JOURNAL OF

THE

INDIAN INSTITUTE OF SCIENCE

VOLUME 50

OCTOBER 1968

NUMBER 4

THERMODYNAMIC PROPERTIES OF CARBON DISULPHIDE

BY D. N. SESHADRI, D. S. VISWANATH, AND N. R. KULOOR (Department of Chemical Engineering, Indian Institute of Science, Bangalore-12, India)

(Received: February 6, 1968)

Abstract

Thermodynamic properties of carbon disulphide have been evaluated up to a temperature of 750°K and a pressure of 300 atmospheres using Martin and Hou equation of state. Tables of thermodynamic properties and a temperature entropy diagram are presented.

SURVEY OF EXISTING DATA

1. Molecular Weight and Critical Data:

The available critical constants of carbon disulphide are presented in Table 1.

The data earlier than 1880 is not considered for this work. The sample used by Hannay⁷ was digested over sodium and distilled from quick lime into a small flask and stored over sulphuric acid under a bell jar. Calibration of the thermometer was made daily and the mean probable error was fixed at 0.16° C. For the measurement of pressure, hydrogen was used as a reference gas. The probable error in the measurement of pressure is stated to be about 0.07 atmospheres.

Year	Investigator	Т,, °К	P _c , atm.	de gm./c.c.	Method	Re ference
1821	de la Tour	548.16	77.8		а	12
1874	Avenarius	549.16			а	I
1878	Sajotschewsky	544.96	74.7	*****	?*	22
1880	Hannay and Hogarth	546.12	77.9		а	8
1882	Hannay	550.84	78.14		а	7
1890	Battelli	546.16	72.87	0.377	?*	2
1890	Galitzine	552.76	101400	*****	?*	5
1898	Mathias			0.441	с	17
1943	Fischer and Reichel	552.16			ь	4
Values	selected	552.16	78.0	0.44		

T.	AP	LE.	T
- A - I		- + e	- 2

Molecular	weight	and cr	ltical	consta	nis oj	f carbon	disulphide
Mole	cular v	weight	of ca	rbon	disult	hide=7	6.142

a - disappearance of the meniscus.

b - disappearance of the droplets after the meniscus has broadened.

c = law of rectilinear diameter.

?* - Methods unknown.

Fischer and Reichel⁴ determined the critical temperature by the micromelting apparatus. The refractive index of the sample of carbon disulphide used is stated to be 1.6278.

The data of Fischer and Reichel⁴ for the critical temperature agrees well with those of Hannay⁷ and Galitzine⁵. The data of Hannay⁷ for the critical pressure was selected as the most probable. Critical density was determined by Mathias by the law of rectilinear diameters. Hence, this value is selected.

Thus, the critical constants used for this work are:

 $T_c = 552.16^\circ \text{K}$; $P_c = 78.0$ atmospheres; and $d_c = 0.44$ gm/cc.

2. Vapour Pressure

Vapour pressure of carbon disulphide has been determined by various investigators, including Henning and Stock⁹, Siemens¹⁵, Rex²⁰, Waddington et $al.^{28}$ and Hannay⁷. The available data along with the range of availability are presented in Table II. Excepting Waddington et $al.^{28}$ no investigator has reported the extent of purity of sample used.

Waddingtor et al.²⁸ determined the purity of the sample to be 99.98 mole % by the time-temperature freezing point method. Vapour pressures were determined by ebulliometric method. Their data extend up to a pressure of about 2.7 atmospheres. The data of Siemene³⁵ extend up to 1 atmosphere pressure. The subtract of a ccuracy of 0.1 mm Hg. Vapour pressure data up to the critical point are presented in the International Critical Tables¹¹.

Year	Investigator	Range of temperature, °K	Range of pressure, atm.	Reference
1880	Wullner and Grotrian	293 - 358	0.4 - 3.0	30
1882	Hannay	313 - 550	0.8 - 78.1	7
1906	Rex	273 - 303	0.17 - 0.57	20
1913	Siemens	194 - 319	0.0 - 1.0	25
1921	Henning and Stock	248 - 284	0.04 - 0.28	9
1928	International Critical Tables	203 - 546	0 75	11
1962	Waddington et al.	277 - 353	0 - 2.7	28

	TABLE II	
Vapour	pressure of carbon	disulahid

In general all the available data are concordant. However, at higher temperatures the data of Hannay⁷ are lower than those presented in the International Critical Tables. This may be possibly because of some error in the measurements. Hannay⁷ reported a value of 78.0 atmospheres, at 550° K and 550.84° K. For this work the vapour pressure data of Hannay were not considered.

All the data were combined and smoothened taking into account the selected critical point. More weightage was given to the data of Waddington *et al.*, and the data presented in the International Critical Tables. The data were fitted to the equation:

$$\log P = A + B/T + C \log T + DT$$

where, A = 4.299296

B = -1385.15367 $C = -2.087939 \times 10^{-2}$ $D = 2.929449 \times 10^{-4}.$

Over a pressure range of 1 - 78 atmospheres, the equation predicts vapour pressures with average absolute and maximum deviations of 0.48% and 0.9% respectively. Below I atmosphere, the smoothened data were used.

3. Density of Saturated Liquid and Vapour:

Density of saturated liquid has been determined by Schewen²³, Thorpe²⁶, Lowry³³, Seitz *et al*²⁴ and Tyrer²⁷. Table III gives these data along with the range of availability. Accuracy of the data is not reported.

All the data agree very closely, the differences not exceeding 0.2%. Hence all the data were combined and smoothened.

Saturated vapour densities are presented in the International Critical Tables¹¹. The data were smoothened and were used for this investigation.

	Saturated liquid der	nsities of carbon disulphide	
Year	Investigator	Range of temperature, °K	Reference
1880	Thorpe	273.2 - 319.2	26
1912	Schwers	286.6 - 307.1	23
1914	Tyrer	273.2 - 312.2	2.7
1914	Lowry	293.16	13
1916	Seitz et al.	163.2 - 283.2	24

TABLE III

The saturated vapour densities wherever not available were evaluated using Martin and Hou equation of state (Equation 5).

The saturated vapour densities - available and calculated - and the saturated liquid densities were plotted and a smooth curve was drawn. The saturated liquid densities accepted for this work were taken from the smooth curve taking into consideration the observance of the law of rectilinear diameters.

4. Heat Copacity of Ideal Gas:

- Andren

Heat capacity of carbon disulphide in the ideal gascous state have been determined by Cross³, Waddington *et ol.*²⁸, and by Gordon⁶.

Gordon's data are for a rigid rotator harmonic oscillator approximation, but includes the anharmonicity correction.

Waddington *et al.*²⁸, have taken account of centrifugal stretching, rotation-vibration interaction, vibrational anharmonicity and effect of isotopic composition. Fundamental constants recommended by Rossini *et al.*²¹ were used. Also, their data agree with their experimental heat capacity data. The data of Cross³, Waddington *et al.*²⁸ and Gordon⁶ all agree within about 0.1%.

The data of Waddington *et al.*, was fitted over a temperature range of $273 - 1500^{\circ}$ K to the equation :

 $C_n^* = a + bT + cT^2 + dT^3$ [2]

where, a = 7.130

 $b = 1.596 \times 10^{-2}$ $c = -1.234 \times 10^{-5}$

and $d = 3.363 \times 10^{-9}$.

Equation [2] predicts heat capacities with average absolute and maximum deviations of 0.21% and 0.62% respectively.

5. Heat of Vaporization :

Heat of vaporization of carbon disulphide has been experimentally determined at the normal boiling point by Mills¹⁸, Mathews¹⁶ and Wirtz²⁹. Waddington *et al.*²⁸ determined the heat of vaporization over a temperature range of $282 - 320^{\circ}$ K. Mills¹⁸, Mathews¹⁶ and Wirtz²⁹ did not give the extent of purity of the sample used. The sample used by Waddington *et al.*²⁸ is stated to be 99 98 mole% pure. All these data agree within 1%. Heat of vaporization has been tabulated in the International Critical Tables¹¹ and the Hand Book of Physics and Chemistry¹⁰.

All the data were combined and smoothened. However more weightage was given to the experimental data. The smoothened data were found to agree with the actual values with a maximum deviation of 1%.

The smoothened data over a temperature range of $250 - 420^{\circ}$ K were fitted to the equation:

 $\lambda = \lambda_0 \left(T_c - T \right)^n$ [3]

where, $\lambda_0 = 27.509$

n = 0.40.

Equation [3] predicts the smoothened data with average absolute and maximum deviations of 0.69% and 1.74% respectively. Over this range the Clausius-Clapeyron equation, namely,

$$\Delta H_{y} = (dP/dT) \cdot T \left(V_{y} - V_{l} \right)$$
^[4]

predicts the data with average absolute deviation of about 2.5%. Above a temperature of 420° K heats of vaporization were evaluated using Equation [3].

299

- -

CALCULATION OF THERMODYNAMIC PROPERTIES

For the calculation of thermodynamic properties Martin and Hou equation of state, namely,

$$P = \frac{RT}{(V-b_0)} + \frac{A_2 + B_2 T + C_2 \exp(-KT/T_c)}{(V-b_0)^2} + \frac{A_3 + B_3 T + C_3 \exp(-KT/T_c)}{(V-b_0)^3} + \frac{A_4}{(V-b_0)^4} + \frac{B_5 T + C_5 \exp(-KT/T_c)}{(V-b_0)^5}$$
[5]

with K = 5.475 has been used.

The constants evaluated by the method outlined by the authors¹⁵ are:

 $b_0 = 4.57371 \times 10^{-2}$ $A_2 = -12.362892$ $B_2 = 6.5174345 \times 10^{-3}$ $C_2 = -424.13465$ $A_3 = 1.3361083$ $B_3 = -6.3478989 \times 10^{-4}$ $C_3 = 58.190466$ $A_4 = -7.198832 \times 10^{-2}$ $B_5 = 3.5879031 \times 10^{-6}$ $C_4 = -6.801570 \times 10^{-2}$

In the region of available data Martin and Hou Equation was found to predict pressures with average absolute and maximum deviations of 1.95% and 6% respectively. These are shown in Table IV.

Entropy and Enthalpy of the Superheated Vapour :

Considering the entropy and enthalpy to be functions of volume and temperature, we have,

$$dS = (\partial S/\partial T)_V dT + (\partial S/\partial V)_T dV$$
[6]

Using Maxwell's relations, we obtain,

$$dS = (C_v^*/T) dT + (\partial P/\partial T)_V dV$$
[7]

Using dH = TdS + VdP in Equation [7] we obtain,

$$dH = C_{\nu}^{*} dT + T (\partial P/\partial T)_{\nu} dV + VdP$$

= $C_{\nu}^{*} dT + d(PV) - PdV + T (\partial P/\partial T)_{\nu} dV$ [8]

Temp. °K	P. Atm. *	Pcale. (This work)	% Deviation	Pcale. (O'Brien) & Alford ¹⁹)	% Deviation
330.0	1.40	1.379	1.49	1.407	- 0.521
340.0	1.88	1.847	1.76 ·	1.889	- 0.50
350.0	2.48	2.422	2.35	2.484	- 0.16
360.0	3.20	3.120	2.48	3.208	- 0.26
370.0	4.09	3.985	2.58	4.106	- 0.39
380.0	5.19	5.057	2.57	5.223	- 0.63
390.0	6.45	6.263	2.90	6.477	- 0.43
400.0	7.92	7 797	1.56	8.078	- 1.99
410.0	9.70	9.438	2.70	9.746	- 0.47
420.0	11.70	11.406	2.52	11.82	- 1.04
430 0	14.00	13.871	0.93	14.379	- 2.71
440.0	16.70	16.607	0.56	17.197	- 2.98
450.0	19.75	19.767	- 0.09	20.430	- 3.44
460.0	23.15	23.246	- 0.41	23.943	3.43
470.0	27.00	27.598	- 2.21	. 27.922	- 3.42
480.0	31,25	33.026	- 5.68	33.617	- 7.58
490.0	36.10	38.255	- 5.97	38.466	- 6.55
500 0	41.60	43.530	- 4.64	43.016	- 3.40
510.0	47.60	49.313	- 3.60	47.481	0.25
520.0	54.20	55.443	- 2.29	51.290	5.37
530.0	61.50	61,908	- 0.66	53,595	12.85
535.0	65.00	65.264	- 0.41	53.698	17.39
540.0	68 80	68.760	0.06	52,260	24.04
545.0	72.55	72.409	0.19	47.145	35.02
550.0	76.25	76.227	0.03	30,396	60.14
552.16	78.00	78.000	0.00	15.488	80.14
Average deviation	absolute 1%		1.947		10.58
Deviatio	$n = (P - P_{calc.})$	/P			
*Smooth	ened experime	ental data			

TABLE IV Comparison of calculated pressures

From Equation [5] we have,

$$(dP/dT)_{V} = \frac{R}{(V-b_{0})} + \frac{B_{2} - (K/T_{c}) C_{2} \exp (-KT/T_{c})}{(V-b_{0})^{2}} + \frac{B_{3} - (K/T_{c}) C_{3} \exp (-KT/T_{c})}{(V-b_{0})^{3}} + \frac{B_{5} + C_{5} (K/T_{c}) \exp (-KT/T_{c})}{(V-b_{0})^{5}}$$
[9]

Using Equations [7] and [8],

$$S = \int \left(C_{\gamma}^{*} / T \right) dT + \int \left(\partial P / \partial T \right)_{\gamma} dV \qquad [10]$$

and

$$H = \int \left(C_{\nu}^{*} \right) dT + \int T \left(\partial P / \partial T \right)_{\nu} dV - \int P d\nu + P \nu$$
[1]

Using Equations [2] and [9] in the above equations and carrying out the integration, we obtain expressions for entropy and enthalpy as:

$$S = (a - R) \ln T + bT + (c/2)T^{2} + (d/3)T^{3} + R \ln (V - b_{0})$$

$$- \frac{B_{2}}{(V - b_{0})} - \frac{B_{3}}{2(V - b_{0})^{2}} - \frac{B_{3}}{4(V - b_{0})^{4}}$$

$$+ \left[\frac{C_{2}}{(V - b_{0})} + \frac{C_{3}}{2(V - b_{0})^{2}} + \frac{C_{3}}{4(V - b_{0})^{4}}\right] (K/T_{e}) \exp((-KT/T_{e}) + C_{s} [12]$$
and

$$H - (a - R) T + (b/2) T^{2} + (c/3) T^{3} + (d/4) T^{4}$$

+
$$\frac{A_2 + (1 + KT/T_c)C_2 \exp((-KT/T_c))}{(V - b_0)} + \frac{A_3 + (1 + KT/T_c)C_3 \exp((-KT/T_c))}{(V - b_0)^2}$$

$$+\frac{A_{4}}{3(V-b_{0})^{3}}+\frac{(1+KT/T_{c})C_{3}\exp(-KT/T_{c})}{4(V-b_{0})^{4}}+PV-RT+C_{H}$$
[13]

where C_S and C_H are the constants of integration.

In the present work the reference state chosen is H = 0 and $S + R \ln P = 0$ for elements.

Entropy value at the normal boiling point was evaluated using the ideal gas thermodynamic properties and the Berthelot correction. Enthalpy at the normal boiling point was evaluated by making use of the heat of formation at 0° K, the ideal gas thermodynamic properties and the Berthelot correction for enthalpy. The integration constants C_{S} and C_{H} were evaluated using the values of entropy and enthalpy at the normal boiling point.

Entropy and enthalpy of the superheated vapour were evaluated by making use of the calculated specific volume in Equations [12] and [13].

Entropy and enthalpy of saturated vapour were evaluated by using the experimental specific volumes in Equations [12] and [13]. Wherever the experimental data were not available these were calculated using Equation [5] and were used.

Entropy and Enthalpy of the Saturated Liquid:

The entropy of vaporization is related to the heat of vaporization by the relation

$$\Delta H_{\nu} = T \Delta S_{\nu} \tag{[14]}$$

The entropy and enthalpy of the saturated liquid were calculated using the equations

$$S_l = S_g - \Delta S_v \tag{15}$$

$$H_l = H_g - \bigtriangleup H_v \tag{16}$$

INTERNAL CONSISTENCY OF THE TABULATED RESULTS

The relation dH = TdS + VdP may be used to check the internal consistency of the entropy and enthalpy values.

At constant pressure,

$$dH = TdS$$
 [17]

Hence, dH = d(TS) - SdT from which,

.

$$H_1^2 = T_2 S_2 - T_1 S_1 - \int_1^2 S dT$$
 [18]

Internal consistency checks were made for superheated region by using Equation [18]. The definite integral in Equation [18] was evaluated by Simpson's rule. Table V gives the comparison of calculated and tabulated values of changes of enthalpy ΔH for 5 isobars.

	Compar	ison of the va	lues of \triangle H	
Isobar atm.	Range of temp. °K	△Hcale.	△H Tables	% Deviation
1.0	350 - 750	5131.0	5129	0.04
10 0	450 - 750	4178.5	4180	0.04
100.0	570 - 750	5438.7	5444	0.10
200.0	670 - 750	2348.5	2350	0.05
250.0	690 - 750	1606.1	1608	0.12

TABLE V

RESULTS AND DISCUSSION

The properties of saturated liquid and vapour are presented in Table Vi and of the superheated vapour in Table VII.

Thermodynamic properties of carbon disulphide were evaluated earlier by O'Brien and Alford¹⁹. These workers used Beattie-Bridgeman equation of state for the evalution of thermodynamic properties. The Beattie-Bridgeman equation of state constants were evaluated by using the generalised constants given by Maron and Turbull¹⁴.

The critical temperature and pressure used by O'brien and Alford¹⁹, namely $T_c = 546.16^\circ K$ and $P_c = 75.0$ atmospheres correspond to the data prior to 1900. An authoritative review of Kobe and Lynn¹² gives the constants as $T_c = 552.16^\circ K$ and $P_c = 78.0$ atmospheres. Hence, it can be seen that O'Brien and Alford did not use the correct set of critical constants.

Using the correct set of critical constants, the constants of the Beattie-Bridgeman equation were calculated. The constants were found to agree well with those calculated by O'Brien and Alford¹⁹.

A comparison of Martin and Hou equation and the Beattie-Bridgeman equations with the experimental data are made in Table IV for the saturated region. Around the critical region Beattie-Bridgeman equation fails to predict pressures satisfactorily However in the low pressure regions a good comparison could be seen. A comparison of the two equations in the superheated region is highly desirable, but could not be made owing to lack of data. In general it is believed that the data calculated in this work is superior to the data of O'Brien and Alford¹⁹ as it can predict properties around the critical region and also at high pressures.

Calculation of thermodynamic properties of carbon disulphide were made up to a temperature of $750^{\circ}K$ and a pressure of 300 atmospheres. The calculated properties are represented graphically as an entropy temperature diagram and is shown as Fig. 1.

						The second s	and the second s		The second s
T°K	P Atm.	٨ı	٧r	Sı	۵Se	Se	Ηι	△H"	50 240
250.0	0.0526	0 05742	390.0	32 35	28 43	60.78	22701	7107	29808
260.0	0.0882	0.05803	241.9	33.20	26.97	60.17	22904	7011	29915
270.0	0.1447	0 05866	151.6	33.98	25.61	59.59	23085	6915	30000
280.0	0.2270	0:05930	98.82	34,70	24.33	59.03	23279	6812	16006
290.0	0.3464	0,06000	66.24	35.39	23,14	58.53	23470	6716	30180
300 0	0.5092	0 06067	45.17	36.03	22.03	58 06	23657	6601	30258
310.0	0 7300	0.06143	30.66	36,70	20.98	57.68	23809	6505	30314
320.0	1.0200	0.06228	24.70	37.39	19.99	57.38	24077	6396	30473
330.0	1.4000	0.06298	18 66	37.99	19.04	57.03	24281	6284	30565
340.0	1.88	0.06502	14.22	38 57	18.15	56.72	24478	6170	30648
350.0	2 48	0 06524	11 04	39.15	17.29	56.44	24678	6052	30730
360,0	3.20	0.06569	8.712	39.72	1647	56.19	24877	5930	30807
370.0	4.09	0.06627	6 921	40.25	15.69	55.94	25074	5804	30878
380 0	5.19	0.05780	5.517	40.73	14.95	\$5.68	25263	5680	30943
390.0	6 45	0.06897	4.505	41.26	14.21	55.47	25470	5541	31011
400.0	76 ⁻ L	0 0/005	3.643	41.72	13 SI	55.23	25653	5402	31055
410.0	9.70	0 07129	3.033	42.23	12.82	55 05	25865	5257	31122
420.0	11.70	0.07272	2 521	42 68	12.17	54.85	26058	5113	31171
430.0	14.00	0 07443	2,069	43,10	11.51	54.61	26244	4948	31192
440.0	16.70	0.07614	1 722	43 52	10 87	54.39	26440	4781	31221

CARBON DISULPHIDE

TABLE VI

Properties of Saturated Liquid and Vapour

306

D. N. SESHADRI, D. S. VISWANATH AND N. R. KULGOR

	Нg	31237	31252	31220	31124	31070	31034	30966	30874	30745	30662	30548	30373	30071	29909	
	۵H۵	4606	4421	4221	4009	3777	3520	3233	2901	2499	2257	1966	1651	984.4	0.0	
	Нı	26631	26831	26999	27115	27293	27514	27733	27973	28246	28405	28582	28782	29087	29909	
	ŝ	54.17	53.96	53.67	53.27	52 96	52.72	52.43	52.11	51.75	51.53	51.27	50,92	50.32	20.01	
(contd.)	۵S	10.24	9.61	8.98	8.35	7.71	7.04	6.34	5.58	4.72	4.22	3.64	2.92	1.81	0.0	
ABLE VI-	Si	43.93	44.35	44.69	44.92	45.25	45.68	46.09	46.53	47.03	47.31	47.63	48.00	48.51	50.01	
F	Vg	1,436	1.210	0.9965	0.7964	0.6621	0.5619	0.4729	0,3966	0.3297	0.2992	0.2681	0.2339	0.1923	0.17305	
	٧ı	0.07809	0.08023	0.08294	0.08574	0.08916	0 09285	0.09749	0.10345	0.11230	0.11786	0.12441	0,13311	0.14929	0.17305	
	P atm.	19.75	23.15	27.00	31.25	36.10	41.60	47.60	54.20	61.50	65 00	68.80	72.55	76.25	78.00	
	T∘K	450.0	460.0	470.0	480.0	490.0	500.0	510.0	520.0	530.0	535.0	540.0	545.0	550.0	552.16	

Thermodynamic Properties of Carbon Disulphide

ΠA	
BLE	
(e-e-e)	

Properties of Superheated Carbon disulphide

								Ja	essure range:	0.10 to(5,	00 atms.
NoL	P Atms.	0.10	0.20	0.30	0.50	0.80	1.00	1.50	2.08	3.00	5.00
280,0	V H	228.2 30130	113.3 30115					· · · · · · · · · · · · · · · · · · ·			
	\$2	60.72	59.30								
	A	244.9	121.8	80.78	47.94						
300.0	H S	30349 61.47	30337 60,06	30324 59.23	30297 58.14						
320.0	N H S	261.6 30572 62.19	130.3 30561 60.79	86.49 30550 59.96	51.47 30529 58.89	31.77 30496 57.88	25.19 30473 57.38				
340.0	> H S	278.1 30796 62.87	138.6 3078\$ 61.48	92.15 30779 60 65	54.95 30762 59.60	34.01 30735 58.60	27.03 30717 58.12	17.72 30670 57.21			
360.0	N H S	294.7 31025 63.53	147.0 31018 62.13	97.77 31011 61.31	58.38 30996 60.27	36.21 30974 59.29	28.82 30959 58.81	18.97 30921 57.92	14 04 30882 57.27	9.094 30800 56.29	
380.0	> H S	311.2 31257 64.15	155.3 31251 62.76	103.3 31245 61.95	61.77 3123 2 60.91	38.38 31214 59 94	30.59 31202 59.47	20.19 31170 58.60	14.98 31138 57,96	9.774 31072 57.02	5.587 30929 55.71
					i						

1

					TABLE V	111 – (contd	c	Pressi	re Range:	0.10 to 5.00	a 100 e
TrK	P Atms.	0.10	0.20	0.30	0.50	0.80	1.00	1.50	2.00	3.00	5.00
	>	327.7	163.6	108.9	65,15	40 53	32.32	21.37	15.90	I0.42	6.027
400.0	H	31491	31486	31481	31471	31455	31444	31419	31392	31337	31222
	s	64.75	63.37	62.55	61.52	60.55	60.09	59.24	58.61	57.70	56.46
	٨	344.2	171.9	114.5	68 50	42.65	34.03	22.54	16.80	11,05	6.441
420.0	H	31729	31724	31720	31711	31698	31689	31667	31645	31599	31504
	S	65.33	63.95	63.13	62.10	61.15	60.69	59.84	59.23	58.34	57.15
	Λ	360.7	180.2	120.0	71.84	44.76	35.73	23.70	17.68	11.66	6.836
440.0	Н	31969	31965	31961	31954	31943	31935	31917	31898	31859	31780
	ŝ	62.89	64.51	63.70	62.67	61.72	61.26	60.42	59.82	58.95	57.79
	٨	377.1	188.4	125.5	75.17	46 86	37.42	24.84	18.55	12.25	7,217
460.0	Н	32212	32208	32205	32200	32189	32183	32167	32151	32118	32051
	s	66.43	65.05	64.24	63.21	62.26	61.81	60.98	60.38	59.52	58.40
	٨	393 6	196.7	131.0	78.49	48.95	39.10	25.97	19.41	12.84	7.587
480.0	н	32457	32454	32452	\$2446	32438	32432	32418	32404	32376	32319
	S	66.95	65,57	64.76	63.74	62.79	62.34	61.51	60,92	60.07	58,96
	۸	410.0	204.9	136.5	81.81	51.03	40.78	27.10	20.26	13.42	7.950
500.0	H	32705	32703	32700	32695	32688	32683	32671	32659	32635	32585
	Ø	67.46	66.08	65.27	64.25	63.30	62.85	62.03	61.44	60.60	59.51

Thermodynamic Properties of Carbon Disulphide

					TABLE	VII—(con	(<i>d</i> .)	Pres	sure Range :	0.10 to 5.00	atms.
T∙K	Patos.	0.10	0.20	6.30	0.50	0.80	1.00	1.50	2.00	3,00	5.00
520.0	≻ H s	426.5 32955 67.95	213.1 32953 66.57	142.0 32951 65.76	85.12 32947 64.74	53.11 32941 63.80	42.45 32936 63.35	28.22 32926 67 53	21.11 32915	14.00 32894	8.307 32850
540.0	V H S	442.2 33208 68.43	221 4 33206 67.05	147.5 33204 66.24	88.42 33201 65.22	55.19 33195 64.28	44.11 33191 63.83	29.34 33182 63.01	21.95 33172 62.43	14.57 33154 61.60	8.659 33115 60.53
560.0	A H S	459.3 33463 68.89	229.6 33461 67.51	153.0 33459 66.70	91.72 33456 65.68	57.25 33451 64.74	45.77 33448 64.30	30 45 334 9 63.48	22.80 33431 62.90	15.14 33414 62.07	9 008 33380 1.01
580.0	N H S	475.8 33720 69.34	2378 33718 67.96	158 5 33717 67.15	95.02 33714 66.14	59.33 33709 65.20	47.43 33706 64.75	31.56 33699 6393	23.63 33691 63.35	15.70 33676 62.53	9.354 33646 61.48
600.0	N H S	492.2 3.1979 69.78	246.0 33977 68.40	164.0 33976 67.59	98.3? 33973 66.58	61.39 33969 65,64	49 09 33963 65.19	32.67 33957 64.38	24 47 33950 63 80	16 26 33936 62 98	9.697 33909 61.93
620.0	У Н S	508.6 34239 70.21	254.2 34238 68.83	169.4 34237 68 02	101.6 34234 67.00	63 46 34231 66.07	50.73 34128 65.62	33.78 34222 64.81	25.30 34216 64.23	16.82 34204 63.41	10 04 34179 62.36

310 D. N. SESHADRI, D. S. VISWANATH AND N. R. KULOOR

								Pressi	ure Range :	0.10 to 5.00	atms.
T∘K	P atms.	0.10	0.20	0.30	0.50	0.80	1.00	1.50	2.00	3 00	5.00
	2	525.0	262.5	174 9	104.9	65.52	52.39	34 89	26.13	17.38	10.38
640.0	H	34502	34501	34500	34498	34494	34492	34486	34481	34468	34445
	Ø	70.62	69.25	68.44	67.42	66.48	66.04	65.23	64.65	63.83	62.79
	٨	541.5	270.7	180.4	108.2	67.58	54.04	36 00	28.96	17.94	10.72
660.0	H	34766	34765	34764	34762	34759	34757	34752	34748	34737	34716
	S	71.03	69.65	68.85	67.83	66.89	66.45	65.64	65.06	64,24	63.20
	٨	557.9	278.9	185.9	111.5	69,64	55.69	37.09	27.79	18 49	11.05
680.0	H	35023	35022	35021	35019	35016	35015	35010	35005	34995	34976
	S	71.43	70.05	69.24	68.23	67.29	66.84	66.03	65.46	64 64	63.61
	>	574.3	287.1	191.4	114.8	71.70	57.34	38.20	28 62	19 05	11.39
700.0	H	35300	35299	35298	. 35296	35293	35292	35287	35283	35274	35256
	s	71.81	70.44	69.63	68.61	67.68	67.23	66.42	65.85	65.03	64.00
	٨	590.7	295.3	196.8	118.1	73.76	58.99	39.30	29.45	19.60	11.73
720.0	H	35569	35568	35567	35565	35563	35861	35557	35552	35544	35527
	S	72.19	70.82	70.01	69 00	68.06	67-61	66.80	66.23	65.41	64.38
	٨	615.3	307.6	205 1	123.0	76.85	61.46	40.95	30.69	20.43	12.23
750.1	0 H	35974	35974	35973	35971	35969	35967	35964	35960	35952	35937
	ø	72.75	71.37	70.56	69.55	68.61	68.17	67.36	66 78	65.97	64.94

Thermodynamic Properties of Carbon Disulphide

Trg: P Atms. 8.0 10.0 15.3 20.0 25.0 30.0 20.0 H 31350 31228 2958 20.0 25.0 30.0 20.0 H 31350 31228 31300 31228 30.0 30.0 V 4.115 3.202 1968 31309 54.77 3.427 3.1309 40.0 H 31653 31563 31309 54.77 3.427 2.149 1.495 56.64 56.03 54.77 3.1309 54.77 3.1349 31349 50.0 H 31945 31663 31349 54.77 3.1349 56.64 56.03 54.77 3.1495 54.77 3.1349 50.0 H 31945 3144 1.228 0.9390 90.0 H 322129 32166 31349 55.39 54.60 53.79 50.0 H 32200 31815 51.260 53.79 54.60						LADLE VII-	–(contd.)				
Teg P Atms. 8.0 10.0 15.3 20.0 25.0 30.0 20.0 H 31350 31228 20.0 25.23 30.0 30.0 20.0 H 31350 31228 55.27 31238 55.27 30.0 31.0 30.0 31.0 30.0 31.0 30.0 31.0 30.0 31			:					· · · · · · · · · · · · · · · · · · ·	Pressure Ran	12c: 3.0 to 60.	.0 atms.
V 3.8.36 2.958 20.0 H 31350 31228 5 5593 5527 31228 40.0 H 31653 31563 31309 40.0 H 31653 31563 31309 60 H 31945 56.03 54.77 5 56.64 56.03 54.77 3144 50 87.11 51.56 54.58 31349 80.0 H 31945 31870 31815 31604 31349 80.0 H 32229 32.313 16.641 1.228 0.9390 80.0 H 32229 32.65 54.55 31349 5 57.39 56.71 51.56 54.56 53.79 80.0 H 32229 32.863 31846 31349 5 57.39 56.27 55.39 54.60 53.79 5 57.39 56.91 56.11 55.40 53.79 5 57.93 56.91 56.10 53.70 54.73	Yar	P Atms.	8.0	10.0	15.3	20.0	25.0	30.0	40 \$	50.0	60.0
20.0 H 31350 31228 20.0 H 31350 31228 40.0 H 31653 31563 31309 5 55.64 56.03 54.77 3427 3427 5 56.64 56.03 54.77 3427 3427 3427 60 H 31945 31870 31668 31434 31349 60 H 31945 31870 31668 31434 31349 60 H 31945 31870 31668 31434 31349 80.0 H 32229 31668 31434 31349 80.0 H 32229 32166 32600 31349 80.0 H 32229 32166 31815 31604 31349 80.0 H 32229 32166 31815 31604 31349 80.0 H 32229 32165 32455 54.60 5379 80.0 H 32203 54.163 54.60 5379 5 58.46<		2	3.836	2.958							
S 55 91 55 27 40.0 H 31653 31309 40.0 H 31653 31309 5 56.4 56.03 54.77 5 56.64 56.03 54.77 5 56.64 56.03 54.77 5 56.64 56.03 54.77 5 57.64 56.03 54.77 5 57.13 51.56 54.58 80.0 H 31945 31815 31604 80.0 H 32229 32166 3.63.79 54.60 53.79 80.0 H 32229 32166 3.66.27 55.39 54.60 53.79 80.0 H 32229 32463 1.641 1.228 0.9390 80.0 H 32229 32.613 31604 31349 57.9 80.0 H 322315 316163 31349 56.90 53.79 80.0 H 323515 32.610 54.60 53.79 85.46 57.91 56.91	20.0	H	31350	31228							
V 4.115 3.202 1968 40.0 H 31653 31563 31309 5.6.64 56.03 54.77 3.427 3.427 3.1309 5.6.64 56.03 54.77 3.142 1.495 54.77 60 H 31945 31870 31668 31434 55.39 54.60 53.99 80 H 31945 31870 31668 31434 51.56 54.58 31349 80.0 H 31945 3.635 2.313 1.641 1.228 0.9390 80.0 H 32229 32166 3.633 2.3133 1.641 1.228 0.9390 80.0 H 32229 354.66 3.837 31349 31349 80.0 H 322315 32.163 31967 31349 31349 80.0 H 32.503 32.463 32.463 31349 31349 80.0 H 32.533 54.60 53.79 54.60 53.79 90.0 H 32.508 32.46		ŝ	55 93	55 27							
40.0 H 31653 31563 31309 5 56.64 56.03 54.77 3427 2.149 7 3 427 3.427 2.149 1.495 60 H 31945 31870 31668 31434 5 57.13 51.56 54.58 31434 80 H 31945 31870 31668 31434 80.0 H 31945 3.633 2.313 1.641 1.228 0.9390 80.0 H 322.29 32166 3.2000 31815 31604 31349 80.0 H 322.29 32466 3.2000 31815 31604 31349 80.0 H 322.29 54.00 23.79 56.91 56.11 55.40 53.79 90.0 H 32503 53.260 53.73 56.91 56.11 55.40 54.73 50.0 H 32503 54.60 1.661 1.889 1.661 56.47 56.47 56.75 50.00 H 32.6		٨	4.115	3.202	1 968						
S 56.64 56.03 54.77 3.427 3.437 3.437 3.437 3.437 3.437 3.144 95	40.0	H	31653	31563	31309						
V 4.377 3.427 2.149 1.495 50.0 H 31945 31870 31668 31434 5 57.28 56.71 51.56 54.58 31434 80.0 H 31945 3.6.31 51.56 54.58 0.9390 80.0 H 32229 32.616 3.200 31815 31604 31349 80.0 H 32229 32.166 3.200 31815 31604 31349 5 57.39 56.27 55.39 54.60 53.79 00.0 H 32508 3.3455 32.315 31997 31809 00.0 H 32508 3.3455 32.315 31997 31805 5 57.93 56.91 56.11 55.40 54.73 54.73 20.0 53.313 32.606 1.889 1.461 31805 5 5 5 5 5 5 5 5 31997 <		ŝ	56.64	56.03	54.77						
50 H 31945 31870 31668 31434 5 57.28 56.71 51.56 54.58 54.58 80.0 H 32229 32166 32.000 31815 31604 31349 80.0 H 32229 32166 3.200 31815 31604 31349 80.0 H 32229 32166 3.200 31815 31604 31349 80.0 H 32239 56.27 55.39 54.60 53.79 90.0 H 32508 3.2455 32315 31997 31809 90.0 H 32508 3.2455 32315 31997 31809 91. Y 4.869 3.840 2.454 1.770 1.348 1.060 91. H 32508 3.2455 32315 32163 31997 31809 92.0 H 32508 3.2455 32.610 54.73 54.73 91. H 32783 32.616 1.859 1.661 54.73 92.0 D 58.40 57.13 56.61 55.40 54.73 93.0 D 58.40 57.81 56.61 55.40 54.73 93.0 D 58.40 57.81 56.70 55.40 54.73 93.0 D		Λ	4.377	3.427	2.149	1.495					
S 57.28 56.71 51.56 54.58 54.58 80.0 H 32229 3516 3.033 1.641 1.228 0.9390 80.0 H 32229 32166 3.2010 31815 31604 31349 80.0 H 32229 32166 3.2000 31815 31604 31349 5 57.39 56.27 55.39 54.60 53.79 5 57.89 57.34 56.27 55.39 54.60 53.79 00.0 H 32508 3.2455 32.915 31697 31805 5 57.93 56.91 56.11 55.40 54.73 20.0 53.79 56.91 56.11 55.40 54.73 20.0 57.93 56.91 56.11 55.40 54.73 55.205 20.0 53.40 57.73 56.71 55.40 54.73 55.205 20.0 53.40 57.73 56.91 56.10 <td>50.0</td> <td>Н</td> <td>31945</td> <td>31870</td> <td>31668</td> <td>31434</td> <td></td> <td></td> <td></td> <td></td> <td></td>	50.0	Н	31945	31870	31668	31434					
V 4.627 3.635 2.313 1.641 1.228 0.9390 80.0 H 32229 32166 32000 31815 31604 31349 5 57.39 57.34 56.27 55.39 54.60 53.79 5 57.58 57.34 56.27 55.39 54.60 53.79 00.0 H 32508 3.455 32315 32163 31997 31809 00.0 H 32508 3.455 32315 32163 31997 31809 5 58.46 57.93 56.91 56.11 55.40 54.73 20.0 H 32783 32468 32491 32463 54.73 20.0 58.40 57.51 56.74 56.10 55.70 55.75 20.0 58.40 57.51 56.75 56.20 55.20 55.20 20.0 58.40 57.51 56.75 56.50 56.50 55.50 59.00		s	57.28	56.71	51.56	54.58					
80.0 H 32229 32166 32000 31815 31604 31349 S 57.34 56.27 55.39 54.60 53.79 V 4.869 3.840 2.454 1.770 1.348 1.060 00.0 H 32508 3.845 2.454 1.770 1.348 1.060 00.0 H 32508 32455 32315 32163 31997 31809 S 58.46 57.91 56.91 56.11 55.40 54.73 V 5.104 4.035 2.606 1.889 1.454 1.161 20.0 H 32783 32713 32618 32245 32205 5.9 0.0 58.49 57.51 56.75 52.25 55.25		٧	4.627	3.63\$	2.313	1.641	1.228	0.9390			
S 57.34 56.27 55.39 54.60 53.79 V 4.869 3.840 2.454 1.770 1.348 1.060 O.0 H 32508 3.845 2.455 3215 31997 31809 S 58.46 57.91 56.91 56.11 55.40 54.73 V 5.104 4.035 2.606 1.889 1.454 1.161 20.0 H 32783 32413 32618 32491 52205 5.9 0.0 58.40 57.51 56.74 54.73 55.20	30.0	Н	32229	32166	32000	31815	31604	31349			
V 4.869 3.840 2.454 1.770 1.348 1.060 00.0 H 32508 3.3455 32315 31643 31997 31809 5 5.46 57.93 56.91 56.11 55.40 54.73 2 58.46 57.93 56.91 56.11 55.40 54.73 20.0 H 55.705 2.606 1.889 1.454 1.161 20.0 H 32783 32.618 32.491 32.325 55.205 50.00 58.40 57.51 56.75 56.10 55.40 54.75		S	57.89	57.34	56.27	55.39	54.60	53.79			
00.0 H 32.508 32.455 32.315 32.163 31997 31809 S 58.46 57.93 56.91 56.11 55.40 54.73 V 5.104 4.035 2.606 1.889 1.454 1.161 20.0 H 32783 32.618 32.491 32.205 20.0 H 32783 32.618 32.491 32.205 5.9 0.58 57.51 56.75 56.10 55.205		٨	4.869	3,840	2.454	1.770	1,348	1.060	0.6739		
S 58.46 57.93 56.91 56.11 55.40 54.73 V 5.104 4.035 2.606 1.889 1.454 1.161 20.0 H 32783 327137 32618 32491 32205 5.9 0.0 5.8,40 57.51 56.75 56.10 55.41	00.00	Н	32508	32455	32315	32163	31997	31809	31319		
V 5.104 4.035 2.606 1.889 1.454 1.161 20.0 H 32783 32737 32618 32491 32354 32205 S 90.0 58.49 57.51 56.75 56.10 55.51		Ś	58.46	57.93	56.91	56.11	55.40	54.73	53.34		
20.0 H 32783 32737 32618 32491 32354 32205 S 59.00 58.49 57.51 56.75 56.10 55.51		٨	5.104	4 035	2.606	1.889	1.454	1.161	0 7824	0.5295	
S 59.00 58.49 57.51 56.75 56.10 55.51	20.0	Н	32783	32737	32618	32491	32354	32205	31856	31364	
		s	59.00	58,49	57.51	56.75	56.10	55 51	54.39	53.15	

D. N. SESHADRI, D. S. VISWANATH AND N. R. KULOGR

								Pressure Range	.: 8.0 to 60.0	atms.
T∘K	P Atms.	8.0	10.0	15.0	20.0	25.0	30.0	40.0	50.0	60.0
	>	5.334	4.224	2.743	2.000	1.552	1.250	0 8672	0.6265	0.4480
540.0	Н	33056	33016	32913	32804	32689	32566	32291	31957	31499
	s	59.51	59.01	58.06	57.34	56.73	56,19	55.22	54,27	53.18
	٨	5.560	4.410	2.875	2.106	1.643	1.332	0.9403	0.6993	0.5315
560.0	Н	33328	33293	33202	33108	33009	32905	32678	32419	32110
	S	10.09	59.52	58.59	57.89	57.31	56.81	55.92	55.11	54.29
	٨	5.783	4.592	3.003	2.208	1.729	1.409	1.006	0.7613	0.5941
580.0	H	33599	33568	33487	33404	33318	33228	33036	32824	32585
	s	60.48	60 00	59.09	58,41	57.86	57.37	\$6.55	55.82	55.12
	Λ	6.003	4.772	3.129	2.307	1.812	1,482	1.068	0.8167	0.6472
0 009	H	33870	33842	33770	33696	33619	- 33540	33374	33195	32998
	\$	60.94	60.46	59.57	58.91	58.37	57 90	57.12	56.45	55.83
	٨	6.222	4.949	3.252	2.403	1.893	1.552	1.125	0.8678	0.6947
620.C	H	34141	34115	34050	33984	33915	33845	33699	33543	33317
	s	61.39	16.09	60.03	59.38	58.85	58.40	57.65	57.02	56.45
	Δ	6.439	5.125	3.374	2.498	1.972	1.620	1.131	0.9158	0.7384
640.(0 H	34412	34389	34330	34269	34208	34145	34014	33877	33732
	τ Λ	61.82	61.35	60.47	59.83	59.32	58.88	58.15	\$7.55	57.01

TABLE VII-(contd.)

Thermodynamic Properties of Carbon Disulphide

								Pressure R	tange: 8.0 to	60.0 atm.
T°K	P Atms.	8.0	10.0	15.0	20.0	25.0	30.0	40.0	50.0	60.0
	Λ	6.654	5.300	3.494	2.591	2.048	1.687	1.234	0.9616	0.7795
660.0	Η	34683	34662	34608	34553	34497	34440	34322	34199	34072
	S	62,23	61.77	60.90	60.27	59.76	59.33	58.63	58.04	57.53
	٨	6.869	5.474	3.613	2.683	2.124	1.752	1.286	1.006	0.8186
680.0	н	34955	34936	34885	34835	34784	34732	34625	34514	34399
	s	62.64	62.18	61.32	60.69	60.19	59.77	59.08	58 51	58.02
	٨	7.082	5.646	3.731	2.773	2.199	3.815	1.336	1.048	0.8561
700.0	Н	35228	35210	35164	35117	35070	35002	54923	34822	34719
	S	63.04	62.57	61.72	61.10	60.60	60.19	59 51	58.96	58.48
	٨	7.295	5.818	3.848	2.863	2.272	1.878	1.385	1,090	0.8924
720.0	Н	35502	35485	35442	35398	35354	35310	35219	35126	35032
	ŝ	63.42	62.96	62.11	61.49	61.00	60.60	59,93	59.39	58.92
	2	7.613	6.074	4.023	2.997	2.381	1 971	1.458	1.150	0.9451
750.0	Н	35914	35898	35859	35820	35780	35740	35659	35576	35492
	Ś	63.98	63.52	62.68	62 07	61.58	61.13	60.53	60.00	59.55

D. N. SESHADRI, D. S. VISWANATH AND N. R. KULOOR

TABLE VII- (could.)

			т.	ABLE VII-(0	contd.)	Pressure Ra	ange: 80.0 to 300.0 atms.
T°K	P. Atms.	80.0	100.0	150.0	200.0	250.0	300 0
	٨	0.2775					
560.0	Н	31057					
	s	52.06					
	٨	0.3713	0.1942				
580.0	Н	31970	30763				
	S	53.67	51.35				
	٨	0.4286	0 2861				
600.0	н	32537	31918				
	S	54.63	53.31				
	>	0.4745	0.3373	0.1289			
620.0	Н	33003	32553	30746			
	s	55.39	54.36	51.01			
	>	0.5144	0.3773	0.1806			
640.0	Н	33417	33057	31822			
	ŝ	56.05	55.16	52.72			
	٨	0.5505	0.4117	0.2211			
660.0	н	33798	33496	32580			
	S	56.64	55.83	53.88			
					an de l'anne an anna an anna an anna		and the second secon

Thermodynamic Properties of Carbon Disulphide

						Pressure Range :	80.0 to 300.8 atm
X°T	P Atas.	80.0	100,0	150.0	200.0	250.0	300.0
	Λ	0.5840	0.4424	0.2514			
0.0	Н	34157	33897	33150			
	s	57.17	56.43	54.74			
	٨	0.6155	0.4708	0 2771	0.1778	0.1325	
0.0	Н	34502	34272	33637	32882	32275	
	S	57.67	56.97	55.44	53.98	52.85	
	٨	0.6456	0.4974	0.2999	0.2006	0 1447	0.1273
0.0	н	34835	34629	34074	33453	32810	32566
	co.	58.14	57.48	56.06	54.78	53.60	53.04
	٧	0.6887	0.5349	0.3306	0.2292	0.1687	0,1384
0.0	Н	35320	33141	34673	34174	33637	33244
	Ś	58.59	58.17	56.87	55.76	54.73	53.96

1

316 D. N. SESHADRI, D. S. VISWANATH AND N. R. KULCOR

NOMENCLATURE

A, B, C, D,	- Constants in Equation [1].
a, b, c, d,	- Constants in Equation [2].
$b_0, A_2, B_2, C_2,$	
A3, B3, C3, A4,	- Constants in Equation [5]
B_5, C_5, K	н,
C_p	- Heat capacity at constant pressure, cal /gm. mole "K.
C_{ν}	- Heat capacity at constant volume, cal./gm. mole °K.
C_{S}, C_{H}	- Constants of integration in Equations [12] and [13] respectively.
H	- Enthalpy, cal./gm. mole.
Р	Pressure, atmospheres.
R	- Gas constant, liter atm/gm. mole °K.
S	- Entropy, cal./gm. mole [°] K.
Т	- Temperature, °K.
V	- Specific volume, litres/gm. mole.
ΔH_r	- Enthalpy of vaporization, cals./gm mole.
ΔS_{v}	- Entropy of vaporization, cals./gm. mole °K.
Superscript :	
*	- Properties at zero pressure or ideal gaseous state.
Subscripts :	
с	- Critical point.
g	- Gas or vapour.
1	- Liquid
Р	- Pressure
T	- Temperature
γ	- Volume.
	References
1. Avenarius, M	Pogg. Ann., 1874, 151, 303.

1.	Avenarius, M.,	••	10gg. Ham, 1014, 201, 0000
2.	Battelli, A.,	• •	Mem. Torino. 1890, 2, 41.
3.	Cross, P. C.,		J. chem. Phys., 1935, 3, 8 5.
4.	Fischer, R. and Reichel, T.,	• •	Mikrochemie, 1943, 31, 102.
5.	Galitzine, B.,		Wied Ann., 1890, 41, 620.

6,	Gordon, A. R.,		Ind. Engng. Chem., 1943, 35, 851.
7.	Hanny, J. B.,		Proc. R. Soc., (London), 1892, 33, 294.
8,	and Hogarth, J.		Ibid, 1880, 30, 178.
9.	Henning, F, and Stock, A.,		Z. Phys., 1921, 4, 226.
10.	Hodgman, D., Editor	• •	" Hand Book of Chemistry and Physics" 44, ed., The Chemical Rubber Publishing Co., Cleveland, Ohio, 1961.
11.		. •	"International Critical Tables", 3 and 5, McGraw- Hill, New York, 1928.
12.	Kobe, K. A. and Lynn, R. E.,	••	Chem. Rev. 195 ⁺ , 52, 117.
13.	Lowry, T. M.,		J. chem. Soc., 1914. 105, 81.
14.	Maron, S. H. and Turnbull, D.,		Ind. Engng. Chem, 1941, 33, 408.
15.	Martin, J. J. and Hou, Y. C.,	••	A. I. Ch. E. Journal, 1955, 1, 142.
16.	Mathews, J. H		J. Am. chem. Soc., 1926, 48, 562.
17.	Mathias, E.,	••	Compt. rend., 148, 1102 (1909), as given in Reference 12.
18.	Mills, J. E.,	۰.	J. Am. chem. Soc , 1909, 31, 1099.
19.	O'Brien, L. J. and Alford, W. J.,	• •	Ind. Engng. Chem., 1951, 43, 506.
20.	Rex, A.,	• •	Z. Phys. Chem., 1906, 55, 335.
21.	Rossini, F. D., Gucker, F. T Jr., Johnston, H. L., Pauling, L. and Vinal, G. W.,	••	J. Am. chem. Soc., 1952, 74, 2699.
22.	Sajotschewsky, W.,		Beibl. Annln Phys., 1891, 3, 741.
23.	Schewers, F.,		J. chem. Soc. (London), 1912, 101, 1889.
24.	Seitz, W., Alterthum, H. and Lecher, W. G.,	••	Annln Phys., 1916, 49, 85.
25.	Siemens, H. V.,	••	Annln Phys., 1913, 42, 871.
26.	Thorpe, T. E.,		J. chem. Soc. (London), 1880, 37, 327.
27.	Tyrer, D.,		J. chem. Soc. (London) 1911, 99, 1633,.
28.	Waddington, G., Smith, J. C., Williamson, K. D. and Scott, D. V	v.,	J. phys. Chem. 1962, 66, 1074.
29.	Wirtz, K.,		AnnIn Phys., 1890, 40, 439.
30.	Wullner, A. and Grotrian, O.,	••	Annln Phys., 1880, 11, 545.