemann’s one-dimensional paracrystalline
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Figure 1: X-ray diffraction pattern of silk fibers. (a) Hosamysore,
(b) C.nichi, (c) PureMysore and (d) Nistari.

(a) (b)

(c) (d)

model13 in a direction joining the origin to the
center of the reflection, can be described as follows:

I(s) =

∞∑
n=−∞

A(n)cos{2πnd(s− so)}, (1)

where the A(n) are the harmonic coefficients that
can be represented as a function of crystal size 〈N〉

and lattice distortion g , d is the inter planar spacing,
s = (sinθ)/l, so is the value of s at the peak of the
reflection, θ is the Bragg angle, l is the wavelength
of the radiation and n is the harmonic number. The
Fourier coefficients A(n) of the profile are expressed
as the convolution of crystal size As(n) and lattice
strain Ad(n) coefficients as:

A(n) = As(n) ·Ad(n). (2)

Sometimes, this equation is also expressed in terms
of variable L = nd , where d being the inter planar
spacing and written as A(L).

2.1. Distortion effect
The lattice distortion Fourier coefficients can be
expressed in the following form12:

Ad(n) = exp(−2π2m2ng2) (3)

where m is the order of reflection and g is the
lattice disorder g(= 1d/d), which is also referred
to as lattice strain. One also defines a mean square

strain 〈ε2
〉 which is given by g2

n . This mean square
strain is dependent on n, where as g is not14,15.
Here 〈ε2

〉 is the mean square strain depending on
the displacement of atoms relative to their ideal
positions and the angular brackets indicate spatial
averaging.

2.2. Crystal size effect
For the calculation of the Fourier transform of the
peak profile originating from a crystallite, we divide
the crystal into cylindrical columns with N number
of unit cells in a column. If P(i) is the probability
distribution function of column lengths, then, the
crystallite size contribution to Fourier coefficients16

is given by

As(n) = 1−
nd

D
−

d

D

[∫ n

0
iP(i)di−n

∫ n

0
P(i)di

]
(4)

where D = 〈N〉d, is the crystallite size. There are
various functions and widely used methods to

Figure 2: X-ray diffraction pattern of silk-I
modification
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Figure 3: X-ray diffraction pattern of dch32
cotton fiber

separate the strain and size components from the
intensity profile and these are listed below.

2.2.1. Ribarik, Ungar and Gubieza method:
In this method, a Lognormal size distribution

function given by17

P(i) =
1

(2π)1/2

σ

i
exp

{
−

[log(i/m)]2

2σ2

}
(5)

Figure 4: Crystallite shape ellipsoid in silk-I
modification
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where σ is the variance and m is the median/width
of the distribution, has been used in equation (4).
The simplified equation has been used to compute
microstructural parameters from diffraction profiles
of materials with cubic or hexagonal crystal lattices.
This is essentially multiple order method which has
been efficiently used to compute the parameters
of severely deformed copper and ball-milled lead
sulfide specimens.

2.2.2. Langford and Louer method:
In this method, a least squares comparison of

an experimental powder diffraction pattern with
one generated from a physical model of various
crystallite size distributions have been used in the
case of samples of high symmetry18,19.

2.2.3. Whole Powder Pattern Modelling method of
Scardi and Leoni20

It is essentially a logical development of Langford
work on pattern-decomposition methods based
on the fitting of assumed analytical functions.
Here, crystallites are assumed to be spherical
and TEM data indicated that the distribution of
diameters is closely Lognormal. The non-linear least-
squares program MARQX developed by Dong and
Scardi21 finds the refined parameters of Lognormal
distribution and results are in agreement with other
integral breadth methods. Scardi has developed
this approach and has demonstrated the viability of
WPPM by including structural mistakes. WPPM
is a major advance in line profile analysis which
avoids the assumptions and approximations made
in earlier procedures. The main factor affecting
the reliability of the results is the validity of the
physical models used to determine microstructure.
Furthermore, this method is applicable to samples
of high symmetry.

2.3. Single order method: Fiber diffraction
Several earlier investigators have proposed single
order method and most of these methods rely
heavily on low order coefficients22–25. A method
is needed which avoids normalization and uses
experimental coefficients of all harmonics taking
into account the effect of truncation and error in
background estimation. We describe here a method
that meets these requirements and analyse the
inescapable limitations imposed by unavoidable
defects in the background corrected profile.

The techniques hither to described can be used
for materials with high symmetry like metals and
metal-oxide compounds, where more than two
orders of reflection are available. In case of natural
polymers like silk and cotton, it is rare to find
multiple reflections and hence the techniques based
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Figure 5: Crystallite shape ellipsoids in various
silk fibers
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on Warren-Averbach method cannot be used. In this
section, the technique where in single order method
is used to obtain the crystallite size and lattice
strain will be elucidated16,26. Essentially several
asymmetric functions for P(i) in equation (4)
have been used to find the finer details of the
microstructure of cotton/silk fibers. They are namely
(i) Exponential, (ii) Reinhold and (iii) Lognormal
functions. Substitution of these functions in
equation (4) and carrying out simple integration,
gives the size contribution to Fourier Coefficients.
They are:

Exponential Distribution:

As(n)=

{
A(0)(1−

n
N ) if n ≤ p

A(0)exp{−α(n−p)}/(αN ) if n〉p

Here the distribution depends on no columns
containing fewer than p unit cells and those with
more than p will decay exponentially. The width of
the distribution is given by α=

1
(N−p)

.

Reinhold distribution:

As(n) =

 A(0)(1−
n
N ) if n ≤ p

{A(0)(n−p+2/β)/N}

exp{−β/(n−p)} if n〉p

Here, β is the measure of width of the
distribution.

Lognormal distribution4

As(n) =

m3
αexp[( 9

4 )(21/2σ2
]

3
erfc

[
log(n/mα)

21/2σ

−(3/2)21/2σ
]
−m2

α

exp(21/2σ)2

2

×nerfc

[
log(n/mα)

21/2σ
(6)

−21/2σ
]
+

n3

6
erfc

[
log(n/mα)

21/2σ

]
(7)

where σ and mα are the variance and the median of
the distribution function for the crystallite sizes.

From these, the area weighted number of unit
cells in a column is given by

Ns =
2mαexp

[
(5/4)(21/2σ2)

]
3

(8)

and volume weighted number of unit cells in a
column is given by

Nv =
3mαexp

[
(7/4)(21/2σ2)

]
4

. (9)

Table 1: Refinement parameters for silk I with
(Ala−Gly)2 −Ser −Gly repeating unit

1 2

φAla−Ser −112.09 −101.71
ψAla−Ser −5.55 −12.15
ωAla−Ser 179.23 160.94
χSer 174.64 167.85
φGly 71.39 73.83
ψGly −98.66 −105.87
ωGly −172.10 177.03
εx 14.50 0.23
εy 52.34 62.36
εz −62.10 −49.15
S(Å) −2.0077 −2.0073
µ(o) 90.29 90.27
w 0.0464 0.0464
1 2
N1(Ala)–O2(Gly) N1(Ala)–O2(Gly)
(2.98,76.90) (2.85, 79.87)
N2(Gly)–O1(Ala) N2(Gly)–O1(Ala)
(3.13,125.6) (2.87, 127.72)

N1(Ala)–O1(Ala) N1(Ala)–O1
(2.88, 86.4) (2.96, 79.95)

O2(Ser)–O1(Ala) O3(ser)–O1(Ala)
(2.65, 88.5) (2.73, 86.83)

1: without strain corrections
2: with strain corrections
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Figure 6: Crystal structure with and without strain corrections in silk-I modification
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3. Computation of microstructure
parameters in fibers

Illustrative X-ray recording patterns for some
silk fibers used for computation are given in
Figure 1. Figure 2 shows silk-I modification.
Figure 3 shows cotton fiber X-ray diffraction
photograph. The measured equatorial scan of the
X-ray reflection profile intensities were corrected
for Lorentz-Polarization factors and instrumental
broadening using Stokes method27. Initial values
of g and N were obtained using the method of
Nandi et al.25. Substitution of these values in the
equations mentioned earlier in the text, gives the
corresponding for the width of distribution. These
are only rough estimates, so that the refinement
procedure must be sufficiently robust to start with
such values. Here, we compute

12
= [Ical − (Iexp +BG)]2/npt , (10)

where BG is the error in the background estimation
and npt is number of data points in a profile.
The values of 1 were divided by half the
maximum value of intensity so that it is expressed
relative to the mean value of intensities and
then minimised. For refinement against intensities
using the above equations, a multidimensional
minimization algorithm of the SIMPLEX method
was used28.

4. Crystallite shape in fibers
Crystallite sizes were determined using the above
method for various Bragg reflections in silk and
cotton fibers and they were projected onto a
common plan by using the relation(

2

N

)2

=

(
cosθ

Y

)2

+

(
sinθ

X

)2

(11)

Journal of the Indian Institute of Science VOL 87:2 Apr–Jun 2007 journal.library.iisc.ernet.in 217



REVIEW R Somashekar

Figure 7: Crystal structure with strain
corrections in dch32 cotton fibers.

Figure 4(a–c) show crystallite ellipsoid in the case
of silk-I modification, various raw silk fibers and
cotton fibers.

5. Strain corrected intensity profiles and
crystal structure in fibers

Having computed residual strains present in
various fibers, these parameters were used to
compute strain corrected integrated intensities of
profiles in fibers. For this purpose, the crystal size
parameters along with the width of the crystal
size distribution function and the lattice strain
were used to generate the strain corrected intensity
profiles employing equations (1)–(3) and (6). Strain
corrected intensities for the profiles were used to
compute the crystal and molecular structure of these
fibers like silk-I and cotton fibers.

5.1. Molecular structure of silk-I
To find the effect of residual strain corrections on
the intensity profiles and hence crystal structure
in silk-I modification, an hexapeptide L − Ala −

Gly − L − Ala − Gly − L − Ser − Gly model as a
chemical repeating unit of the CP fraction was
used for the analysis. Molecular models having the
appropriate helical symmetry and fiber repeating
period were generated using LALS method29–31 with
all standard bond lengths and angles held constant.
The molecular structure of the silk fibroin in silk-I
modification has 2/1 helical symmetry. The value of
dihedral angles (φ,ψ) of Glycin and Alanin residues
were taken from the results of earlier investigation.

The most possible space group and the number
of chemical repeating unit of L − Ala − Gly in a

unit cell were determined to be P212121 and four
respectively. The details of computation involving
LALS method is given in an earlier paper32. The
main aim of including the strain correction was to
find out the molecular conformational changes due
to residual strain and hence to identify the reason for
mechanical instability of silk-I modification. Crystal
and molecular structure of silk-I with and without
residual strain corrections are given in Figure 5.

Although not much change in the conformation
of molecules down the a- and b-axes are visible in
the diagram, there seems to be significant change in
the molecular arrangement in the ab-plane. This
change in ab-plane enhances the fragility of the
silk-I modification, which results in easier transition
to silk-II modification despite reasonable hydrogen
bond network. The sterochemical energy computed
in LALS method corresponding to the final crystal
structure by including residual strain corrections
has a low value which indicates the stability of
structure and packing of the molecules in the unit
cell. Various molecular parameters obtained for silk-
I modification with and without strain corrections
are tabulated in Table 1.

5.2. Molecular structure of cotton fibers33

Cellulose is a polymer of D-glucopyranose in
which pyranose rings are linked by β(1 − 4)

glucosidic linkages, with the pyranose ring taking
the chair conformation, which is the most
probable conformation in the solid state. Molecular
models having the 2/1 helical symmetry and
a fiber repeating period of 10.34 Å, together
with the pyranose ring in the molecular model
was constructed and used as an input for the
LALS program with standard bond lengths and
angles. The computation of molecular structure
in a unit cell using LALS was carried out in
two steps. First with experimental integrated
intensities without strain corrections and second
with the microstructural parameters being used
to incorporate strain correction and then using
integrated intensities in LALS program. A map of
molecular and crystal structure of strain corrected
cotton fiber was plotted using “PLATON”34 and
given in Figure 5. It is observed that by incorporating
strain corrected integrated intensities, there are
fractional changes in the bond angles and bond
lengths for the cotton interms of cellulose chains
which certainly affect crystal volume. It is note
worthy to mention that the changes are less
significant when compared to disordered systems
such as alloys. The changes that are observed in
the molecular parameters with and without strain
corrections for the profiles of dch32 cotton fiber are
given in Table 2.
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Table 2: Model molecular parameters for dch32 cotton fibers with and without strain corrections.

With strain correction Without strain correction

Torsion angles and bond angles at glycosidic linkage(deg)
φ(C2−C1−O1−C′4) (no change) 146.98±0.30
ψ(C1−O1−C′4−C′3) (no change) 61.01±0.12
τ(C1−O1−C′4) (no change) 113.34±0.23

Orientation of O6 (deg)
χ(O5−C5−C6−O6) 88.84±0.18 88.37±0.17

Packing parameters of polymer chains
µ1a 104.54±0.21 104.52±0.21
w1b 0.635±0.001 0.639±0.001
µ2a 92.24±0.10 92.14±0.18
w2b 0.374±0.001 0.378±0.001

Scale factorc 0.160±0.003 0.167±0.003
Attenuation factord

−24.46±0.05 −23.26±0.05
Re 0.189±0.003 0.189±0.003
Re

w 0.235±0.003 0.226±0.003

aµ1 and µ2 are the azimuth angles for two separated chains around their molecular axis.
b w1 ans w2 are the heights of the origin atoms for the separated chains along c-axis.
cScale factor is the factor by which the calculated intensities should be multiplied to bring the magnitude within the range of
experimental data.
dAttenuation factor is the amount of absorption of the radiation by the atoms.
e R and Rw are the normal and weighted residual factors.

6. General observation
Microstructure parameters are computed by line
profile analysis by assuming simple analytical
function. Undoubtedly whole powder pattern
modelling (WPPM) is the best approach for samples
like metal-oxides with high symmetry. If finer details
of microstructure are required, then neither size nor
the strain profiles can be approximated by simple
analytical functions. WAXS analysis of profiles
in fibers like silk and cotton can be done with
single order methods which are proven to give
good reliable results35. Further, structure analysis
using these strain parameters, to correct integrated
intensities, indicate changes in bond lengths, bond
angles and molecular packing within unit cell in the
case of silk-I and cotton fibers which results in a
more stable structure.

Received 14 June 2007; revised 18 July 2007.
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