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ABSTRACY

In the present paper, we study the flow behaviour of micropolar fuids (whoss
constifutive eqnations were formulated by Bringen), in the conventional simple
shearing flow, plane Coustte fiow and Poiseuille flow. We note characteristic
features of these {luds, like micro-rotation, unequal shearing stresses and coupls
swresses in each of the cases. We also compare the flow behaviour of the above
fluids with those which occur in the case of non-Newtonian {luids, characterised by
other well-known constitutive equations.

1. IaTRODUCTION

In a series of papers, Eringen™®? has put forward the theory of simple
microfiuids. These fivids are characterised by the fact that their propertiss
and behaviour are affected by the Iocal motions of the material particles
contained in each of its volume elements. They exhibit certain microscopic
effects »arising from the local structure and micro-motions of the finid
elements,

In a subsequent paper, Eringen? introduced a sub.class of these fluids
called the micropolar fHuids. They typify the fiuids consisting of bar-like
elements and domb-bell molscules and exhibit micro-rotational inertia and
other effects.

In the present paper, we study the flow behaviour of thess micropolar
fluids in the comventional Couette and Poiseuille flows. We evaluate the
velocity profile, micro-rotation, shear siress and couple stress im each case
and compare them with these which occur in the case of non-Newtonian
fluids, characierised by other well known constitutive equations,

Z.  Basic EQUATIONS

The ficld equations of the micropolar Huids are given by the following
partial differential equations:

Continuity Equation .
dpfar + V- {po) =0, [24]
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First siress moment equation
(co4 547}V T o=y, VxVxy+EV xo-2Ky+pl=p ,v, [2.3)

where » and » are the velocity vector apd the micro-rotation vector
respectively. p is the demsity of the Buld, A, w,. K, are coefficients of
viscosity and a,, A, v, are coefficients of gyro-viscosity; f and 7 give the
body force and body couple respectively ; p is the isotropic pressure and the
miicro-u.eiiiel roia jon is given by gy =j px where j is a constant on the
sssumption of micro-isotropy.

3. FLOW THROUGH A STRAIGHT CHANNEL

We consider a micropolar fluid conforming to the above equations to be
confined between two infinite paraliel plates y =k and y = —hin a Cartesian
coordinate system with the axis of x in the direction paraliel to the plates
and equidistant from them and the axis of y perpendicular to the plates.
The two plates are stationary and flow is induced by the imtroduction of a
pressure gradient along the axis of x.

Let u, v, w be the physical componexsts of the velocity vector aleng the
%, ¥, z axes and vy, v, v, those of tho micro-rotation vector. Then we have

umuly), 0=0, we=l, w=0 ¥=0, wn=() ER

The equations of motion are
(s + &) d*a{dy + K, dv[dy ~ dpdx =0, {2.4
and v, &vdyt ~ K, duldy ~2K,v =0, [3.31

with boundary conditions _

wlf=u{—F) =0, v(H)=v(-H) =0, [3.4]
sipee the Huid sticks te the boundaries. From {3.2] we deduce that
dp/dx « coustant, say §,

Uz [3.2] with respect to y and substituting for dufdy in [3.3] we
obiain the mdowmg equation for »:

& u{dy® - Py Py — CK, v, (3.5]

\'
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where
poftli K o p. _B&5
K+, 7, [Py I
and ye ey, Ly + B ) {3.6]

COn integrating [3.5] we get
v Ay e 4 Ay e~ Pl £ CE fys 1? 3.7}

The corresponding expression for u is

PRy:  CK?
24 --!}2—y+D}, [3.8]

1 (B K Ay Kods
- Cy -~ +-Ze
(.U-a*K)[, i

where A;, 4. C, D are arbiirary constants chosen to satisfy the boundary
conditions [3.4].

We non-dimensionalise u by wg = — BE/(2 u, + &),

b s
so that 2wy ={1—p"3 - ‘(w_.__ i cosh [k — cosh lhy ) [3.91
v+ K, i sinh i

where y = iy’.  Introduce iwo non-dimensional parameters o and £ by the
relations

w=h B Klue £3.10}
Thea
r
g =(1~y - F L.cosha-coshay [3.11]

[’ #1 sinh @

The first term on the right in [3.11] represents the Newtonian velocity
profile. The second term represents the effect of microrotation and gyro-
viscosities. Since y' lies between -1 and I and @ and § are chosen to be
positive, this additional term is always negative, so that the velocity profile
for micropolar fluids always lies within that for a Newtonian fiuid as shown
in Fig. 1. We can understand this result by saying that some part of the
kinetic energy of the flow is utilised in maintaining the micro-rotations. A
similar behaviour is also observed in flulds with couple stresses® and for
pressure gradient flow in a circular pipe of micrepolar fluids®, We note
below the contribution to the energy equation of the micro-roiational efiects
and couple stresses in this case ;

p.E = T dkk + ,\,, dydm (2 My K}’ dkl dyg +2 K (wk - ¥y (wk - I’k)

G, Ve b V1 Lo Ve Tan R Yo Ve VL + Gr b PR fa.13]
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Fia. 1

Vejocity Profile a={.
Contribution of the micro-rotation =2 X, {w, — vy} (wyp — v}

N2 -
=y (A1 Y D [3.13]
Lo v K

Countribution of the couple siress =y, vy v

z 7 7, z
- yn(‘wi_\) ARy _ (L 134
K, +2u,/ | sinhik

Fig. 2 plots the micro-rotation
v iy -y —sinhay fsinha, {3.15]
against . Wz note that » is independent of the parameter 8 and that there

is anti-symmstry about the plane y =0, the rotutjons being in opposite senses
in these two regions,
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Fic. 2
Micro-Retation.

The shear-sirzsses are given by

I , g sishay

[ ]
- e Ly 3.16
Wi = TRl simne o i(aglan T )

While £, is the same as for the Newtonian fiuid, the shear-stress foy is
modified by the presence of an additional term. The deviation of the shear
stress f,, from that for the Newtonian fluid is showa in Fig. 3. We find that
on the boundaries there is a decrease in the magnitude of the shear-stress 7y,
when compared with that for & Newtonian fluid. Thisis in conformity with
the experimental observations made in ref. 4,
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Shearstress Diference.
Fig. 4 depicts the couple stress
My B3, up = 1 — o cosh a ¥ [sinh o = oy, By, s [3.17]

which are peculiar to this class of fluids,

In general, non-Newtonian fuids in the above pressure gradient flow
display a decrease in apparent viscosity with increasing rate of shear. That
is, i t,  f. -y F(y) where y is the rate of shear, then d{F y)/dy <0,

Writing the shear-stresses in dimensional form :

tye2{2u,+K)y -8By, [3.18]
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Fig. 4
Couple Stress

and te=By. {3.19]

We notice that the symmetric part of the stress tensor, namely,
FUo+ 0 =Qu+ K}y, {3.20]

resembles that of a Newtonian fluid of viscosity {2 u, + &,).

Again if we write the shear-stresses in the form
Lay=y F (V)a txs=y G ('}’)’ [3-213

we find that d[F(y)l/dy and 4{G(y)}/dy are equal in magnitude but
opposite in sign. We cannot, therefore, say anything definitely about the
variation of the apparent viscosity with rate of shear.
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4. SdPLE SHEARING Frow

When the rate of shear y i 2 constant we have, using the equation of

weo{dufdyly =2y, 0=0, w=0, [4.1]
To satisfy the balance of first stress moment equation, we require that
vea —tdsldy =~y fa.2)
The ocaly nop-vanishing vorticity component is

e~y {43}
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[44]

The apparent viscosity is a constant ={2 », + K} ie, no non-Newtonian
effects are present and the fluid resembles the Newtopian fluid with viscosity

{2 Myt Kv)‘
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5, Prang CoURrTE Frow

We now consider the flow of a micropolar fluid between two parallel
infinite plaies y =0 2and p =k, when the lower plate is at rest and the uppsr
moves with a constant velocity U, no pressure gradient being present.

In this case B=0, P in [3.7] and [3.8] so that
v die” 4 Ay 2 C Kl P, [5.1]
e [, + KM (8, 4D & 4 (K, 4]1) e 4+ D — €y (1 + K2y, 1] 152]
Since the Juid sticks to boundaries we have the £ ollowing boundary conditions:
=0 0ot y=0, =Uon y=h,l [5.3]
v=0on y=0, v=0on y=h,)
We have takes » to be zero at both the boundaries as the fluid sticks to it
and no micro-sotation is possible there.
This gives s the following expressions for u, »

8 coshaloyl-coshay —{cosha~1) 40y sinba [t +(8+2V/8] [5.4)
v a {1+ (8 +2)/R] sinh a — 2 {cosh & — 1)
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Fic. 11
Micro-Rotation o =2.
and ¥ B 7 v
vh «(B+1) _ sinha (1~ ) +sinbay —sinvhe . i5.5]
v 8 all+(8+2)/f]sinh a—2{cosha —1}

The velocity profile shown in Fig. 5 when o =5, is symmetric about the
Newtonian profile given by u/U=3". We notice that the flux across a cross
sectioh is the same for all micro-polar fluids irrespective of the values of a
and £. {Compare with §3).

The non-vanshing components of the shear stress, namely.

toh e sinh o {1~ ") +sinhay ~Lsinho {1 +(,B+2)/£]_ 5]
Ui w,+ K a {1+ (B +2if{]sinh @ —2{cosh o —1}
fyxft g+1 « sinh « 15.7)

P LI
2.

U2p + &)

8 alt +(8+2)/8lsinba ~2(cosha — 1)

are shown in Figs. 7and 8, for c =l and f=0, 1, §, oo. .5 w0 give§ “_"3
Mewtonian finid® and the shear-stress difference on the boundaries and within

she flow is seen in the graphs 7, 4/U {2 4, + K,) is a constant, which depends
purely on the valne of the parameters involved.

Again, we find in dimensional quantities

tow2 QU+ Ky +C, fyym —C, {s.8}

whers C is an erbitrary consiant to b2 determined from the boundary
go. ltops *urg r0o, the symmetric part of the stress tensor

’;‘ (tx.v + bye) = {2 o+ K) ¥ {5'9]
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Shear-Stress a =2 Shear-Stress Difference a=2.
resembles that for a Newtonian fluid of viscosity (2 u, + &)
If we write ty=7 Fly) and .=y G (v), {5.10]

then d[F(y)]/dy and 2]G(y}l/dy are equal in maguitude but opposite in

sign, so that we cannot say that there is & decrease in apparent viscosity with
increasing rate of shear.
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surface will produce an effect in & thin layer near the wall, equivalent to
reduction of the surface shear and occurrence of boundary layer.

& Frow prTwoeN ROTATING VERTICAL Coaxial CYLINDIRS

Next we consider the Sow of a micropolar fluid contained between two
vertical courial cylinders when the outer cylinder rotates with constant velocity.
Lzt the two oylinders be represcated by r=a and 7« b in a cylindrical polar
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coordinate system (r, 6, zJ and let the outer cylinder 7=4& rotate with a
copstant angular velocity ¥/b. 1f v, vg, vz and v, vy, v, 8re the physical
components of the velocity and micro-rotation vectors in the 7, 8, z directions,
then
v, =0, vy =rwlr) v =0,) .11
v, vgm 0, vy v (P ) v

The balence of momentum and frst stress mowents give:

VA1 4 d
ek} 2L L) -5 2 -0, 6.2]
—pfre - pra?, dpflize -pg, {6.3]
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The boundary conditions are:
gg =0 On r=a, vg =V oon r=b)
vy=0 onr=a, ww0 OB r=b,)

e T

ey ) a0
i

)

s

o

3=5

{6.4]

fe.s}

Integrating [6.2] with respect to r and substituting for 4 (Ffw)/dr in

{6 4] we have the following equation determining w:
EoldP + (Ufrydpldr — Py w — CKJyy»

whase € is ap arbitrary consiant and P, y, ere defined in [3.6].

[6.6]
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Solving for » we gat
v d LI+ BRI+ CR Iy P, {67}

where I, &, are modified Bessel functions of the first and second kinds of
order zero. The corresponding expression for vy is:

ro{r) - AL ~BE (0] ¢ ——

2{ {1+Klz}+1> 6.8}

{+§

where 4, B, C, D are arbitrary constants to be determined by the boundary
conditions [6.5]

rafV - (1F} L {ar’) {Ko (o m) - Ko (o3} = K {a ¥) {{(B{a) - K{am)}
~af(1 =2 T8 + 2/ B+ 1] {5 fam) & {a) ~ T (a) K {a m)}
+ {1 )t -« & (o m) Bla) + 1o (o« m) B (o)} D), (6.9}

where r=ar and b =am and

F = (a/m 2o~ (mfc) {Fo () & (am) + I (o} K {am)} — (e} {Kam) £ (o)
+ & (em) Ky (03} + 318+ 2)/B + 110n* - D) {h (o ) Ko ()
- By (e ) B (o3} {6.10]

For o « 2, the velocity for micropolar fluids differs only very slightly from
the Newtonian profile res/ ¥ = [m/{m* — U}[(+"* —~ 1)/¥'], s0 that we have drawn
in Fig 10, the Newtoaian velocity profile together with the velocity-difference
profile for micropolar fluids, with a =2 and 8=1, 5. 0. We notice that the
flux across a meridian section is greater for micropolar fluids than for New-
tonian fluids. Fig. Il shows the micro-rotation when a =2 and B=1, 5, co.
1t is zero on the two boundaries and attains 2 maximum close to 7' = 1.5.

valV e Lo (B + ARV {Ke(am) Ko ()} 55 (o '} + {5 (a) ~ & {arm)} Ko ()
+ L (am) Ke{a) ~ Ko (e m) & {a)} {6.11]

The non-vanishing componenis of shearing stress are :
{sl(2 2y + 8 )1 {0/ 7)
= (/Y F){Iy (o Y Ko (o m) — Ko ()] - Xy (a7} [ () = o ()]
—Aafr'y - {8+ 1)/l B (a m) Ko (0} - Ko (a ) s ()]
+ (e —aiklomyl (@) + 5 (o m) K (DI, [6.12]
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dimensional form
teo = {u+ By v dofdr + B {w - v},

Ve notice

P
T

fs.

and oo s, ¥ dufdr — K, {ew - v),

s0 that o s, 1 o3l Lo part of the stress tensor

=32y, + K rdwldr = {2 4,

which corrzenonds ta & Mewionian fuid with viscosity (2
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where
A = Ko {am) ~ Ko (a)s
Bty ()= & lam)
Coa (8 +2)/8+ 11k (am) Ko (a) - Ko (am) 5 ()],
D={ifa) [t - a ik (am) I (2} + Lo {am) & (o)} ]

”
1

U @) = 2 18 (') - B () = B (o) + 1 (o)),

f (& (a)]r b =} I8F {or' )= K (o) - &S (o) + BE ()]s

4
T100er) K (/W1 dr = =31 (o) K (o) + 5 (o) Ko (')
§
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3 ar’ a

The free-surface for Newtonian Fluids and the corresponding free surface
difference for micropolar fluids are shown in Fig. 15.

7. CONCLUSIGNS

We note that while the theory of micropolar Huids takes into account
varicus phenomens such as micro-rotation and micro-rotational inertia and
they are able to support couple stress and body couples, they do not predict
sertain observed phenomens, such as decrease in apparent viscosity with increa-
sing rate of shear in §3, §4 and §5 and the Weissenberg effect in §6. This
may perbaps, be due to the Inearisation involved® in the constitutive
squations. We note that the normal stresses for shearing flow for these fluids
resembles those for a Newspsjnn fluid with coefficient of viscosity {2, + ko)
ie u{Ref. 4, (3.4) (4.15)] and 2 modificacion of the constitutive equations is
neeessary before we can find a resemblance between these micropelar fluids
and general non-Newtonian fluids,
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