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ADSTRACT

The problem of heat tramsfer due to the steady slow motion of an
elastico-viscous fluid in a wavy cylindrical tube has been considered. Taking the
deformation of the boundary to be small, the equations of continuity, momentum
and energy have heen solved using the perturbation technique. The solutinn for
the velocity Aeld is employed to study the vature of the temperature distribution
when the surface of the tube is maintained at a constant temperature.

The velocity feld and the votticity are affected by the stress-relaxation time,
while the stress, the skin-friction aad the temperature distribution are affected by
both the stress-relaxation and tue strain.retardation times, The streamlines and
1he isotherms are similar in nature to that observed in the reference 6.

INTRODUCTION

Using the theory of Fourier Transform Citron® has discussed the problem
of stow steady motion of a Newtonian fluid in the annular space between two
rough coaxial circular cylinders rotating about their common axis. Khamrui?
has wtilised the same procedure to discuss the problem of slow steady flow cof
Mewionian incompressible fluid through a cylinder assuming the roughness to
be small in comparison to the smoeth radius of the cylinder. The assumption
of vanishing of azimuthal velocity made by Citron is not correct as the
roughness of the boundary has been teken in the form of sinusoidal deformation,
Belinfante® considered the problem of steady flow of Newtonian fiuid in a pipe
with constrictions using {i) an infinite series for the perturbed velocity field
and (ii) a procedure of iteration on the Reynelds number. Following Belin-
fante, Tyagi* exlended the same problem to Reiner-Riviin fluids. Rhatnagar
{P. L.} and Mohan Rao’® have invesiigated the flow of a Reiner-Riviin fluid
between two wavy cylinders rotating about their common axis using the Fourier
series instead of Fourier transforms to avoid the explicit reference to the
conditions at infinity. In an earlier investigation®, we bave adopted this
method to study the slow steady flow of a Rivlin-Bricksen fluid in a wavy
¢ylindrical tube with heat transfer. The aim of the present investigation is to
study the same problem® for an elastico-viscous fluid, characterised by the
cogstitutive equation given by Oldroyd”, The constitutive equation as givea
by Gidroyd is

112



Flow of an Elastice-Viscous Fluid in a Wavy Cylindrical Tube 113

Bt (U, + Ui )
Six = P - P

SP”‘ 3'55!7-:
Pn’: SN Erk =1,
+ A ST I { +A T

# e A i , .
88 3 B oo 511; + 0, B™E 4 O B gL B _ E’IZ B

87T ot
Q:I; = ',"2_ (U);.r - Ui, 7;),

where the symbols have the usual meaning. We represent the small defor-
mation in the boundary by a general Fourier series in axial coordinate Z and
obtain the solutions to the first power of small deformation and correct to the
square of the Reynolds number appropriately defined fater in the text.

1. EQUATIONS OF THE PROBLEM
The equations of the problem is additions to the constitutive equation
already stated above in temsor notation are:

Continuity equation »
Ui =0, f1.13

Momentum equations : . .
pUI UL =57, [+

Energy Equation: ) »
PC U T, = ky T, s+ SV E,, [r.3]

Before proceeding to solve these equations, we render all the physical and
dynamical quantities dimensionless by introducing the following dimentionizss
quantities :

Tl

’ ?
- z U v P P
YR SR ° N / SPUNT SN N S (Y S
a a’ U v PT LA PR T,

where a is the average radius of tube, U the velocity on the axis in the absence
of deformation in the boundary and T, the consiant temperature of the
boundary. 1In such a scheme the following dimentionless parameters are
Introduced in the problem:
(i) R=paU/u the Reynolds number, p being the density of the fluid,
(i} Al =(A U/a), Xl=Xau/pd® the dimensionless parameters characte-
rising the stress relaxation time and the strain retardation
time respectively,
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{iii} E=U%C, T, the Bekert number, C, being the specific heat at
onstant pressare,
{iv) 5 = u C,/k, the Prandtl pumber, &, being the thermal conductivity,
(v PP 21805 T =(2/R) B* + 220, (B ET/3 T
is the dimentioniess deviatoric siress tensor.

Choosing a cyliadrical coordinate system {r, 8, z) the boundary conditions
of the problem in terms of dimentionless quantities are:

=W, Tw=1, on 1+e~ {e,co80,2 + by sino,z)

n=1

- {14

=D, wy=0, T,=0, on r=0,
where o, = {n/i} and %, w are respectivily the radial and axial veloeities.
The ampiitude of the deformation of the boundary assumesd to be small,

and the wavelength 21wk of the pericdic deformation can be adjusted by
properly choosing ¢ and & respectively.

%, PERTURBATION EQUATIONS AND THEIR SOLUTION

PART A
Velocity Field
We introduce the siream fuanction o given by
we —{1fr) i, w={1/r) 5, {1
so that the equation of continaity [1.1] is identically satisfied and set
- ,‘,;m) re ¢<z)
= D + ep [2»2}

P “*P.k + 51)?,?.

The zer0th order flow is simply the axial Bow ina pipe in the absence of
deformation in the boundary for which ™ apd p{® are functions of the radial
distance r alone so that

eﬁ(f” =0,

2 (s oz =D,
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The equations and the boundary conditions determining #© and ¢V are
ohtained by substituting {21] and {2.2] in the dimentionless Form of the
equations {1,?,] and the constitutive equation and equating the various order

erms in e,

Thus on integrating the zeroth order equations we obtaic

B ()= = (RAOS) (P = )

{0
7 = constant,

!
{“ {2.34}

p'm = zp§o> + constant ;

AP =iy =i = =0,

, N {235
3 7 2 e
7= RO =20 RA2), pE e pf0 a2
Perturbed velociry field :
The boundary conditions satisfied by z,’;“) are ;
P01 2) = 0, 2} = B (0, 2) = 0, [

P24l

S (1 2) = — (Rpf 2 B {a, cosa, z+ by, sinag 2 J
P

so thut we chose ‘Y (7, 2} in the form

0 (o, 2) = — (RpLO[2) 32")1 {4, (Y cosa, z+ B, {r} sin a, 2] {2.5]

The boundary condtions {2.4% then give

A (0) = Ay {0}~ a4, (11 =0, 4, {1} =a,,
} 2.6}

8,{(0)=B,(0) =B, (1) =0, B.(1) =5,

With the above expression for ("’ (r, z) we assume the following expressions
for the perturoed stiesses :

P e 2 C{(#) cos apz + D, (7)) sina, 2l [27¢]
.

P = 2 E ) cosa,z+ Fn(r)sinaszl, [2.78]
r=1

{2.7¢}

pitt e B G, (7} cos apz + H, (r) sin ey 2]
B=F



11§ M. M. MATHUR

PP e B () cosayz4-d, (#) sinay, 2], 214
n=1

aod 23 =P =0, [2.7¢

From [2 7]} and [2.7¢) we have
Prg = Pa: = 0.
The motion being slow, we writs
An=Ag g + RApy + R Aoy B Boyn+ RBip+ BBy, [28)
and siailar expressions for Cp, Dp, £y Fay Guo Hy, 7, and 7,
From our working, we know that
Apn=BLa=0.

The equations determining Aows Bpos Corme Lovne Eovme Foons Govno Hovme
Fo, 5 80d Jp., atre:

Coyn = {0 20r) 1B~ (1/1) Bur . (294
Do o = (1) (4o = (1fr) 4oval, . [2.95]
Foun={an 2SO/} Boyne Foon= —(cupl®/F?) 4oy o [2.9¢}
Govn= —{en B2 Bosy  Houn={cnpt®r) ]/ 4o, 1 [294]
Toonm = (p80[20) 14T, o - (1) Aoyt a3 4o, 4L [294]
Joram = {75%f27) [BY o= (17} Boo n + o3 B, 1) [29/1

I+ 0 B+ (63— 1/ B = o IDhu e + (3/5) Do, o]+ @ Houm
+ (@7} Fo,p =0, 2.9 ¢l
Ty AP, Tt (0 = 1)) T by [Chn + (/) €]
=0y Gy gy o (& fr) By o= O 2.9 5
Oz eliminating Co. o Dov s Eoono For ne Gowns Hoo doyn and Jp, , from the

equations [2.9] we get ihe following squations for the determination of
Agr n and By, 5

AN 2P A (3203 ) 4L,
=~ {8203} o ntalst 4y, =0, 12.10a]
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By - 27 B (3= 2037 Bl
—{3=2a27") Boynt 07 Bo,y=0, [2 108)
to be solved under the bourdary conditions:

Agen (1)=A'Gs [ (0)“/4(1\* 7 (O) =0, A;n'n. (1}““‘“”9 }

Bo, (1) = By n (ﬂ) = Eé, a {0} =0, -Bé‘s w (3) = bl:-

[2.10¢]

The equations determining Chy n D1 L0520 Fio o Gto s Hismo iy p2nd Jy,  ate:

Cln+ (AL PP 0af8) [7 — 1) Dow sy + 26429 gy ] =0, {2.11a]
Dion + A 2P o8 [(1 = 1) Co, o+ 2e0, 050 By 4] =0, [2.118]
B — (PP anft) (L~ ) Fpo =0, [2.11c]
Fiow v Qi@ 0, /8) (L =) B, ,, = 0, {21141
Gin + X PR (PP 12} {4~ (1) 45,0} 1 By

—{aaf2) (1 =% Hyp] =0, [2116]

Hiyn+ X p D [{(pP [2) (8o, ~ (1) Bl .} +
(@/3) (1 = 72} Goy oo — 7 Jorn] =0, [2.117]
Lo+ (M 280 anf8Y [ 2200 By — (1 ~ ) iy = 2 0/a) Coun} = 0, [2.115]

Fon =M 2 a0 DT 222/0) dom— (3 =7} o 5 + Q2 1[et) Do} =0, [2.114]

The cquations determining 4z, w B2 s Coomr D2s o Ets o Frsms G20 Has s B
and Jy, ,, are:

B (N E 4 (02~ 1) Ly p—n (D + (3/7) Danl + € Bz, o+ (0l ) Frm
={anp R N fr 1) By + (1= 1/5%) By o+ 02 {r —1/1) Bo, ], (2.126]
Fud QD 4002 1) T 4 0on [Chyn + 1/7) Cound = ctn G5 = (0f7) Ea
= = a1 r =) A o + (1 = 1)) A0 + 03 (= 1/r) do.al, [2.120]
Cont 20 @af8) (P = 1) Dyy = (e 27/r) (B2~ (1/r) Buy ]

z

{2 pS Q2 ) [ {1 fr v} Ay + (3= 1/7%) dorn) s [2.12¢}
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Dyt (8 nf4) (1 = G = Lo 5@ [ = (1) 2,
S g N [t ey Bl + (3~ 1) B Y, [2.124
By~ (2 pP0 43 {1 — D Frn=Laap Y Bay ot A2/ (1) - D 40
[2.12¢]
PN GYEAL a3 ()~ B
o —{enp &Y dogem + (M2 DO 1) By {2327

Ga w4 A PO I3 By 47 Foy n} =7 o n = (0af8 {1 = 23 Hy, L
w = (g pOUF) Bh, n 4 (0P )[4 AT, . — 14/r
ol (1/r=r)} Ay o+ 200 4ol [2.12¢]

Ha 4 M 20T (W 28222 {dgy n+ v Ay ) = 7 Fim 4 {0a/4) (3 =77 G
e {an p O} Ay o+ (opS0"4) x (4 BY,
— $afr 42 (U fr— )} By, o+ 2al Byl f2.124)

Faw + P08 [ 1) Ji = (2rf0n) Cun + AL2E0P ey 7 Ao, )
- _-fplo’” MY - (1R Ayt Cnida ]+ (AL r‘))’aﬂ_/g}[(i/r—ﬁB'é,n
{341 /FPY Bl 8/r 42 {i/r =)} By ubs [2.128)

and
Fann— DU Y P D8, w4+ (2000} Dy o~ M P02 0 7 Bo il
o = {2 B = (16} Bl + 0l Bru] - (2097 0,/8) x
[ =) A= B 1) Al v Blr+ o2 (Ur =9} so) [2.12]
Oo eliminating Cows Doony E2vms Frome Goome Haoms Tooy and Jp,, from the

equations {212}, we obrain the following equations for the determination
of dp . and By, 2

Pl 2P (32020 AL L - (3 - 22 AS, 40t Ay
=L, p008Y AP 1 I Bl — Bl — a2 7 By. 1]
+ (A?;”iﬂ)z i‘:lzri’d-”) @ E{"Z -1} {"2 A;F”n + ol Ao W) —4dak? o u]t {Z,iBG}
PR -2t B 4 r (320 BT,
e fE AV PP 13 [r 4l o~ Ay — 027 Aoy )
+ P Y PP e P B a ol BL )~ 4025 B, ], [2.138)
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to be solved under the boundary conditions :
Ay (O) = Ay (1) =l (@) = A {1 =0
0o B , , {2.13¢
Brn (0} = w (1= B {03 =Bl (1) =0

whers & dash denotes differentintion with respect to r.

The stresses, the vorticity and the skin friction are given by -
Iy _,wmm {((?/’f} 180, o — (P} Bo, ol + RA] P20, [4) T0r ~ 1)),

~ (3 1/ Ao, Y RO {8 = (1) By )

(AP0 a216) {65 2+ P Bl

{437 =1/ Boy o} + (000w /4 {(1r =) A5

+ (317} do w31 cosu,za (~(1)r) [, o — (17} Ao, o]

+ {RA A /Y [~ 1/7) BY, 5 = (3 1)) Bo, ]

+ R (37} Ly — (1)) Ap n} + (22507 03/16) {{ra =27 + 17} i
{4 =3r— 1/ Ap, o + (X007 0/ ((Ur =13 By,

+ {31/ By} D sin'wnz |, {2.14a]

Mewwiﬁ" 2 a0 Beow + (RA 800, J4) (1~ 1/77) 0.

+ B By - (M P02 0216 (r — 1)1 )" Bo, "

+ (AP a4y (1)~ 1) do, i} cosanz+ { = (1)) Ay, 1

+ (B PP anfa) (1~ 1)) By, + R { = (i 17 Aoy

+ (AP0 62116) (5~ 1/7)% doy n + (M P2 0 /) {1/ = 1) By, w1} st q?z;g?]

Do = {RpIPA[2Y (3] — A5 R) + e pl® ‘*% —{anft) Bloyu— XD 40w

+ G = Uy — (U3} &y + (a2/2) Ay, )
+ B - {a,/rY B, o ~ {002 2L (032 an/8) {300 ~F) By, w
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2B G-/ = (YD 2+ 3N By s+ 2 [l {8 ~ Y4 61 85, )

"’\L()\z}’w)/“) {4 Agyn i“n (r— 1/r) + 4/s] Acan +~ﬂnAo»mr)} cosal, z
+ J{m,,/r) Aoy — RM PO BS) o+ {{cd/8) e~ 1/r) = 11} By, w4 (02/2)B,,,)

+ B fry Ah o+ (22000, [8) (3 (1~ )4l + Bl —1/r)~(a3/2)x
(P—2r s 1/03] oy w+ 2105 (1 = /%) + 6] Ao, o} + AP0 f4)

S4B - 18fr + o2 (Ufr~1)] Bh o+ 202 By 0} Pt sinag,z } , {2.14¢]
i

P Ry LR I UL I FA DR AR

2 (BN Y e, /8 [ — 1/r) B, + (3 +1/7) Boym

+ {6l -1/~ (3/7)} Boyud + B2 = (1/26) 142 = (/1) A+ G 4 ]
2P 30) R = 2r 4+ 1AL w b (TP =6 = 1 [P A

+ a2 (P —2r 2 1/r) ~ 28r +12/4] 4p. .}

(AP oo /8Y {{1/r = P) By, n = (34 1/7) By,

+Io(fr =) + 8/ 80 o)) | eorenz s = (/29 185, 0= (1)) Bon s

ol By, J— (R B a8 [(r~ 1/ A, + 341/} 4h,

+dallr—1/) -8/} do ]+ B (= 0/27) (BY o~ (1)) B, o+ 0 By

+ (AP0l ({ P = 2r 1/ B, o+ (1”7 6 —1/7%) Bl

+1a2 (P = 2r + 1)) = 28r 4 12/7] By} — (A5p80" 0, /8) <

W{ifr =) da a= B+ A a+ (02 (1fr = #) +8/r) 4o, ) D} #in a"z? ,
{2.144}

- wh
L om iy Ry, where

Ry~ (RpOr[2) + (R {V [27) >‘ L e (17} £y~ 02 Aoy )
+ B4 - (/) 4~ o2 4y ,‘3} oS anz + {(BY,n—(1/r1B}, n~ a2 Bow)
+ RELE o (1) Bl nw 0l By 1} sin 0n2), {2.14]
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H P ; \
g 2urpldzeite Z{a,cos0, 24,50 a,z2)
o r=Y

Ve R
w*’ﬂp_{m <Z+E {[{35'7;‘""1017:{}})

Itds

4 Rp e by (X = My R}~ B 4Y, (D] sin oz - [{3 8, - By, ., (1)}
- Rp (A =2 B~ BB, ()] (cos a2~ 1310, [21d/]

Pressure.~—The pressure is given by

p(n2)=zp® e TG+ (G~ EYval,
n=1

(B pP2feY (1r— ) A dr (cosap 2. + [{ B+ (1)) (D0~ F,)

iy B+ (REp SO 2 /8)(1)r~ r) By} dr (sin o, 2) ¥
+¢ 3 @I T + (1) L]+~ (R 57[8) [2B, + (1r ~ 1) B} x
n=1

sin «nz— ({10 ) [+ (1)) 2] - 6 (B 2/ /8) (2 40+ (1fr = 1) 471}

5085 0y 2 + 7 {2.15}
where p’ is some constant pressure and all the gquantities in [2.15] are known
in terms of 4, and B,.

PART B
TEMPERATURE FIFLD

As in velocity feld, we set

Tl (b, 2. {2.16}

The equations and the boundary conditions determining 7 and T are
obtained from ihe non-dimensional form of the energy equation {1.3] and the
boundary conditions {1 4] by equating terms independent of ¢ and the <o-

sficient of & respeciively.
We have,

TOL) w14 (Bo R p 964} (1 = 7). [2.17]}
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fn view of [2.17] the boundary conditions for v} reduce to

TH(1, 2) =(Ee Rp{O%? ’16) Z iam cosanz+b, sin a, z}
) 25.13}
T, 2) =90,
which suggest that T {7, 7) should be chosen in the form

T {r,2) = (Eo Bp716) 2 [Ka (1) cosanz+ L, (D sin ozl [219]

Taking
- 2 3
Koo Koo w+ RE, ,+ R K, 'nl [2'20}

s
2
Ly=Lout RL; ntR Lz.ﬁ,r

the equaticns determining Kow Lo ni K Lisni Ko, and Ly, are
Ka n*‘(l/") Ko n— %y 1K, n“g{A _(I/I)AO’M+U,,AO; n], [2,21&}
Lo+ (N Ly oiLyn=5]Bg a—{1/r) Bosn+alBoal, T2.215]
B QI K e - o2& =AM, [(1 - ) BY,a+(r —1/1) By, s
+ {ei(1=+") + 8} B ), [2.21d
L;:u-!- (1/}} L;, n—ﬂﬁﬂxsn“‘ - A;Pgmdni(l - P‘Z) A’é, a ("' - 1/") A!fr "
+ {2 (1 ~#%) + 8} 4o}, [2.21d]
K;n‘*’{lll*’}};;‘n‘aikzym
=8 4y = (1fr) 4h, 0+ 0k A, )
P oL {{rF — 1)/4} Lo, (72/2) Bo ] — (AP 202 o2f4) [(* ~ 1) 40520
+ {77 - 6r—1/e) A, w4 {2(P -1 = 2877+ 12} Ao, ,]
~ 12 0% {1 = P38 n (17 = By o + {21 = ) + 8} By ], [2.214]
L+ QALY w—alina
=8B o (1/7) BLy o+ «l Ba, ]
~ on i e LU = 1)/4Y Koy = (P32) do, o} — (M2 802 0240107 - 1) B e
+{7r‘-6f—1/r)Bo=“+ {a2 (P17~ 28 7 412} Bo, ]
42275 a0 [{(U = )AG, o (1fr =) 4, o+ {02 (1 ~1%) 4 8} 40, o) [220]]
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The equations [221] ares to bz solved under the boundary conditions:
Koy (1) = Xp, 0 {0} =0,
] , b f2.220]
Loon (1) =bp Lo, (O)=0 !

’?1» n {e“) = K}’a 7n (O) = Os f
[ {z.228]
Ly, 2 (1) = L0, {0) =0

o
<3
(=

Ko (1) =Ky o (0} Ly o (1} = £3,, {0} = 0. [2.27¢]

On putting X, = A, =0 in all the equations of Part A and Part B we get the
equations for Newtonian fioid and these equations agree with the corresponding
equations of reference 6 with K= =0. The streamline and the vorticity are
affected by the stress-relaxation time only while the stresses and the temperature
are affected by botn the stress-relaxation and the strain-retardation times,

3. ParrticuLar Cass

The eguations obtajned in §2 cannot be solved in close form for any
general value of a,,  To visualise the flow field and the temperature distribu-
tion we take the particular case when the boundary of the tube has sinwsodial
deformation defined as follows @

(i) gp=a', =0, forallm; (i) by=br=0, for n>1, and By =b; = 1.
We choose the following values of the various parameters involved in this
problem :
e=005 o=pF=1; A[=02, 0.5, 0.7;

Ay =0.02, 0.06, 0.08; E=03,
R*=5,and =1, so that the wavelength of the periodic deformation
is 2w,
I Welocity Field:
(a) Streamnlines :  In this particular case, we have
Aoy =0,

for all 7 in {0, 1} due to homogeneous boundary cosnditions on 41 TO
obtamn Bg.q, 4z,; and B, we adopt the usual procedure of numerical inte-
gration of two point boundary value problem and integrate the equations,
{2.10] and §2-13] numerically.
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With the known values of Bp. 1, Az and By, ¢ at each point of (g, 1}
at a subinterval of 0.1 the stream function 15 completely determined by the
2Epression

P~ (RpE8Y (P 1)~ {c RpLO/2) IR s, cos 2

S

+(BOM~{-RZBZ,1) Sinzz, !

3.4

at every interval of 0.1 for ~

in Fig. | we have drawn the streamlines, o = — S/ Rp (% = constant,
to visualise the flow {ield. The continvous lires and the dotted lines represent
ihe streamiines for Newtonfan and elastico-viscous fluids vespectively. Tie
sireamiines for eiastico-viscous fluids are slighily displaced in the planes
2= /2 and z = 3=/ refative to those for Newtonian fuids.

The streamiines near the boundary of the wavy tube are almost parallel
to it, The deformity of the streamlines decreases continuously as we move
away {rom ihe boundary towards the axis of the tube. On axis of the tube
they tecome just straight due to axial symmetry. This phenomenon issimilar
to that observed i+ the case of flow of a Riviin-Bricksen fluid discussed in
refereace 6. Table 1 shows the effect of A] on stream function.

{b) Vorticity: The expression for the vorticity is

where
Gy=~ R 2 (e RP2 (R4 - (3]r) Ay — Ao, ] cos 2
w18y, s = (/DB 1— Bo, )+ BB, ~ (1) BL, o~ Bualdsinzp. 3]

Tn the absence of deformation in the boundary, the vortex linesare
concentric cireies having the same radii in all planes with their centres lying
on the axis. Even in the presence of deformation in the boundary, the vortex
iines are concentric circles but their radii differ in different planes, the radit
being maximum in the plane z=3 %/2 and minimum in the plane z= /2.

Fig. 2 shows the variation of Q) = —2£0,/& p{® with axial distance z for
various vatue of . Fig. 3 shows the variation of )y with radial distancer
in the planes z 0, =2, w, 37/2 and 2 m.

From both these figures we pote that .Q’@ increases with radial distance
and this increase is maximum in the plans z = 3 n/2 and micimum ia the plane
z

o '1:‘,"2.

Table 2 shows the effect of A on vorticity. The increase in A] results in
a deerease in verticity up to a certain distance from the axis and then the
woriicity increases towards the boundary in the plane z = 11/2- The reverse is
trize i the plane 2w 3wf2.
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Streamiines fos particular values: «=0.05, p{0} whami, R 2j=0.5.
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Variation of vorticity with Radial distanc: for Newtonian Fluids
for particulas values: ==0.05, pf0) cp=si, R¥=5.
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Isotborms for Newtonian Fluids for e=0.05, £=0.5, R'=35, ¢=p{®)=1.
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TABLE 1

& {r, 2}

J‘!I}: e et spar e e P e A e i et
2 /2 " 3c/2 2

9.1 0.009923 {) 0.00%024  0.009977  0.0i0876  D.0U5EN
{1} © 003021 0.010879
{il) 0.009006 0,010894
{iv} 0.008988 0.010912

6.2 0.639092 C(i) 0035498 9.032308 0.042902  0.0390%2
Y{i) 0.035488 0.042914
{is) 0.035478 $.420922
{iv) ©.035354 0.043046

0.3 0.085736 {1} 0.077567 0.£86164 0.093933 8.085736
(i} 0.077942 0.093858
{#i) 0.077824 ©.094076
{iv}) 0.07767 0 094221

0.4 0.14589% (i) ©.134006  0.147508 0.160394 0 146892
{ii) 0.133968 0.160432
(iii) 0.133798 0.160602
{iv) 0.133589 0.160811

2.5 0218303 “{i) 0.2060216  0.219107 0.237284 0.218393
{ii) 0.200170 0 237230
(iti} 0.159574 0237529
{iv) 0199727 0.237773

6.6 0.194859 {i) 0.272244  0.295541 0.318156 0.294859
(i) 6.272198 0318202
(i} 6.272006 0.318394
{iv} 0.271769 0318631

2.7 4.369659 {1} 0344816 9370211 0.795084  0.369689
{3} 0.344778 0395121
{ifi) 0.344631 0.395269
{iv) 0344446 0 393454

0.8 0.435057 (i) 0411767  0.435343 0.458633  0.435057
{ii) 0.411746 : 0.458654
(iif) D.417665 0.458735
(iv) 0411562 0.45883%

k) 0.481914 {i} 0.466092  0.481986 - 049708 0.481914
(i1} .466087 0 497813
{iii} 0.4656867 0497833
{iv) 0.466041 0.497859

&5, The fiet eotry ineach column corresponds to Newtonian fluids, second, third and
et o o 0 £y P ’ e
fourth eatries sorrespond to elastico-viscous fluids for (g} a;=0.2, (6 %;=05,end

5} apeRT.
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0.093682

£.296349

0296182

0.496172

0.506442

0.698733
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TanLe 2
A ;GQ'H
w2 E 3n/2 2w
{iy 0.092638 £.104318 0.107364 0.095682
(i) 0.092628 0.107372
(it} 0.09184% 0.108159
{iv} 0.091046 £.108934
{i) 0.15990% 0.203260 0.240091 0.196740
{ii) 0.159707 0,240293
{iii} O 157944 0 242056
{iv} 0.155979 0.244021
{i) 0.237542 0.303651 0.362458 0.296349
(i1} 0.237299 0362701
(i) 0.235340 0.364660
(iv} 0.233135 0.356365
{i) 0.213304 0.403818 0.486696 0.396182
(i) 0.313046 0.486954
(i) 0.311018 0.438982
{iv) 0.308731 0 491269
{i} €.366275 0.503838 0.603725% 0.496172
{ii} 6.296012 0.603988
i} 0.393963 0.606037
{iv) 0.391651 0.608349
{i} ©.469575 0.603558 0.730424 0.596442
(i) 0.469279 0.730721
(1) 0.465635 0.734364
(iv) 0.462501 0.737487
(i) 0.549340 0.701267 0850660 0.693733
{ii}) 0.549474 0.850526
(3it) ©.54804%¢ 0.851956
{iv) 0.547142 0.852858
(i} 0.623425 0.799192 0.974575 0.800808
(iiy 0.625701 0.974299
(iiiy 0.625859 0.974141
(iv) 0626416 0.973584
{i} 0700012 0.897757 1.029988 0.902243
{ii) 0.700455 1.099343
{3#i} 0.701632 1 098368
1.096808

{iv) 0.7063:22

MN.B. The first entry in cach column corresponds to Newtonian fiuids, second,

. 4 ‘) ™
fourth entries correspond to elassico-viscous fluids for (@) M =02, (B ¥ =05 aud

& N=0.7.



2.2

=4
ey

0.4

0.7

0.3

.9

M, . Matror

Taspe 3

g

{i) 2.503782
{it) 2.505882
{ziiy 2.503520
{iv) 2.501855
{i} 2.488625
(i) 2.522397
(i} 2.525391
{iv) 2.527553
{i) 2.4<580¢
{(ii} 2.529687
{iii} 2.535404
{iv) 2.339362
{i) 2.417792
{ii} 2.49%052
(iit} 2506199
(iv) 2511402
(i} 2326792
{ii} 2.410681
{ifi) 2.418182
{iv) 2.423649
(i} 2161470
{it) 2.238622
{311} 2.245553
{iv} 2.25059%
{i) 1882540
(i} 1951684
fiii) 1.957295
{iv) 1.961373
{i} 1.469558
{11} 1512508
{ii3) 1.516312
{iv} 1.519055
{i} 0.857410
(i} 5878201
{ifi} © 880014
{iv) 0.881320

2.318000
2318208
2.315328
2.32057

2.300985
2.203%85
2.303385
2.302977
2.276247
2.376147
2.2758:9
2.275557
2.225376
2.225538
2.226781
2.228246
2.138132
2.138762
2.142500
2 146850
1.997502
1.998624
2.004910
2612177
1.784361
1.785893
1794129
1.803656
1.477649
1479161
1.487168
1.496407
1056322
1.057152
1.061374
1.066784

2.495518 2.631600
2.493718 2.631392
2.496080 2.680372
2.497645 2.679030
2 503375 2.688015
2.4693603 2.688115
2.466609 2.688615
2464447 2 618025
2.453800 2.6%3353
2.4.9913 2.683453
2.434196 2.683751
3.4.003% 2.684043
2.452208 2 646524
2.372548 2.64646%
2.363801 2.645219
2.360508 2.643754
3 370808 2.549468
2276919 2.548338
2.269418 2.545100
2.263951 2,540750
2.190830 2.354498
2173378 2.353376
2.105447 2347050
2101401 2 339823
1.910660 2.015239
1847976 7 613707
1.842305 2.005471
1.838227 1.995944
1.482442 1.474351
1.439495 1572839
1.435688 1.464831
1 432945 1.455513
0.862150 0.663278
0.841399 0662448
0.839586 0.658226
0.812280 0.653316

2.503783
2.505882
2.3035°¢
2.501935
2.488523
2 522397
2.527553
2.527553
2.455850
2.529687
2.535404
2 339362
2.417792
2.499052
2.506199
2.511402
2.326792
2.410681
2.418182
2.423649
216010
2.238522
2245553
2.250599
1.888940
1951684
1.957293
1.961373
1.469558
1.512551
1.516312
1.519055
0.85741¢
0.87820¢
0.830014
0.831320

M. The frst satry o cach columo corresponds to Newtonian fluids, second, third and
fourth entries correspond to0 elastico-viscous funids for {a) )\;“0.2, ?\12:01;

.

®) 3785, A=8.0580d () X207, N,=0.08 respectively.
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ieh Stresses on boundary skinfriction :
J

Ve have

P ow e g cosz,
Pap =0, 3.3
W BT S MR G+ )
e p® loosz+ Rp©O2 (M =5 B) {By, (1) — 1} sinz], 13.3¢]

and
2= (PO IR D1 O] - M RY — B 45, (1)) cosz
{2~ B, (13— B B2, (Usinz}] {3.3¢]

The skin-friction at any poist z on the boundary is
a=npl®z v e TRPPDV (A = M R) — B2 45, (1)] sinz
13- 80, 0) ~ R BL (1] {cosz - 13} ]. {3.4]
The above expressions show that the stresses p.. and p,, and the
skin-friction are aifecied by both the stress relaxation time and strain

retardation time. However, the normal stress p,, is same for Newionian and
the class of clastico-viscous fluids dealt herein.

f. Temperasure field .

For the particulsr case of sinuscidal deformation that

Koy == Eyp g 20,

forell v, 0.1 S7=<09, due to homogencous boundary conditiops. Yor the
calcalation of Lo, 4, K3, Kp o and £q.; we bhave integrated numerically the
eguations [2.21] and [2.22] for the partionlar values of the parameter siready
mentioned earlier in the beginning of this section.

The tempsrature field is given by
T2yt +{Eo B2p9J64) [(1 %)+ 4 e HLRKy s + R Ky i) o082

s+ &Ly ) sinzt]. {3.5]

In figures 4 and 5, we have drawn the isotherms in the upper half of the
meridian  plane for Newtonian ‘)\1 o g - 0} and elastico-viscous ﬁuxd*
respectivaly for the st of values s =005, Ew0d, o=pi=h=l, B =5
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A = 0.7, Ay =0.08. The isotherms in the lower balf are just the mirrot image
of those in the upper half. The temperature distribution for Mewtonian ar¢
slastico-viscous fuids are similar. The main points of difference are the
ab.ence of any straight isctherm in Fig. 5 and a slight shift of the isotherm;
for elastico-viscous fluids in comparison to the corresponding isotherms for
Newtonion fluids. The temperaiure distribution is affected by both the stres
relaxation time and the strain retardation time.

We note that the isotherms near the boundary of the wavy cylindrical
tube are more or less parallel to the boundary. In the case of Newtonian
finids, depending on the chosen values of the parameters characterising the
wavelength of deformation, Reynolds number, Prandil number and Eckert
number, the isotherm becomes parallel to the axis of the tube at a certain
beight from the axis. As we move towards the axis of the tube from this
straight isotberm we find that the deformity of the isothermng increases and
becomes more and more pronounced so much so that the isotherms form
closed loops between z= = and 2 = for Newtonian fiuids and between z=x/2
and 2 « for elastico-viscous fimds. In Table 3 we have recorded the values
of the temperature for Newtonian and elastico viscous fluids for z =0, =2,
T, 3 -n/?. and 2 w and for every subinterval of length 0.1 for r, C.i= r=< 09,

The increase in XI and .«\; results in the decrease of temperature inthe
planes z =0 and z=2 w wup o a certain distance from the axis and then the
temoerature increases towards the boundary of the tube and the reverseis
irue in the rlzne z=n/2. Jn the plare z = 1 the temperature increases up o
a certain distance from the axis and then decreases towards the boundary
of the tube. The reverse is true in the plane z =3 «/2.
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