
The priiblem of heat transfer duz to rhe steady slow motion of an 
riarcico-vircou% fuid io a wavy cylindrical tube has been considered. T a k i n g  the 
deiorm::tion of the houndhry to be small, the equations of continuity, momentum 
2nd energy have hcrn solved using the perturbation technique. The solulion for 
the velocity i i i i d  is cmployod to study the oatnie of the temperature distributloo 
when rh; surface of the tube is maintainej a t  a constant temperature. 

The aclocity field and the vorticity sm affected by the qt~ese-relaxation time, 
while tho strcrs, the skimfriction and the temperature distribution are affscted by 
both the stress-rsiaration aod tbe strain-retardation times. 'The ?tieamlines and 
the isotherms are similar in natuie to that observcd i n  the reference 6. 

INTRODUCTION 

Using the theory of Fourier Transform Ciiron%hns discussed the problem 
of slow steady motion of  a Newtonian fluid in tbe  annular space between two 
rough coaxial circular cylinders rotating about  their common axis. ~ h a m r u i '  
has urilised the same procedure to discuss the  problem of  slow steady flow cf 
New:onian incompressible Buid through a cylinder assuming the roughness to 
be small in comparison to the smooth radius of the  cylinder. The  assuffiption 
of vanishing of azimuthal velocity made by Citron is not  correct 2s the 
roughness of the boundary has been tzken in the form of sinusoidal deformation. 
8elPnfmtes considzrtd the problem of steady flow of Newtonian fluid in a pipe 
with consvrictioss using (i)  an  infinite series for t h e  perturbed velocity field 
and  (il) a procedore of iteration on the Reyoclds number. Following Belio- 
faate, Tyagi4 extended the same problem t o  Reiner-Rivlin fluids. Bhatnagar 
(Q. L.) and Mohan ~ a o '  have invesiigated the  flow of a Reiner-Rivlin fluid 
between two wavy cylinders rotating about their common axis usiag the Fourier 
series instead of Fourier transforms t o  avoid the  explicit reference to  the 
conditions a t  infinity. In an earlier investigation6, we have adopted this 
method to study the slow steady Bow of a Rivlin-Ericksen fluid in a wavy 
cylindrical tobe with heat transfer. The aim of the present investigation is t o  
study the same problemb for an  elastico-viscous Euid, characterised by the 
constitutive equation given by 01droyd7. The constitutive equation a s  given 
by OIdrogd is 

In2 



where the symbols have the usual meaning. Wo represent the small defor- 
mation io the boundary by a general Fourier series in axial coordinate Z and 
obtain the solutions to  the first power of srn:ill deformaiion and correct to tho 
square of the Reynolds number appropriately defined later in the text. 

1. EQUATIONS OF TEE PROBLEM 
The equations of tile problem in additions to the coastitutive eqllation 

already srafed above in tensor nolation a re  : 

Encrgy Equation : 
p ~ p ~ j ~ , j = k , g i k ~ , , ~ i + ~ , i j ~ s  I1.31 

S d o r e  proceeding t o  solve these equations, we render all the  physical and 
dynamical qunnrilies dimensionless by introducing the following dimentionlw 
qusatities : 

&here a is the  average radios of tube, U the velocity on the axis in  t h e  absence 
Gf deformation in the boundary and T,, the constant temperature of the 
boundary. In such a soheine the following dimentioniess parameters are  
introduced in the problem: 

(i) R - p a  u / ~  the Reynolds number, p being the density of the fluid, 

(ii) h: = (Al U / a ) ,  = a2 the dimensionless parameters characte- 
rising tbe stress relaxation time and the strain retard3zio* 
time fespectively, 



Choosing a cg&indriiai coordinate system ( r ,  8, z)  the boundary co~cl~lions 
n l  l l - ~e  p r o b l m  in ?ern;$ of dimentianicss quantities are 1 

u - 0, $9, -= 0, T, - 0,  on r - 0, 

vil!rre a,, - (il /$) and 1;, w are respectively the  radial  and ax-iai velocities. 

The amplitude of the deformstbm of the  boundary assorncd to be smell, 
and the wuvzicngrh 2 r ; h  of the periodic deformation cao be adjws:ed by 
properly choosing e and :a respectively. 

so l&a& the cqnation of coatinirity {1.1] is ide;~licnllg satisfied and set 

\,5 - +. qp* 1 

p -P(O' + I [2.21 
P i  = P + . j 



The equations and the. boundary  condirinnu determining $:" 
oi;!ilined by substituting [ 2  11 and [2.2] io the dimeiltionlicss Form of tiic 

eqila:ionr Z1.21 and tho constimiv:: equation and eqoatizg the,,various, order 
iwns i n  F. 

a 

$I") ( r ,  Z) -- - ( ~ ~ ! ~ ' / 2 )  [ A ~  (r) cusa., r + 6, (r) $3 cr,, z].  12.51 
n - I  

Tke boundary cnndiioos f2.41 then  givz 

A , ~ ~ ) - - A : ( O )  -A, ( 1 ) = O ,  ~:,&~)-r.i,., 

Xi.63 

8,, (0) -B,; (01 -A, (nb = o n  e,: (1) = t, . 
With the above expression for #(" (P, z] we assume the following expressions 
for r h a  pe r lu rxd  stlesses . 



3r.d Pi;  1 - &) - 0. 
From [Z 11 and 12.7s) x e  have 

prd E 0. 

The motion heiog slow,  we w i i k  

A , - A O - ~ + X A ~ , . + R ~ A ? , , ,  B , - B m . i R B 1 . n + ~ 2 ; 9 2 , n ,  

and si.nilar expressions for C,, D,, &, f,,, G,, PI,, f,, and J,,. 

From our working, we know that 

A,,.=B1.,-O, 

The equa?ions dtterninii lg A,. ,, 4, ,,, Cox ,,. DO, ,,, Eo, z,i *.  GO*^, 
10, and .lo. are : 

CO, - {cqt P:'!/T~ [&, - ( 1  /rl  &, J. i2.9 01 
DO.. - -ctnvi"' /r)  !A;. , - ( i /r)  Ao, .I, 12.9 b] 

,, '= ( a t r d 0 ) / S 4  80: Po, - - (U~P!~ ' / '~ )  Ao, n, [2.9 c] 

GO. R - - ( u , , ~ ~ O ' / r )  B& ,,, f lo,  - ( ~ , , p ! ~ ) / i - ) / A o ,  ,,, B2.9 d]  

10, ,- - b7i0)/2 r )  [A:, . - ( 1 1 ~ )  A:, . + a: A*, ,,I, 12.9 el 

Jo.. - - (ri"'J2 r )  , - ( ~ l r )  BA, , + u :  B ~ ,  ,J. P.9 f 
1:. . + 411.) r;, . + (u:  - l / r 2 )  10, . - a, ED;. , + (I/+) DO, ,J + an H:. ,, 

* (..:.I F3: r. - 0, h2.9 d 

12, . -i-Uj'.k J&. +(a:- 1/21 Jo, + a ,  [c;, , + ( l / r )  Co, ,] 

- e n  G, ,, - b n / r )  Eo, a 'r 0. 12.9 h] 

eliminating @o. ., DO, ., Eo, ,, Fo, ., h;,, ., H, ,,,, la,,, and Jb, ,, from tha 
rql~etions 12.91 we get %he foilowing equations for the determination of 
Am and 4. a: 

r3 A ~ ~ - ~ F ~ A ~ : ' ~ + F ( ~ - ~ D : ? ) A ~ .  

- ( 3 - 2 0 $ r 2 )  A ~ , , + ~ ! P S A O , ~ ~ = O ,  12. IOO] 



to be solved under the b o n ~  dary  conditions : 

[% BOQ) 

The equations determining G,  ., Dl ,  ,, A,, ,,, 23, ,,, GI ,,,, H ,,., &, , and Jts n ~ ~ e :  

C,, , + (XI ~ ( 1 0 '  a,l4) [(rZ - 1) DO, 1L + 2a1, P(zO' Ao, ,,I = 0, [2.l ia 

5,. ,, + (A: p?' a,,/4) [(I - r 2 )  G, ,. + ZaUP$') 80 n]  = O, [2.114 

The equations deter~ninix~g A2, *, B,, ., C,, ,, D,, ,, E2, ,, Fz, ,, bia, H2: n, 12, w 
and J2, ,% are : 

~;,'ZI t. I;, ,. + (nt - l / r 2 )  &,.-a, [ D : ~  + (:/r) + a, &,,, -t (a,,lr) F2,. 

- (an P,(O"/B. I(! / r  - r )  &:, + (1 - 1/rZ) B:, , + a 2  (r  - ~ / r )  Be, ,J. (Z.l2*] 



13x1 ~linnic:.li-g C:, ., D2, ., &, .. Ez, no G2, 71. Hi. 8?. 11 and J>..,, , f rom the 
eqeiaticns [ ~ . 1 2 3 ,  we obtain the following equations for the de:esmination 
of A;, , and Bi, ," : 
2-4: - 2 t 2 4 r .  i T (3 - 26:  r') A:. - (3 - 2at ?))A;, ,, + o: r3 Az, 

- :a,,pS"/4) rP (t2 - 1) B:.~~ - &,, - 7 E ~ .  J 
-i- (X;"VY'%::~> s': [{S - 1) ( r 2  A:: + a:~;),,,) -- 4 a i r3  A,,. *,], &2.83a] 

? ~ ~ ! : , - 2 ? ~ ; > + r ( 3 - 2 a ~ P ) ~ ~ ,  

- - i.vbi$i,%) s l lZ - 1) G A: ," - A;, ", -- c:? A,,> J 

+- f i~"~o"u~/4)  2 [{ra- 1)  6' B'& + oj; B;,  ,) -. 4 0 3 r 9 0 1  [2.136] 



where s dash denotes dXercnrIz!tion with respec% to r. 

The sprcsses, L??e vo~ticity and the skin friction arc given by 





shere pi is some constant pressure and all the quantities in i 2 . ~ 5 ]  are known 
in terms of A, and B,. 

The equations and the boundary conditions determining ~ ' ~ ' a a n d  T") are 
obtained from the non-dimensmpnal form of the  rnergy equation If 31 and the 
boundary cond~t ions  jrl 41 by equating terms independent of' c and the G o -  

~Ec ien t  of r; respectively. 

e have, 

T(O:  (pp - I -r- (.EO R?~!~) ' /Q~;)  ( n  - re). [LIT] 





and 
Kz, *, (1) - I<;, ,? (0) - L2" ?$ (11 - L;, * (0) = 0. p.224 

On puiring A: = A: = O i n  ark the equat ims of Part A and Part B we get the 
quaiions for. Newtonian Euid and rhcse equations agree with the correspondi~~g 
eytiatians of reTerence 4 wi th  R= S = 0. The streamline and the voriicity are 
aifectsd by ?he stress-re!axation t ime o n l y  while the stresses and the temperature 
are affected by both  :he strsss-relaxation m d  the strain-sctardation times, 

The equations obtained in $ 2  cannot be solved in  d o s e  form for any 
zeneral value of or,, T o  visualise the flow field and t h e  temperatu.re distribu- 
!ion we take the particular case when the boundary o f  ilie tube has sinueodial 
dufo~mation defined as fo3ows : 

(1) a,, - a',, = 5, for a l l  n ; (ii) b ,  == b', - 0, for n > 1, and bp - b: -. 1- 
Ke choose the following values of the various parameters involved in this 
prsbls-in : 

E -0.05, v -p:o'- E ; A: =0.2, 0.5, 0.7; 

R' = 5, and h - 1, so that  t he  wavelength of the perkx%c &formalion 
is 2- .  

(a) Snreamiilies : I n  tbis particular care, w e  h a w  

for all ? in SO, 1) due Po hoinogeneous boundary conditions on  -4% I. To 

n b t m  Bo. 3 , A,, , and B,, , we adopt the nsua3 procedure of numesicai hie- 
:r3Uon of two pomt  boundary value problem and integrate the rqW*~~an% 
ILJO] arid 12.13] uurnerlcaiiy. 



Wit:, the known values of Be. 1 .  Az, g m d  &, 1 a t  each pol!ir of (0, i )  
at a subjn(crwl 0.1 the  stream i'uncuon :s con!$ctcly dekrmincd t y  thi: 

zxpressior: 

- - ( R ~  !f"/8) ( r 2 - .  rd/2) - ( s  R pj0'/2) [R?.$.,: z 

The stit-amlines n e a t  the boondary of the  wavy tube are almost parallel 
to it. The  dsformiiy of the strcamlmes d~crenscs continuolusly as we move 
away from the bou ;dssg towards :he axis or the lube. On axi': of the t u h e  
they becosz just s t raighl  due to asia? synmetry. Tnis phsnnn;enon issimilar 
to ?bat observed i 8 i h e  case of i l o w  of a Rivlin.Ericl:s-o Iloid discussed in 
refercmc 6. Tablo P shows the e E w t  of' P.: on stream function. 

Yn rbe absence of deforriration in the bour~dary. the vortex lines are 
concet~rric circies haring the same radji in a11 planes wilh their ceniucs lying 
on the axis Even in t h ~  presence of deformation in the boundary, the vortex 
ikfi  are concentric circles bu t  their radii diirer in diEcrent pianes, the radii 
Sting rnaximm in the plane z -  3 ~ i l Z  and minimum i n  t h e  plane z = n/2. 

Fig. 7. shows the varjatian of $2; -- - 2 Q 6 / ~ p L 0 )  with axial distmce z for 
variono vziire of r,  Fig. 3 shows thz variation of .Q> with radial distaoce r 
ia rke plcnss z 5 0. 712, n, 3 rr/2 and 2 m. 

From both these figures we note that .Q)8 inmeases with radia! distance 
2nd this increase i s  maximurn ire the plane z - 3 n/2 and mir,imum il? the plane 
z .::@. 

Tablo 2 s h o w  the effect. of A; on v ~ r t i c i t y .  The increase in results in 
a dsciease in \rocticity up to a certain distance froln the axis and tlicll die 
voziciy Encreasrs towards the boiia&ry in the Fiane a - " 1 2 .  ybe ri;,versc is 
:me iu the plant: r = 3 q/a. 
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(i) 0~009014 
(ii) 5 o % ~ l 2 i  

(iii) 0.009306 
G u )  0..008C)ES 

' (i) 0.035498 
"rii) 0.035485 
(iii) 0.Q35478 
[iv) 0.055354 

(i) 0.079969 
(rib 0.0?7942 

(Gi )  0.077824 
{iv) 0.077619 

(i) 0.134006 
g'ii) 0.i33958 
(iii) 0.133798 
(iv) 0.333589 
'(i) 0.200216 
(ii) Zi.200170 

(iii) 0.1 $9971 
(iv) 5.9 99727 

(i) 0,272244 
(ii') 0.272: 98 

I. . .>, 
(111 0.272006 
i iv )  0.27!7f;9 

(i] 0.344816 
(ii') 0.344779 

(ai) 0.344639 
(iv) 0.344146 

ji? 04L1:'67 
ti.:) 0.4 I746 

(iii) 0.411665 
(iv) 0.41 !562 

[.ii 0.466im 
($1 0.4b6087 

( i i l )  0.266067 



( i )  0.C92635 
(ii) 0.092628 

( i i i )  0.09184,l 
(iv) O.O9lO-!6 

l i )  0.159909 
(il) 0.15970'7 
(5) 0 I57944 
(iv) 0.155973 

di) 0.237542 
(ii) 0.237299 

( i i i )  0.235340 
(iv) 0.233135 

ti)  0.313304 
(ii) 0.313046 

(iii) 0.311011! 
(iv) 0.308739 
6;) 0.396275 

(ii) 0.296012 
(iii) 0.393963 
(iv') 0.391651 

{i) 0.469576 
(ii) 0.469279 

B~i i )  0.465633 
(lv) 0.46250 \ 

bi) 0.549340 
dii) 0.549474 
(ii3 0.54804: 
(iv) 0.547142 

(i) 0.625425 
(ii) 0.525701 

(iii) 0.625259 
(iv) 0 626416 
(i) 0.700012 

(ii) 0.400455 
[iii) 0.70i632 
( i v )  0.703;9? 





The skin-fr ict ion a t  any poict z oo the boundary is 

= npi" [z i- e { I R ~ ~ O )  ( A ;  - X i  R ) -  x 2 ~ ; I , ,  ( I ) ]  s i n z  

- [(% -a';, , ( I )  - R%;, , (I)] (CQSZ-  PI]]. 13.43 

The r S w t  expressions show that th:: stresses p;: an3 p,; ard t h e  
ekjn-friction are aiiLi:ed by both the stress rclaxarion time and slrain 
retardation time. However, the normel  stress p,, is  some for Xewionizn and 
:he ciais of clastico-visco2s fluids dealt berein. 

The ternperst ure field is given by. 

T ( r ,  zd - 1 + ( E U  ~ ~ , 0 j ~ ) " 6 4 )  [(I - rdj + 4 {iil i ; l ,  + ~ ' 4 .  coa 1: 

+ (LO, r + b2, J sin z j ] .  'j.51 



A; - 0.7, ,j; -0.08. The isothara:~ in the  lbwee half' are just the  airrot imaee 
of those in the upper half. The tenperaturc distribution for Newtonian zrd 
r~astico-viscous Buids are similar. The main points of difference are the  
eb,ence of any straight isother~n in Fig. 5 and a siight shift of rk,e isotherma 
for ekstico-viscous fitaids in comparison to  the  corresponding isotlxrms fo, 
Newtonion fluids. The temperature distribution is afiected by both the siresr 
relaxation time and the strain retardation time. 

We note that the  isotherms near the bounaary df tBe wavy cylindrical 
tube are more or less pa:al!el to the boundary. In the  case of Newiooian 
fluids, depending on the chosen values of the parameters characterisin: the 
wavelength of derormarion, Reynolds number, Prandri number and Eckert 
number, the isotherm bacomes parallel t o  the  axis of the  tube a t  a certain 
height from the axis. As we move towards the 2x1s of thz tube from ti!ip 
straight isotberm we find that  the deformity of t he  isotherms increasesand 
becomes more and more pronounced so much so that  the isotherms form 
closed loops between z -  n and 2 .R for Newtonian fluids and between z = 712 

and 2 m for elartico-viscous Balds. h Table 3 we have recorded the values 
of the tempera:ure for Newtonian and elastic0 viscobs duids for z =0, n/2, 
71, 5 n / 2  a06 2 m and for every subinterval of length 0.1 for r ,  C.iG r S 0.9. 

The Increase in A; and  A; results in  the  decrease o f  temperature in the 
planes z -0 and 2 - 2  n up to a certain distance from ihe axis a d  then the 
tem3eratura increases towards the boundary of the tube and rile reverseis 
iTue in th- i-lane r - -ri/?.. i n  the p?ave z - fl the temperature increases up to 
a certain distance from the axis and then decreases towards the boundary 
of the tube. The reverse is true in the plane z - 3 n / 2 .  

The author wishes to  express his deep sense of gratjtude to Prof:ssor 
P. L. Shatnagar for suggesting the problem and constant help and guidance 
throughout this investigation. He is also thankful to Mr. R. K. Bhatnagar 
f o r  valuable dkcassions. 
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