HEAT TRAMSEER IN A SLOW STEADY FLOW OF AN ELASTICO-VISCOUS FLUID IN A WAVY CYLINDRICAL TUBE

By M. N. Mathur
(Department of Apphed Mothematics, Indian Instiure of Sctence, Aangolore-12, India)

[Recaived: Noч, 24, 1966]

Abstract

AESTRACT The problera of keat transfer due to the steady slow motion of an elastico-viscous fuid in a wavy cylindrical tube has been considered. Taking the deformation of the boundary to be small, the equations of continuty, momentum and enengy have been solved using the perturbation technique. The solution for the velocity field is enpployod to stuad the nature of the temperature distribution when the sarface of the tube is maintained at a constant temperature.

The velocity feld and the vorticity are affected by the stress-retaxation time, while the stress, the skin-friction and the temperature distribution are affected by both the stress-relaxation and tee strain-retardation times. The streamines and the isotherms are similar in pature to that observed in the reference 6.

Inrroduction

Using the theory of Fourier Transform Cirrou has discussed the problem of slow steady motion of a Newtonian flud in the annular space between two rough coaxial circular cylinders rotating about their common axis. Khamrui has utilised the same procedure to discuss the problem of slow steady flow of Newtonian incompressible fuid through a cylinder assuming the roughness to be small in comparison to the smooth radius of the cylinder. The assumption of vanishing of azimuthal velocity made by Citron is not correct as the roughness of the boundary has been taken in the form of sinusoidal deformation. Belinfante ${ }^{3}$ considered the problem of steady flow of Newtonian fuid in a pipe with constrictions using (i) an infinite series for the perturbed velocity feld and (ii) a procedure of iteration on the Reyaclds number. Following Belinfante, Tyagi extended the same problem to Reiner-Rivlin fluids. Bhatnagar (P. L.) and Mohan Rao have investigated the flow of a Reiner-Rivlin fuid between two wayy cylinders rotating about their common axis using the Fourier saries instead of Fourier transforms to avoid the explicit reference to the conditions at ingmity. In an earlier investigation ${ }^{6}$, we have adopted this raethod to study the slow steady flow of a Rivlin-Ericksen fluid in a wavy cylindrical tube with heat transfer. The aim of the present investigation is to study the same problens for an elastico-viscous fuid, characterised by the constidutive equation given by Oldroyd". The constitutive equation as given by Oidroyd is

$$
\begin{aligned}
& E_{z k}=\frac{1}{2}\left(U_{k, 1}+U_{\ell, z}\right)_{0} \\
& S_{i k}=P_{i k}-P_{g_{i k}}, \\
& P^{i / k}+\lambda_{3} \frac{\delta P^{i s}}{\delta T}=2_{\alpha}\left[E^{i k}+\lambda_{2} \frac{\delta E^{1 i k}}{\delta T}\right], \\
& \frac{\delta B^{i k}}{\delta T}=\frac{\hat{c} B^{i k}}{\bar{i}}+U^{j} B^{i l}+\Omega_{m}^{i} B^{n k}+\Omega_{m}^{k} B^{i m}-E_{m}^{i} B^{m k}-E_{m}^{k} B^{i m}, \\
& Q_{t h}=\frac{1}{2}\left(U_{j, i}-U_{i, k}\right),
\end{aligned}
$$

where the symbols have the usual meaning. We represent the small deformation in the boundury by a general Fourier series in axial coordinate Z and obtain the solutions to the first power of small deformation and correct to the square of the Reypolds number appropriately defined later in the text.

1. Equations of the Probledi

The equations of the problem in aduitions to the constitutive equation already stated above in tensor notation are:
Coninutity equation:

$$
\begin{equation*}
U_{i}^{i}=0_{s} \tag{1.1}
\end{equation*}
$$

Momentum equations:

$$
\begin{equation*}
\rho U^{j} U_{, H}^{i}=S_{n}^{i s} \tag{1.2}
\end{equation*}
$$

Energy Equation:

$$
\begin{equation*}
\rho C_{p} U^{j} T_{j}=k_{1} g^{i k} T_{s}+S_{1}^{i j} E_{i j} \tag{1.3}
\end{equation*}
$$

Before proceeding to solve tbese equations, we render all the physical and dyamical quantities dimensionless by introducing the following dimentioness quantities:

$$
y=\frac{r^{\prime}}{a}, \quad z-\frac{z^{\prime}}{a}, \quad u=\frac{U_{1}}{U^{2}}, \quad w=\frac{U_{3}}{U^{\prime}}, \quad p=\frac{P}{\rho U^{2}}, \quad P_{1}=\frac{P_{3 k}}{\rho U^{2}}, \quad T=\frac{T^{\prime}}{T_{w}}
$$

where a is the average radius of tube, U the velocity on the axis in the absence of deformation in the boundary and T_{w} the constant temperature of the boundary. In such a scheme the following dimentionless parameters are istroduced in the problem:
(i) $R=\rho a U / / \mu$ the Reynolds number, ρ being the density of the fluid,
(ii) $\lambda_{1}^{\prime}=\left(\lambda_{1} U / a\right), \quad \lambda_{2}^{\prime}=\lambda_{2} \mu / p a^{2}$ the dimensionless parameters characterising the stress reloxation time and the strain retardation time respectively.
(uin) $E=U^{2} / C_{p} T_{w}$ the Eckert number, C_{p} being the specifig heat at constant pressure,
(iv) $s=\mu C_{p} / k_{\mathrm{a}}$ the Frandul number, k_{i} being the thermal onductivity, $\left(v^{i} p^{i k}+\lambda_{1}^{\prime}\left(\delta \rho^{i 2} / \delta T\right)=(2 / R) E^{i k}+2 \lambda_{2}\left(\delta E^{i /} / \delta T\right)\right.$
is the dimentionless deviatoric stress teasor.
Choosing a cyindrical coordinate system (r, θ, z) the boundary conditions of the problera in terms of diosentionless quantities are:

$$
\begin{align*}
& z=w=0, \mathrm{~T}=1, \text { on } r=1+\epsilon \sum_{n-1}^{\infty}\left(a_{n} \cos \alpha_{n} z+b_{n} \sin \alpha_{n} z\right) \tag{1.4}\\
& y=0, y_{n}=0, T r=0, \text { on } r=0,
\end{align*}
$$

where $\alpha_{2 s}=(n / b)$ and $2 *$, are respectivoly the radal and axial velocities.
The amplitude of the deformation of the boundary assumed to be small, and the wavelength $2 \pi h$ of the periodic deformation can be adjusted by properly choosing e and is respectively.

2. Percurbation Eouations and therr Sonumon

PART A

Frectis Fiva
We Introduce the sirem function fiven by

$$
\begin{equation*}
u=-(1 / r) r_{s x} w=(1 / r) \not \psi_{r} \tag{2.1}
\end{equation*}
$$

So hat the cquation of continaty [i. I] is identically satisfed and set

$$
\left.\begin{array}{c}
y=p^{(0)}+c \psi^{(0)} \tag{2.2}\\
p=p^{(0)}+c p^{(0)} \\
p_{i n}=p_{i k}^{(0)}+c p_{i \mathrm{k}}^{(\mathrm{t})}
\end{array}\right\}
$$

 deformation in the boundary for which $\psi^{(0)}$ and $p_{i}^{(0)}$ are functions of the radial diskane r abone so that

$$
\begin{aligned}
& F_{i}^{(0)}=0, \\
& \mathrm{a}\left(\mathrm{P}_{\mathrm{ta}}^{(0)}\right) \mathrm{O} \mathrm{zax} 0
\end{aligned}
$$

The equations and the boundary conditions detemining $j^{(0)}$ and ψ^{10} are obtained by substituting [2 1] and [2.2] in the dimentionkess form of the equations [1.2] and the constitutive equation and equating the various order zerms in e.

Thes on integrathg the zoroth order equations we obtain

$$
\begin{align*}
& \begin{array}{c}
\psi^{(3)}(r)=-\left(R p^{(0)} / \mathrm{s}\right)\left(r^{2}-r^{4} / 2\right)+ \\
p_{n}^{(0)}=\text { constant, } \\
f^{(0)}=z p_{\pi}^{(0)}+\text { constant; }
\end{array} \tag{2,3a}\\
& \left.\begin{array}{l}
p_{z}^{(0)}=p_{\theta \theta}^{(0)}=p_{; j}^{(0)}=p_{\theta z}^{(0)}=0, \\
f_{z z}^{(0)}=R p_{z}^{(0) 2}\left(\lambda_{1}^{\prime}-\lambda_{2}^{y} R\right)\left(r^{2} / 2\right), p_{r z}^{(0)}=p_{z}^{(0)} r / Z .
\end{array}\right\} \tag{2.3b}
\end{align*}
$$

Perturbed velocisy fintd:

The boundary conditions satisfied by ffre ${ }^{(1)}$ are:

$$
\left.\begin{array}{l}
\psi_{z}^{(1)}(1, z)=\psi_{=}^{(n)}(0, \pi)=\psi_{r}^{(0)}(0, z)=0 \tag{2.4}\\
\psi_{r}^{(1)}(1, z)=-\left(r p_{z}^{(0)} / 2\right) \sum_{n=1}^{\infty}\left(a_{n} \cos \alpha_{n} z+b_{n} \sin \alpha_{n} z\right)
\end{array}\right\}
$$

so thit we chose $\psi^{(n)}(x, z)$ in the form

$$
\begin{equation*}
\psi^{(1)}\left(r_{s} z\right)=-\left(R p^{(0)} / 2\right) \sum_{n-1}^{\infty}\left[A_{n}(r) \cos \alpha_{n} z+\Phi_{n}(r) \sin \alpha_{n} z\right] . \tag{2.5}
\end{equation*}
$$

The boundary condioms [2.4] then give

$$
\left.\begin{array}{l}
A_{n}(0)=A_{n}^{\prime}(0)-A_{n}(1)=0, A_{n}^{\prime}(1)=a_{n} \tag{2.6}\\
B_{n}(0)=B_{n}^{\prime}(0)-B_{n}(1)=0, B_{n}^{\prime}(1)=b_{n}
\end{array}\right\}
$$

With the above expression for $\psi^{(1)}(r, z)$ we assume the following expressions for the perdurbed stiesses:

$$
\begin{align*}
& p_{r r}^{(1)} \sum_{n=1}^{\infty}\left[C_{n}(r) \cos \alpha_{n} z+D_{n 3}(r) \sin \alpha_{n} z\right] \\
& \left.p_{\theta \theta}^{(1)}=\sum_{n=1}^{\infty} E_{n}(r) \cos \alpha_{n n} z+F_{n}(r) \sin \alpha_{n} z\right] \\
& p_{n z=}^{(1)}, \sum_{n=1}^{\infty}\left[\sigma_{n}(r) \cos \alpha_{n} z+I_{n}(r) \sin \alpha_{n} z\right]^{n} \tag{2.7c}
\end{align*}
$$

$$
\begin{equation*}
\not p_{r z}^{(\prime)}=\sum_{n=1}^{\infty}\left[\mu_{n}(r) \cos \alpha_{n z} z+J_{n z}(r) \sin \alpha_{n n} z\right]_{n} \tag{27d}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{c \theta}^{\left(\gamma^{\prime}\right)}=p_{\theta z}^{(1)}=0 . \tag{2.7e}
\end{equation*}
$$

From [2:] and [2.7e) we have

$$
p_{r \theta}=p_{\theta}=0 .
$$

The notion being slow, we write

$$
\begin{equation*}
A_{n}=A_{0, n}+R A_{1},{ }_{n}+R^{2} A_{2, n}, B_{n}=B_{0 \rho n}+R B_{1 \cdot n}+R^{2} B_{2, n} \tag{2.8}
\end{equation*}
$$

and sinilar expressions for $C_{n}, D_{n}, E_{n} F_{n}, G_{n}, H_{n}, I_{n t}$ and $J_{n *}$
From our working, we know that

$$
A_{3, n}=B_{1}, n=0
$$

The equations determining $A_{0, n} B_{0, n}, C_{0, n,} D_{0, n}, E_{0, n}, F_{C_{n}, ~} G_{0, n 3}, H_{0, n}$ $X_{0, n}$ and $J_{0.3}$ are:

$$
\begin{align*}
& C_{0, n}=\left(\alpha_{n} p_{z}^{(0)} / r\right)\left[B_{0, n}^{\prime}-(1 / r) B_{0, n}\right] \tag{3.9a}\\
& D_{0, n}=-\left(\alpha_{n} p_{z}^{(0)} / r\right)\left[A_{0, n}^{\prime}-(1 / r) A_{0, n}\right] \tag{2.95}\\
& E_{0, n}=\left(\alpha_{n} p_{z}^{(0)} / p^{2}\right) B_{0 ; n}, \quad F_{0, n}=-\left(\alpha_{n} p_{z}^{(0)} / r^{2}\right) A_{0, n} \tag{2.9c}\\
& G_{0, n}=-\left(\alpha_{n} p_{z}^{(0)} / r\right) B_{0, n}^{0} \quad H_{0, n}=\left(\alpha_{n} p_{z}^{(0)} / r\right) / A_{0, n}, \tag{2.9d}
\end{align*}
$$

$$
I_{0, n}=-\left(p_{2}^{(0)} / 2 r\right)\left[A_{0, n}^{\prime}-(1 / p) A_{0, n}^{1}+\alpha_{n}^{2} A_{0, n}\right]
$$

$$
\begin{equation*}
J_{0, n}=-\left(f^{(0) / 2 r}\right)\left[B_{0}^{\prime \prime}{ }_{n}-(1 / r) B_{0}^{p}, n+\alpha_{n}^{2} B_{0_{n}}\right] \tag{2.9f}
\end{equation*}
$$

$$
I_{B=n}^{\prime \prime}+(1 / r) I_{0 n n}^{\prime}+\left(\alpha_{n}^{2}-1 / r^{2}\right) I_{0, n}-\alpha_{n}\left[D_{0, n}^{\prime}+(1 / r) D_{0, n}\right]+\alpha_{n} H_{0, n}^{\prime}
$$

$$
\begin{equation*}
+\left(\alpha_{p /} / r\right) F_{0, n}=0 \tag{2.9~g}
\end{equation*}
$$

$$
y_{0, n}^{\prime \prime}+(1 / r), x_{0, n}^{p}+\left(\alpha_{13}^{2}-1 / r^{2}\right) J_{0, n}+\alpha_{n}\left[C_{0, n}^{\prime}+(1 / r) C_{0, n}\right]
$$

$$
\begin{equation*}
-\alpha_{n} G_{0 k+1}^{\prime}-\left(\alpha_{n k} / v\right) E_{0,12}=0 \tag{2.9~h}
\end{equation*}
$$

On ehiminating $C_{0, n} D_{0, n} E_{0, n}, F_{0, n}, G_{0, n}, H_{0, n}, \dot{I}_{0, n}$ and J_{0}, n from the equations [2.9] we get the following equations for the determination of A5, n and $B_{0, n}$:

$$
\begin{array}{r}
r^{3} A \theta_{n} V_{1}-2 r^{2} A_{0_{1}, n}^{\prime \prime}+r\left(3-2 \alpha_{n}^{2} r^{2}\right) A_{0, n}^{\prime \prime} \\
-\left(3-2 \alpha_{n}^{2} r^{2}\right) A_{0, n}^{\prime}+\sigma_{n}^{4} r^{2} A_{0, n}=0, \tag{2.106}
\end{array}
$$

$$
\begin{align*}
& r^{3} B_{0, n}^{\mathrm{i} \gamma}-2 r^{2} B_{0, n}^{\prime \prime \prime}+r\left(3-2 a_{n z}^{2} r^{2}\right) B_{0, n}^{\prime \prime} \\
& \quad-\left(3-2 a_{n}^{2} r^{2}\right) B_{0, n}^{\prime}+\alpha_{n}^{4} r^{3} B_{0, n}=0 \tag{2103}
\end{align*}
$$

to be solved under the bow dary conditions:

$$
\left.\begin{array}{l}
A_{0, n}(1)=A_{0, n}(0)=A_{0, n}^{\prime}(0)=0, A_{0, n}^{p}(1)=a_{n}, \tag{2.10c}\\
B_{0, n}(1)=B_{0, n}(0)=B_{0, n}^{\prime}(0)=0_{n} B_{0, n}^{\prime}(1)=b_{10} .
\end{array}\right\}
$$

The equations decermining $C_{1}, n_{n}, D_{1, n}, E_{1}, n, F_{1, n}, G_{1, n}, H_{1, n}, I_{1}, n$ and $J_{1, \text { a }}$ are:

$$
\begin{align*}
& C_{1, n}+\left(X_{1}^{\prime} p_{z}^{(0)} \alpha_{n} / 4\right)\left[\left(p^{2}-1\right) b_{0, n}+2 \alpha_{n} p_{z}^{(0)} A_{0, n}\right]=0, \\
& D_{1, n}+\left(\lambda_{1}^{\prime} p_{z}^{(0)} \alpha_{n} / 4\right)\left[\left(1-r^{2}\right) C_{0, \ldots}+2 \alpha_{n} p_{z}^{(0)} B_{0 n}\right]=0, \\
& E_{1}, n-\left(\lambda_{1}^{\prime} p_{z}^{(0)} \alpha_{n} / 4\right)\left(1-r^{2}\right) F_{0 ; n}=0, \\
& F_{1, n}+\left(\lambda_{1}^{\prime} p_{z}^{(0)} \alpha_{n} / 4\right)\left(1-r^{2}\right) E_{0, n}=0, \\
& G_{1, n}+\lambda_{1}^{\prime} p_{z}^{(0)}\left[\left(p_{z}^{(0)} / 2\right)\left\{A_{0, n}^{\prime \prime}-(1 / r) A_{0, n}^{\prime}\right\}-r I_{0, n}\right. \\
& \left.-\left(a_{n 2} / 4\right)\left(1-r^{2}\right) H_{0 \cdot n}\right]=0, \\
& H_{1, n}+\lambda_{1}^{\prime} p_{z}^{(0)}\left[\left(p_{z}^{(0)} / 2\right)\left\{B_{n, n}^{\prime \prime}-(1 / n) B_{l, n}^{\prime}\right\}+\right. \\
& \left.\left(\alpha_{n} / 4\right)\left(1-r^{2}\right) G_{0} n-r J_{0, n}\right]=0, \tag{2.11f}\\
& I_{1, n}+\left(\lambda_{1}^{r} p_{z}^{(0)} \alpha_{n} / 4\right)\left[\left(2 p_{z}^{(0)} / r\right) B_{0 p n_{n}}-\left(1-r^{2}\right) J_{0, n}-\left(2 r / \alpha_{n}\right) C_{0, n}\right]-0, \\
& I_{10 n}+\left(\lambda_{1}^{r} p_{z}^{(0)} \alpha_{n} / 4\right)\left[\left(2 p_{z}^{(0)} / r\right) B_{0 p m}-\left(1-r^{2}\right) J_{0, n}-\left(2 r / \alpha_{n}\right) C_{0, n}\right]-0, \quad[2.11 g] \\
& f_{1, n}-\left(\lambda_{1}^{\prime} p_{z}^{(0)} \alpha_{n}{ }^{\prime} 4\right)\left[\left(2 p_{z}^{(0)} / r\right) A_{0, n}-\left(1-r^{2}\right) I_{0, n}+\left(2 r / \alpha_{n}\right) D_{0, n}\right]=0 . \quad[2.11 h]
\end{align*}
$$

The equations determining $A_{2}, x, B_{2, n}, C_{2, n}, D_{2, n}, E_{2, n}, F_{2, n}, G_{2, n} H_{2, n}, I_{2, n}$ and J_{2}, n are:

$$
\begin{align*}
& I_{2, n}^{\prime \prime}+(1 / r) I_{2, n}^{\prime}+\left(\alpha_{n}^{2}-1 / r^{2}\right) I_{2, n}-\alpha_{n}\left[D_{2 n}^{\prime}+(1 / r) D_{2, n}\right]+\alpha_{n} H_{2, n}^{\prime}+\left(\alpha_{n} / r\right) F_{2, n} \\
& =\left(\alpha_{n} p_{z}^{(0) 2} / 8 .\left[(1 / r-r) B_{0, n}^{p r}+\left(1-1 / r^{2}\right) B_{0, n}^{\prime}+\alpha_{n}{ }^{2}(r-1 / r) B_{0, n}\right]_{0}\right. \tag{2.2a}\\
& J_{2, n}^{\prime \prime}+(1 / r) J_{2, n}^{\prime}+\left(\alpha_{n}^{2}-1 / r^{2}\right) J_{2 n}+\alpha_{n}\left[C_{2 g n}^{\prime}+(1 / r) C_{2 p n}\right]-\alpha_{n} G_{2, n}^{\prime}-\left(\alpha_{n 2} / r\right) E_{2-n} \\
& =-\left(\alpha_{n} p_{z}^{(0) 3} / 8\right)\left[(1 / r-r) A_{0, n}^{\prime \prime}+\left(1-1 / r^{2}\right) A_{0, n}^{p}+a_{n}^{2}(r-1 / r) A_{0, n}\right], \\
& C_{2, n}+\left(\lambda_{1}^{\prime} p_{z}^{(0)} \alpha_{n} / 4\right)\left(r^{2}-1\right) D_{1, n}=\left(\alpha_{n} p_{z}^{(0)} / r\right)\left[B_{2, n}^{\prime}-(1 / r) B_{1, n}\right] \\
& +\left(\lambda_{2} p_{2}^{(0)^{2}} \alpha_{n}^{2} / 4\right)\left[(1 / r-r) A_{0, n}^{p}+\left(3-1 / r^{2}\right) A_{0 r}\right] . \tag{2.12c}
\end{align*}
$$

$$
\begin{align*}
& D_{2, r}+\left(A_{1}^{\prime} p_{=}^{(0)} \alpha_{n} / A_{2}^{2}\right)\left(1-r^{2}\right) C_{n}, n=-\left(\alpha_{n} p_{z}^{(0)} / r\right)\left[A_{2 n}^{p}-\left(1 / r^{2}\right) A_{2 y}\right] \\
& \left.\left.s\left(\lambda_{2}^{2} p^{(9)} a_{1}^{2} / t\right)(1) / p-r\right) B_{0, n}^{P}+\left(3-1 / p^{2}\right) D_{0, n}\right], \tag{2.12d}
\end{align*}
$$

$$
\begin{align*}
& =-\left(\alpha_{n} p_{2}^{(0)} / r^{2}\right) A_{2: n}+\left(\lambda_{2}^{\prime} p_{z}^{(0)} \alpha_{n}^{2} / 4\right)\left(1 / r^{2}-1\right) s_{0, x} . \tag{2.12f}
\end{align*}
$$

$$
\begin{align*}
& =-\left(c_{n} p_{z}^{(0)} / r\right) B_{2, n}^{\prime}+\left(\lambda_{2}^{\prime} p_{=}^{(0)} / 4\right)\left[4 A_{0, n}^{\prime \prime}-(4 / r\right. \\
& \left.+\alpha_{n}^{2}(1, r-r) ? A_{0 n}^{\prime}+3 \alpha_{n}^{2} A_{0}, n\right] \text {. } \\
& F_{22}+\lambda_{j}^{\prime} p_{n}^{(0)}\left[-\left(\lambda_{1}^{\prime} p_{2}^{(0) 2} \alpha_{n i}^{2} / 2\right)\left(A_{0, n}+F_{0, n}^{\prime}\right)-r J_{1 n n}+\left(\sigma_{n} / 4\right)\left(1-r^{2}\right) G_{1, n}\right] \\
& -\left(\alpha_{n} p_{\varepsilon}^{(0)} / r\right) A_{20 n}^{\prime}+\left(\lambda_{2}^{\prime} p_{z}^{(0) / 2} / 4\right) \times\left[4 B_{0, n}^{\prime r}\right. \\
& \left.-\left\{4 / r+a_{n}^{2}(\mathbb{1} / r-r)\right\} B_{0 \beta}^{r}+\hat{2} \alpha_{n}^{2} B_{0, n}\right], \tag{2.12h}\\
& I_{2 s, t}+\left(\lambda_{1}^{\prime} p_{z}^{(0)} c_{n} / 4\right)\left[\left(r^{2}-1\right) J_{1},{ }_{n}-\left(2 r / \alpha_{n}\right) C_{1, n}+\lambda_{1}^{\prime} p_{i}^{(0) 2} \alpha_{n} \sigma A_{0},{ }_{n}{ }^{1}\right.
\end{align*}
$$

$$
\begin{align*}
& \left.-\left(3+1 / r^{2}\right) B_{0, n}^{\prime}+\left\{8 / r+\alpha_{n}^{2}(1 / r-r)\right\} B_{0, n}\right], \tag{2.12i}
\end{align*}
$$

and

$$
\begin{aligned}
& =-\left(p_{s}^{(0)} / 2 r\right)\left[B_{2, n}^{\prime \prime}-(1 / s) B_{2,}^{2}{ }_{n}+\alpha_{n}^{9} B_{2} \cdot n\right]-\left(\lambda_{2}^{\prime} p_{i}^{(0) 2} \alpha_{n} / 8\right) \times \\
& {\left[(1 / r-r) A_{0, n}^{2 \prime}-\left(3+1 / r^{2}\right) A_{0, n}^{\prime}+\left\{8 / r+\alpha_{n}^{2}(1 / r-r)\right\} A 0, n\right] \text {. [212j] }}
\end{aligned}
$$

 equations [2A], we obtain the following equations for the determination of A_{2}, \ldots and B_{5}, :

$$
\begin{aligned}
& =\left(\alpha_{z 2} p_{2}^{(0 y} \mid 4\right) r^{n}\left(r^{2}-1\right)\left[r B_{0 \times n}^{\prime \prime}-B_{0 r m}^{\prime}-\alpha_{n}^{2} r B_{0 n n}\right] \\
& +\left(A_{1}^{2} p_{n}^{(0) 2} \alpha_{n}^{2} / A\right) r^{2}\left[\left(r^{2}-1\right)\left(r^{2} A_{0, n}^{\prime \prime \prime}+\alpha_{n}^{2} A_{0, n}^{\prime}\right)-4 \alpha_{n}^{2} p^{3} A_{0, n}\right],[2.136]
\end{aligned}
$$

$$
\begin{align*}
& =-\left(\alpha_{x_{n}} P_{2}^{(0)} / 4\right) r^{2}\left(r^{2}-1\right)\left[r A_{0, n}^{\prime}-A_{0 s}^{t}{ }_{n}-\alpha_{n}^{2} r A_{0},{ }_{n}\right] \tag{2.13b}
\end{align*}
$$

to be solved uncer the boandary conditions:

$$
\left.\begin{align*}
& A_{2=n}(0)=A_{2, n}(1)=A_{2, n}^{F}(0)=A_{2, n}^{P}(1)=0 \tag{2.13c}\\
& B_{20 n}(0)=B_{2, n}(1)=B_{2, n}^{p}(0)=A_{2, n}(1)=0
\end{align*} \right\rvert\,
$$

where a dasin deaotes diferentiotion with respect to p.
The stresses, the vorticity and the skin friction are given by

$$
\begin{align*}
& -\left(3-1 / r^{2}\right) A_{0, n}+\mathcal{R}^{2}\left[(1 / r)\left\{B_{2}^{\prime}, n-(1 / r) B_{2 n} n_{n}\right\}\right. \\
& -\left(\lambda_{1}^{2} p_{\mathrm{z}}^{(0) 2} \alpha_{n}^{2} / 16\right)\left\{\left(x^{3}-2 r+1 / r\right\} B_{0 x}^{\prime} n\right. \\
& \left.+\left(4-3 r^{2}-1 / r^{2}\right) B_{0 n}{ }_{n}\right\}+\left(\lambda_{2}^{\prime} p_{0}^{(0)} \alpha_{n} / 4\right)\left\{(1 / F-r) A_{0}^{P} n_{n}\right. \\
& \left.\left.+\left(3-1 / r^{2}\right) A_{0} \cdot n^{\prime}\right]\right\rangle \cos x_{n} z+\left\langle-(1 / r)\left[A_{0}^{\prime},{ }_{n}-(1 / 8) A_{0 n}\right]\right. \\
& +\left(R \lambda_{1}^{\prime} p_{z}^{(0)} \alpha_{n} / 4\right)\left[(r-1 / r) B_{0}^{s}, n-\left(3-1 / r^{2}\right) B_{0, n}\right] \\
& +R^{2}\left[-(1 / P)\left\{A_{2, n}^{r}-(1 / r) A_{2, n}\right\}+\left(\lambda_{1}^{2} p_{2}^{(0) 2} \alpha_{p / 2}^{2} / 16\right)\left\{\left(r_{3}-2 r+1 / r\right) A_{0}^{2} p_{m}\right.\right. \\
& \left.+\frac{1}{(4}-3 r-1 / r^{2}\right) A_{0, n}+\left(\lambda_{2}^{\prime} p_{2}^{(3)} \alpha_{n} / 4\right)\left\{\left(\frac{1}{1} / r-r\right) B_{0, n}^{r}\right. \\
& \left.\left.\left.+\left(3-1 / r^{2}\right) \beta_{0_{r} n}\right\}\right\rangle \sin \operatorname{con}_{n_{3}}\right] \text {, } \tag{2.1+a}
\end{align*}
$$

$+R^{2}\left[\left(1 / r^{2}\right) B_{3, n}-\left(\lambda_{1}^{\prime} p_{z}^{(0){ }^{2}} \alpha_{n}^{2} / 16(r-1 / r)^{2} B_{0 s n}\right.\right.$
$\left.+\left(A_{2}^{\prime} p_{z}^{(0)} \alpha_{n} / d\right)\left(1 / r^{2}-1\right) A_{0}, n\right] \cos \alpha_{n} z+\left\{-\left(1 / r^{2}\right) A_{0 n} n\right.$
$+\left(R \lambda_{1}^{\prime} p_{z}^{(i)} \alpha_{n} / 4\right)\left(1-1 / r^{2}\right) B_{0, n}+R^{2} \mid-\left(1 / r^{2}\right) A_{2}, n$

$$
\begin{aligned}
& p_{x z}=\left(R p_{z}^{(0) 2} \gamma^{2} / 2\right)\left(\lambda_{1}^{\prime}-\lambda_{2}^{n} R\right)+\epsilon p_{z}^{(0)} \sum_{n=1}^{\infty}\left[\left\{-\left(\alpha_{n} / r\right) B_{0, n}^{\prime}-R \lambda_{1}^{f} p_{z}^{(0)}\left[A_{0, n_{2}}^{n i}\right.\right.\right. \\
& +\left\{\left(\alpha \frac{2}{2} / 4\right)(r-1 / r)-\left\{1 / r^{1}\right\} A_{0, n}^{\prime}+\left(\alpha_{n}^{2} / 2\right) A_{0, n}\right] \\
& +R^{2}\left\langle-\left(\alpha_{a} / r\right) B_{3 ; n}^{\prime}-\left(\lambda_{8}^{\prime 2} p_{z}^{(0) 2} \alpha_{m} / s\right)\left\{3\left(\lambda-r^{2}\right) B_{0, \beta_{k}}^{p}\right.\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.+\left[3(r-1 / p)-\left(a_{n}^{2} / 2\right)\left(r^{3}-2 z+1 / r\right)\right] B_{0, s}+2\left[\alpha_{n}^{2}\left(1-r^{2}\right)+6\right] B_{0, n}\right\} \\
& \left.\left.+\left(\lambda_{2}^{\prime} p_{z}^{(0)} / 4\right)\left\{4 A_{u, n}^{\prime \prime}-\left[u_{n}^{2}(r-1 / r)+4 / r\right] A_{0, n}^{\prime}+2 \alpha_{n}^{2} A_{0, n}\right\}\right\rangle\right\} \cos \alpha_{n} z \\
& +\left\{\left(\alpha_{n} / r\right) A_{0, n}-R_{n}^{\prime} p_{z}^{(0)}\left[B_{0, n}^{\prime \prime}+\left\{\left(\alpha_{n}^{2} / 4\right)(r-1 / r)-1 / r\right\} B_{0, n}^{\prime}+\left(\alpha_{n}^{2} / 2\right) B_{0, n}\right\}\right. \\
& +\mathbb{R}^{2}\left(\sigma_{n} / r\right) A_{2, n}^{2}+\left(N_{1}^{2} p_{z}^{(0) 2} \alpha_{n} / 8\right)\left\{3\left(1-r^{2}\right) A_{0, n}^{\prime \prime}+\left[3(r-1 / r)-\left(\alpha_{n}^{2} / 2\right) \times\right.\right. \\
& \left.\left.\left(r^{3}-2 p+1 / r^{\prime}\right] A_{0, n}^{\prime}+2\left[\alpha_{n}^{2}\left(1-p^{2}\right)+6\right] A_{0, n}\right\}+\lambda_{2}^{t} p_{0}^{(0)} / 4\right) \times \\
& \left.\left.\left.\left\{A_{0} B_{0, n}^{p}-\left[4 / r+\alpha_{n}^{2}(1 / r-r)\right] B_{0, s}^{\prime}+2 \alpha_{n}^{2} B_{0, n}\right\}\right\rangle\right\} \quad \sin \alpha_{m} z\right] \text {, } \tag{2.14c}\\
& p_{r z}=p_{2}^{(0)} r_{i}^{\prime 2}+\in p_{z}^{(0)} \sum_{n=1}^{\infty}\left[\left\{-(1 / 2 r)\left[A_{0, n}^{\prime \prime}-(1 / r) A_{0, n}^{r}+\alpha_{n}^{2} A_{0_{0} n}\right]\right.\right. \\
& +\left(R X_{1}^{\prime} p_{z}^{(0)} 0_{n / k} / 8\right)\left[(r-1 / r) B_{0, n}^{i n}+\left(3+1 / r^{2}\right) B_{0, \pi}\right. \\
& \left.+\left\{a_{n}^{2}(r-1 / r)-(8 / r)\right\} B_{0, n}\right]+R^{2}\left\langle-(1 / 2 r)\left[A_{2, n}^{*}-(1 / r) A_{21 n}^{\prime}+a_{n}^{2} A_{2, n}\right]\right. \\
& +\left(\lambda_{i}^{\prime 2} p_{z}^{(0)} \alpha_{n}^{2} / 32\right)\left\{r^{3}-2 r+1 / r\right) A_{0}^{\prime \prime}, n+\left(7 r^{2}-6-1 / r^{2}\right) A_{0, n}^{\prime} \\
& \left.+\left[a_{n}^{2}\left\{r^{3}-2 r+1 / r\right)-28 r+12 / r\right] A_{0} \cdot n\right\} \\
& +\left(\lambda_{2}^{\prime} z^{(0)} \alpha_{n} / 8\right)\left\{(1 / r-r) B_{0, n}^{\prime \prime}-\left(3+1 / r^{2}\right) B_{0, n}^{\prime}\right. \\
& \left.\left.\left.+\left[\alpha_{n}^{2}(1 / r-r)+8 / r\right] B_{6 r n}\right\}\right\rangle\right\} \cos \alpha_{n} z+\left\{-(1 / 2 r)\left[B_{0, n}^{\prime \prime}-(1 / r) B_{0, n}^{\prime}\right.\right. \\
& +\mathrm{a}_{n}^{2} B_{0, n} \overline{]}-\left(R \lambda_{1}^{2} p_{z}^{(0)} \alpha_{n} / 8\right)\left[(r-1 / r) A_{0, n}^{\prime \prime}+\left(3+1 / r^{3}\right) A_{0, n}^{\prime}\right. \\
& \left.+\left\{\alpha_{n}^{2}(r-1 / r)-8 / r\right\} A_{0}\right]+R^{2}\left\langle-(1 / 2 r)\left(B_{2, n}^{r s}-(1 / r) B_{2, n}^{\prime}+\alpha_{n}^{2} B_{2, n}\right\}\right. \\
& +\left(\lambda_{1}^{2} p_{2}^{(0) I} q_{n}^{2} / 32\right)\left(\left\{r^{3}-2 r+1 / r\right) B_{0,{ }_{n}+}^{\prime \prime}+\left(7 r^{2}-6-1 / r^{2}\right) B_{0, B_{2}}^{\prime}\right. \\
& \left.+\left[\alpha_{n}^{2}\left(r^{3}-2 r+1 / r\right)-28 r+12 / r\right] B_{0, n}\right\}-\left(\lambda_{2}^{\prime} p_{x}^{(0)} \alpha_{n} / 8\right) \times \\
& \left.\left.\left.\left\{(1 / r-1) A_{0, n}^{\prime \prime}-\left(3+1 / r^{2}\right) A_{0, n}^{\prime}+\left[\alpha_{n}^{2}(1 / r-r)+8 / r\right] A_{0, n}\right\}\right\rangle\right\} \sin \epsilon_{n} z\right] \text {, } \\
& \vec{\zeta}=\overrightarrow{i_{6}} \Omega_{\theta} \text {, where } \\
& R_{0}=-\left(R_{z}^{(0)} r / 2\right)+\left(\in R_{p} p_{z}^{(0) / 2 r}\right) \sum_{n=1}^{\infty}\left\langle\left\{\left[A_{0, n}^{\prime \prime}-(1 / r) A_{0, n}^{p}-\alpha_{n}^{2} A_{0, n}\right]\right.\right. \\
& \left.+\mathrm{N}^{2}\left[\mathrm{~A}_{2, n}^{\prime \prime}-(1 / r) A_{3 z}^{\prime} n-\alpha_{n}^{3} A_{2, n}\right]\right\} \cos \alpha_{3 k} z+\left\{\left(B_{0, n}^{\prime \prime}-(1 / r) B_{0, n}^{\prime}-\alpha_{n}^{2} B_{0, n}\right)\right. \\
& \left.\left.+R^{2}\left[E_{a}^{\prime \prime},-(1 / t) B_{2, n}^{\prime}-\alpha_{n}^{2} D_{2, n}\right]\right\} \sin \alpha_{n} z\right\rangle
\end{align*}
$$

$$
\begin{aligned}
& r=\int_{0}^{\pi}\left[2 \pi r p_{r}\right]_{r} d z=\frac{i}{i}+\varepsilon \underset{n=1}{s i n}\left(\alpha_{n} \cos \alpha_{n} z+y_{n} \sin \alpha_{2 z} z\right) \\
& =\pi p_{=}^{(n)}\left\langle z+\epsilon \sum_{n=1}^{\infty}\left[\left[\left(3 a_{n}-A_{0, n}^{n}(1)\right)\right.\right.\right. \\
& \left.{ }^{4}+R_{p} p_{z}^{(0)} \alpha_{n} b_{n}\left(\lambda_{1}^{\prime}-\lambda_{2}^{\prime} R\right)-R^{2} A_{2}^{\prime \prime}{ }_{n}(1)\right] \sin \alpha_{n} z-\left[\left\{3 b_{n, n}-E_{0, n}^{p}(1)\right\}\right. \\
& \left.\left.\left.-R p^{(0)} \alpha_{n} \alpha_{n}\left(\lambda_{1}^{\prime}-\lambda_{2}^{\prime} p\right)-R^{2} B_{2}^{j \prime}, n(1)\right]\left(\cos \alpha_{n} z-1\right)\right\}\right\rangle . \quad[2, A 4]
\end{aligned}
$$

pressure.-The pressure is gizen by

$$
\begin{aligned}
& p(r, z)=2 p_{i}^{(0)}+\varepsilon \sum_{n=1}^{\infty}\left\langleJ \left\{ C_{n}+(1 / r)\left(C_{n}-E_{n}\right)+\alpha J_{n}\right.\right. \\
& \left.+\left(R^{2} p_{=}^{(0) 2} \alpha_{n}^{2} / 8\right)(1 / r-r) A_{n}\right\} d r\left(\cos \alpha_{n} z\right)+\int\left\{D_{n}^{*}+(1 / g)\left(D_{n}-F_{n}\right)\right. \\
& \left.\left.-\alpha_{n} \eta_{n}+\left(R^{2} p_{z}^{(0) 2} \alpha_{n}^{2} / 8\right)\{1 / r-p) E_{n}\right\} d r\left(\sin \alpha_{n} n\right)\right\rangle
\end{aligned}
$$

$$
\begin{align*}
& \sin \alpha_{n z} z-\left\{\left(1 / \alpha_{n}\right)\left[y_{n}^{\prime}+(1 / n) J_{n}\right]-G_{n}+\left(R^{2} p_{z}^{(0) 2} / 8\right)\left[2 A_{n}+\{1 / n-r) A_{n}^{2}\right\}\right\} \times \\
& \left.\cos \alpha_{12} z\right\rangle+p^{\prime} \text { 。 } \tag{2.15}
\end{align*}
$$

Where p^{\prime} is some constant pressure and all the quantides in [2.15] are known in terms of A_{2} and E_{n}

PART B

Temparature Fafle

As in velocity field, we set

$$
T=T^{\prime 0}+\in T^{\prime}(P, z)
$$

The equations and the boundary conditions determining $T^{(0)}$ and $T^{(1)}$ ara obtained from the non-dimensioxal form of the enerey equation [i. 3$]$ and the boundary conditions [14] by equating terms independent of and the co esincient of respecivively.

We have,

$$
\begin{equation*}
T^{(0)}(\Gamma) \cos 1+\left(E \sigma R^{2} p_{z}^{(0)} / 64\right)\left(1-8^{0}\right) \tag{2.17}
\end{equation*}
$$

In yiew of $[3.17$, the boundary conditions for rim reduce to

$$
\left.\begin{array}{l}
T^{(1)}(1, z)=\left(E q R^{7} p z^{(0) 2 / 16)} \sum_{n=1}^{\#}\left[o_{n} \cos \alpha_{n} z+b_{n} \sin \alpha_{n} z\right]\right. \tag{1}\\
T_{r}^{\prime \prime}(0, z)=0
\end{array}\right\}
$$

Which susgest that $T^{(1)}(r, z)$ should be chosen in the form

$$
\begin{equation*}
T^{(1)}(r, z)=\left(E v R^{2} p_{z}^{(0) 2 / 16)} \sum_{n=1}^{\infty}\left[K_{n}(r) \cos \alpha_{n} z+Z_{n}(r) \sin \sigma_{n} z\right]\right. \tag{2.19}
\end{equation*}
$$

Taking

$$
\left.\begin{array}{l}
K_{n}=K_{0, n}+R K_{1}, n+R^{2} K_{2, n} \tag{2.20}\\
L_{4 b}=I_{0 n}+R L_{1} n+R^{2} L_{2, n}
\end{array}\right\}
$$

the equations determining $K_{0, n} X_{0, n} ; K_{1, n}, L_{1}, n ; K_{2, m}$ and $Z_{2, n}$ are :

$$
\begin{align*}
& \mathbb{K}_{0, n}^{\prime \prime}+(1 / r) K_{0, n}^{\prime}-\alpha_{n}^{2} K_{C, n}=8\left[A_{0, n}^{\prime \prime}-(1 / r) A_{0, n}^{p}+\mu_{n}^{2} A_{0, n}\right], \tag{2.21d}\\
& L_{0}^{\prime \prime}, n+(1 / r) L_{0, n}^{\prime} \quad \alpha_{n}^{2} E_{0 \times n}-\delta\left[E_{0, n}^{\prime \prime}-(1 / r) B_{0, n}^{\prime}+\alpha_{n}^{2} B_{0, r}\right] \tag{2,21B}
\end{align*}
$$

$$
\begin{align*}
& \left.+\left\{\alpha_{A}^{4}\left(1-r^{2}\right)+8\right\} B_{0}, m\right] \text {, } \tag{2.21c}
\end{align*}
$$

$$
\begin{align*}
& \left.+\left\{\alpha_{n}^{2}\left(1-r^{2}\right)+8\right\} A_{0, n}\right], \tag{2,21d}
\end{align*}
$$

$$
\begin{aligned}
& =5\left[A_{2, n}^{\prime \prime}-(1 / p) A_{2, n}^{2}+\alpha_{n}^{2} A_{2}, n\right] \\
& +\alpha_{n} p_{0}^{(0)} \sigma\left[\left\{\left(r^{2}-1\right) / 4\right\} E_{0, n}-\left(r^{2} / 2\right) B_{0 n}\right]-\left(\lambda_{1}^{\prime 2} p_{3}^{(0) 2} \alpha_{n}^{2} / 4\right)\left[\left(r^{2}-1\right) A_{0: n}^{p}\right. \\
& +\left(7 r^{3}-(r-y / p) A_{0, n}^{r}+\left\{a_{n}^{2}\left(r^{2}-1\right)^{2}-28 r^{2}+12\right\} A_{0},{ }_{n}\right] \\
& -\lambda_{2}^{\prime} p_{z}^{\prime 0} \alpha_{n n}\left[\left(1-r^{2}\right) B_{0, n}^{\prime *}-(1 / r-r) B_{0}, n+\left\{\alpha_{n}^{2}\left(1-r^{2}\right)+8\right\} B_{0, n}\right], \quad[2,2 l e]
\end{aligned}
$$

$$
\begin{aligned}
& -8\left[B_{2, n}^{\prime \prime}-(1 / F) B_{2,12}^{\prime}+\alpha_{n}^{2} B_{2, n}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\left(7 r^{3}-6 r-1 / r\right) s_{0, n}^{\prime}+\left\{a_{n}^{2}\left(r^{2}-1\right)^{2}-28 r^{2}+12\right\} B_{0}, n\right] \\
& +A_{2}^{\prime} j_{n}^{(\theta)} \alpha_{22}\left[\left(1-r^{2}\right) A_{0 ; n-n}^{r}-(1 / r-r) A_{0, n}^{p}+\left\{\alpha_{n}^{2}\left(1-r^{2}\right)+8\right\} A_{00 n}\right] \cdot[2.21 f]
\end{aligned}
$$

The equations [2 21] wre to be solved under the boundary conditions :

$$
\left.\begin{array}{c}
K_{0}, n(1)=a_{n, n} \quad X_{0}^{\prime}, n(0)-0 \\
L_{0, n}(1)-b_{n,} \quad \tilde{L}_{0, n}^{\prime}(0)=0 \tag{2.225}\\
K_{1, n}(1)=K_{i, n}^{\prime}(0)=0 \\
K_{1, n}(1)=L_{i, n}^{\prime}(0)=0
\end{array}\right\} ;
$$

and

$$
\begin{equation*}
K_{2, n}(1)=K_{2, n}^{\prime}(0)=\Sigma_{2, n}(1)=L_{2}^{\prime},>(0)=0 \tag{2.22c}
\end{equation*}
$$

On putting $\lambda_{2}^{r}=\lambda_{2}^{\prime}=0$ in all the equations of Part A and Part B we get the equations for Newtonian heid and these equations agree with the corresponding equations of reference 6 with $K=S=0$. The streambine and the vorticity ars affected by the stress-relaxation time only while the stresses and the temperature are afected by bota the stress-relaxation and the strainuretardation times,

3. Parchcular Case

The equations obtained in $\$ 2$ cannor be solved in ciose form for amy general value of α_{n} To visualise the flow field and the temperature distribuhon we take the particular case when the boundary of the tube has sinusodial deformation defined as follows:
(i) $a_{n}=a_{n}^{\prime}=0$, for all n; (ii) $b_{n} x=b_{n}^{\prime}=O_{0}$ for $n>1_{s}$ and $b_{1}=b_{1}^{\prime}=1$.

We choose the following values of the various parameters involved in this problem:

$$
\begin{aligned}
& \epsilon=0.05, \sigma=p_{2}^{(0)} \bmod ; \quad \lambda_{1}^{\prime}=0.2,0.5,0.7 \\
& \lambda_{2}^{\prime}=0.02,0.05,0.08 ; \quad E=0.5
\end{aligned}
$$

$\mathbb{R}^{2}=5$, and $h=1$, so that the wavelength of the periodic deformation is 2π.

i. Welocity Fiald:

(a) Streamines: In this particular case, we have

$$
A_{0: 1}=0,
$$

for all r in $(0,1)$ due to homogeneous boundary conditions on A, to wotam $B_{0-1,}, A_{2,1}$ and $B_{2,1}$ we adopt the usual procedure of numerical integration of eno point boundary value problens and integrate the equations, [2.10] and [2.13] numerically.

Whth the known walwes of $B_{0,1}, A_{2 \times 1}$ and $B_{2,1}$ at each point of $(0,1)$ at a subinterval of 0.1 the strean functon is completely decemined by the expression

$$
\begin{align*}
\psi \sim & -\left(R p_{2}^{(0)} / 8\right)\left(r^{2}-r^{4} / 2\right)-\left(a R p_{z}^{(0)} / 2\right)\left[R^{2} A_{2,1} \cos z\right. \\
& \left.+\left(B_{0,1}+R^{2} E_{2,1}\right) \sin z\right] \tag{3.1}
\end{align*}
$$

at every intergal of 0.1 for r.
In Fig. 1 we have drawn the sircamlines, $f^{\prime}--84 / R p^{(0)}-$ constant 2 to wisuatise the flow feld. The continuous litues and the cotted limes represent the itremaines for Newtonian and elastico-vaswos flums respecirvely. The streandimes for elastuco-viscous fuids ate slightly displaced in the planes $z=\pi / 2$ and $z-3 \pi / \sum$ relative to those for Newtonian guids.

The streamines near the boundary of the wavy tube are almost paralle to it. The deformity of the sireamhnes decreases continuously as we move away from the boundaty towards the axis of the tube. On axis of the tube they become just straight due to axial symmetry. This phenomenon is similar to that cuserved is the case of flow of a Rivlih-Ericksen Ruid discussed in reference 6 . Table 1 shows tbe effect of λ_{1}^{\prime} on strean function.
(b) Vorticity: The expression for the vorticity is

$$
\dot{\vec{\zeta}}-\overrightarrow{i_{i}} \Omega_{d x}
$$

whert

$$
\begin{align*}
Q_{y}= & -R p_{z}^{(0)} r / 2+\left(\varepsilon R p_{2}^{(0)} / 2 r\right)\left\langle R^{2}\left[A_{2,1}^{\prime \prime}-(1 / r) A_{2,1}^{\prime}-A_{2,1}\right] \cos z\right. \\
& \left.\left.+\left\{B_{0,1}^{\prime \prime}-(1 / r) B_{0,1}^{\prime}-B_{0,1}\right\}+R^{2}\left[E_{2,1}^{\prime \prime}-(1 / r) B_{2,1}^{\prime}-B_{2,1}\right]\right\} \sin z\right\rangle \tag{3,2}
\end{align*}
$$

Th the sbsence of deformation in the boundary, the vortex thes are concentric circles having the same radil in all planes with their cemtres lying on the axis. Even in the presence of deformation in the boundary, the vertex iintes are concentric circles but their radii differ in different planes, the radis being maximum in the plane $z=3 \pi / 2$ and minimum in the plane $z=\pi / 2$.

Fig. 2 shows the variation of $\Omega_{\theta}^{\prime}=-2 \Omega_{g} / R P_{z}^{(0)}$ with axial distance z for various value of p Fig. 3 shows the variation of Ω with radinl distancer in the planes $z=0, \pi / 2, \pi, 3 \pi / 2$ and 2π.

From both these figures we note that Ω_{θ}^{\prime} increases with radial distance nod this incresse is maximum in the plane z cu $3 \pi / 2$ and minimum in the plane $200 \pi / 2$.

Table 2 thows the efrect of λ_{1}^{\prime} on vorticity. The increase in λ_{1}^{\prime} results in a decrease in vorticity up to a certain distance from the axis and then the worticiny increases towards the boudary in the plane $z=\pi / 2$. The reverse is tyen in hat place $z=3 \pi / 2$.

Fig.

Fig. 2
Fariafon of worticity with axial distance for Newtorian Fluids

Fie. 3
 far particutar values: $s=0.05, p_{z}^{(0)}=A=1, n=5$.

FIG. 4
Ismikerms for Newtonian Fluid for $=0.05, E=0.5, R^{2}=5, \quad a=p_{x}^{(0)}=1$.

Eig. 3
Isotherms for Elastico-Viseaus Fixids for
$\varepsilon=0.05, E=0, R^{2}=5, x=p^{\prime}(0)=1, \lambda_{1}^{\prime}=0.7, \lambda_{2}^{\prime}=0.08, h=1$

TABCE 1

r / z	$y^{4} y^{e}(n, z)$				
	0	$\pi / 2$	π	$3 \pi / 2$	2π
0.3	0.009973	(i) 0.009024	0.009977	0.010876	0.009923
		(ii) 0005022		0.010879	
		(iii) 0.009006		0.010894	
		(iv) 0.008988		0.010912	
0.2	0.039992	(i) 0.035498	0.599708	0.042902	0.039092
		(i) (ii) 0.035485		0.042914	
		(iii) 0.035478		0.420922	
		(iv) 0.035354		0.043046	
0.3	0.085% \%	(i) 0.077967	0.686164	0.093933	0.085736
		(ii) 0.077942		0.093858	
		(iii) 0.077824		0.044076	
		(iv) 0.077699		0094221	
0.4	0.145892	(i) 0.134006	0.147508	0.160394	0146892
		(ii) 0.133968		0.160432	
		(in) 0.133798		0.160602	
		(iv) 0.138589		$0.15081{ }^{1}$	
0.5	0.218393	(i) 0.200216	0.219167	0.237284	0.218393
		(ii) 0.200170		0237330	
		(ii1) 0.199971		0237529	
		(iv) 0.199727		0.237773	
96	0.294859	(i) 0.272244	0.295541	0.318156	0.294859
		(ii) 0.272198		0318702	
		(iii) 0.272006		0.318394	
		(iv) 0.271769		0.318631	
3.7	0.369689	(i) 0.344816	0.370211	$0.79 \div 084$	0.369689
		(ii) 0.344779		0395121	
		(ib) 0.344634		0.395269	
		(iv) 0.344446		0395454	
0.8	0.435057	(i) 0.411767	0.435343	0.458633	0.435057
		(ii) 0.41746		0.458654	
		(iii) 0.411665		0.458733	
		(iv) 0.411562		0.458838	
0.9	0.481914	(i) 0.466092	0.481986	-0497808	0.481914
		(ii) 0.466087		0.497813	
		(iii) 0.460067		0497833	
		(iv) 0.460041		0.497859	

h. h. Whe that enty it exch column correxponds to Nuwtonian fiuids, second, third and
 (x) $\lambda_{1}=0.7$

Thable 2

r^{i}	$\vec{\zeta}^{\prime}=\vec{i}_{6} 2^{\prime}$				
	0	$\pi / 2$	π	$3 \pi / 2$	2π
0.1	0.098682	(i) 0.092636	0.101318	0.107364	0.096682
		(ii) 0.092628		0.107372	
		(iii) 0.091844		0.108159	
		(iv) 0.0910%		0.108954	
0.2	0.196740	(i) 0.159909	0.203260	0.240091	0.196740
		(ii) 0.159707		0.240293	
		(iii) 0157944		0242056	
		(iv) 0.155979		0.244021	
0.3	0.296349	(i) 0.237548	0.303657	0.362458	0.596349
		(ii) 0.237299		0.362701	
		(iii) 0.235340		0.364660	
		(iv) 0.233135		0.366865	
0.4	0.996182	(i) 0.213304	0.403818	0.486696	$0.39+182$
		(ii) 0.313046		0.486954	
		(iii) 0.311018		0.488982	
		(iv) 0.308731		0491269	
0.5	0.496172		0.503828	0.603725	0.496172
		(ii) 0.396012		0.503988	
		(iii) 0.397963		0.605037	
		(iv) 0.391651		0.608349	
0.6	0.556442	(i) 0.469576	0.603558	0.730424	0.596442
		(ii) 0.469279		0.730721	
		(iii) 0.465636		0.734364	
		(iv) 0.462503		0.737497	
0.8	0.698733	(i) 0.549340	0.701203	0.850660	0.698733
		(ii) 0.549474		0.850526	
		(iii) 0.548044		0.851956	
		(iv) 0.547142		0.852858	
0.8	0.800803		0.799192	0.974575	0.800808
		(ii) 0.625701		0.974299	
		(iii) 0.625859		0.974141	
		(iv) 0626416		0.973584	
0.9	0.902243	(i) 0.700012	0.897757	1.099988	0.902243
		(ii) 0.700455		1.099545	
		(iii) 0.701632		1098369	
		(iv) $0.703 ; 92$		1.006808	

N.B. The first entry in each columa correspon, to Newtoman ituids, secomi, thind and fourth entries correspond to elastimo-viscous faids for (a) $\lambda_{1}^{\prime}=0.6, \quad(b) \lambda_{1}^{\prime}-0.5$ aut (c) $\lambda_{1}^{*}=0.7$.

Table 3

$5 / 6$	$T^{\prime \prime}(7 . z)$				
	0	$\pi / 2$	π	$3 \pi / 2$	2π
01	(i) 2.503782	2.318000	2.495818	2.681600	2.503782
	(ib) 2.505882	2.318 .08	2.493713	2.681392	2.505882
	(iii) 2.503520	2.319328	2.496080	2.680772	2.50350
	(iv) 2.501955	2.320570	2.497645	2.679030	2.501955
0.2	(i) 2.488625	2.303985	2503975	2.688015	2.488625
	(ii) 2.522397	2.303885	2.469603	2.688115	2522397
	(iii) 2.52539 L	2.303385	2.466609	2.688615	2,527553
	(iv) 2.5275 .53	2.302977	2.464444	2649023	2,527553
0.3	(i) 2.4 ¢ 5800	2.276247	2.493800	2.583353	2.465800
	(ii) 2.529687	2.276147	2.4 .9913	2.683453	2.529687
	(iii) 2.535404	2.2758 .9	2.424196	2.683761	2.535404
	(iv) 2.539562	2.275557	2.4 .0038	2.684045	2539562
0.8	(6) 2.417792	2.225376	2.452208	2646624	2.417792
	(ii) 2.499052	2.225538	2.372948	2.646452	2.499052
	(iii) $2.506: 99$	2.226781	2.365801	2.645219	2,506199
	(iv) $2.51 / 402$	2.228246	2.360598	2.643754	2.511402
0.5	(i) 2.326792	2.138132	2350808	2.549468	2.326792
	(ii) 2.410681	2.138762	2.276919	2.548338	2.410581
	(iii) 2.418182	2.142500	2.269418	2.545100	2.418182
	(iv) 2.423649	2146850	2.263951	2.540750	2.423649
0.6	(i) 2.161170	1.997502	2.190830	2.354498	$2.161: 70$
	(ii) 2.238622	1.998624	2.173378	2.353376	2.238522
	(iii) 2.245553	2.004910	2.106447	2.347000	2245553
	(iv) 2.250595	2.012177	2.101401	2339823	2.250599
0.7	(i) 1.888040	1.784361	1.910660	2.015239	1.8889417
	(ii) 1.951684	1.785893	18479×6	2013707	1951681
	(iii) 1.957295	1.794129	1.842305	2.005471	1.957295
	(iv) 1.961373	1.803656	1.838227	1.995944	1.961378
0.8	(i) 1.469558	1.477649	1.182442	1.474351	1.469558
	(ii) 1.512505	1.479161	1.459495	1572839	1.512551
	(iii) 1.516312	1.487169	1.435688	1.464831	1.516312
	(iv) 1.519055	1.496407	1432945	1.455513	1.519055
0.9	(i) 0.857410	1056322	0.862190	0.663278	0.857410
	(ii) 0878201	1.057152	0.841399	0662448	0.878201
	(iii) 0880014	1.061374	0.839586	0.658226	0.830014
	(iv) 0.881320	1.066284	0.878280	0.553316	0.881320

M.B. The first eatry in each column coresponds to Newtonian fuids, second, third and fomerh entries correspoad to elastico-viscous finids for (a) $\lambda_{1}^{2}=0.2_{2}, \lambda_{2}^{\prime}=0.2$; (b) $\lambda_{1}^{2}-45, \lambda_{2}^{\prime}=0.06$ sad (c) $\lambda_{1}^{\prime}-0.7, \lambda_{2}^{0}=0.08$ respectively.
(r) Sinesses an bunnday shenficion:

Wre have

$$
\begin{align*}
& p_{n}=\in p_{2}^{(0)} \cos z, \tag{3.30}\\
& p_{8 \mathrm{~B}}=0, \tag{3.38}\\
& \beta_{22}=R_{i} z^{(v i z}\left(\lambda_{1}^{\prime}-\lambda_{2}^{\prime} R\right)\left(\frac{1}{2}+\epsilon\right) \tag{3.3c}
\end{align*}
$$

and

$$
\begin{align*}
& \bar{p}_{z z}=\left(p_{z}^{(0)}\right)\left[1+\epsilon\left\{\left[R p_{3}^{(0)}\left(\lambda_{1}^{\prime}-\lambda_{2}^{\prime} R\right)-R^{2} A_{2,1}^{\prime \prime}(1)\right] \cos z\right.\right. \\
&\left.\left.+\left[2-E_{0: 1}^{\prime \prime}(1)-R^{2} p_{2,1}^{\prime \prime}(1)\right] \sin z\right)\right] \tag{3.3d}
\end{align*}
$$

The skin-fiction at any point z on tee boundary is

$$
\begin{align*}
\pi=\pi p_{0}^{(0)}[z+\epsilon[& {\left[R_{p}^{(0)}\left(\lambda_{1}^{\prime}-\lambda_{2}^{\prime} R\right)-R^{2} A_{2,1}^{\prime \prime}(1)\right] \sin z } \\
& \left.-\left[\left(3-B_{0,1}^{\prime \prime}(1)-R^{2} B_{2,1}^{\prime}(1)\right](\cos z-1)\right]\right] . \tag{3.4}
\end{align*}
$$

The above expressions show that the stresses $p_{z=}$ and $p_{\text {re }}$ and the shin-friction are aheeted by both the stress relakation time and stram retardation time. However, the nozmal stress $p_{7 p}$ is same for Newtonian and the chase of elastico-viscous Auids dealt herein.
fi. Temperatime fiele :
For the particumr case of siausidal deformation that

$$
K_{0, t}=E_{1, ~}=0
$$

for $211,0.1 \leqslant r \leqslant 09$, due to homogeneong boundary conditions, For the calculation of $L_{0,1}, K_{1}, K_{2, i}$ and $L_{2}, 1$ we have integrated purnericaly the equations [2.21] and [2.22] for the particular values of the parameter already mentioned earlier in the beginaing of this section.

The temperature field is given by

$$
\begin{align*}
T(r, z)=1 & +\left(E \theta R^{2} p_{z}^{(0) 2} / 64\right)\left[\left(1-r^{3}\right)+4 \in\left\{\left(R K_{2,1}+R^{2} K_{2,1}\right) \cos \right.\right. \\
& \left.\left.+\left(t_{0,1}+R^{2} L_{2,1}\right) \sin z\right\}\right] . \tag{3.5}
\end{align*}
$$

In figures 4 and 5 , we have dramn the isotherms in the apper half of the meridian plane for Newtonian $\left(\lambda_{1}^{\prime}=\lambda_{9}^{\prime} m\right.$) and efasico-visconss fuids

$\lambda_{1}-0.7, \dot{\lambda}_{2}^{\prime}=0.08$. The isotherms in the lower hatf are just the mirrot image of those in the upper half. The temperature distribution for Newtonian ard alastico-viscous fuids are similar. The main points of difference are the abonce of any straight iscthern in Fig. 5 and a slight shift of the isotherms for elastico-viscous fluids in comparison to the corresponding isoinerms for Newtomion fluids. The temperature distribution is affected by both the stress relaxation time and the strain retardation time.

We not that the isotherms near the boundary of the wavy cylindrical tube are more or less parallel to the boundary. In the case of Newtonail fuids, depending on the chosen values of the parameters characterising the wavelength of deformation, Reynolds number, Prandti number and Eckert number, the isotherm becomes parallel to the axis of the tube at a certain beight from the axis. As we move towards the amis of the tube from this straight isotberm we find that the deformity of the isotherms increases and becomes more and more pronounced so much so that the isotherms form closed loops between $z=\pi$ and 2π for Newtenian fuids and between $z=\pi / 2$ and 2π for elastico-viscous fluds. In Table 3 we have recorded the values of the temperature for Newtonian and elastico viscous flaids for $z=0, \pi / 2$, $\pi, 3 \pi / 2$ and 2π and for every subinterval of length 0.1 for $r_{B} \quad C .1 \leq r \leq 0.9$.

The increase in λ_{1}^{\prime} and $\hat{\lambda}_{2}$ results in the decrease of temperature in the planes $z=0$ and $z=2 \pi$ up to a certain distance from the axis and then the temperatura increases towards the boundary of the tube and the reverse is true in the flane $z=\pi / 2$. In the plane $z=\pi$ the temperature increases up to a certain distance from the axis and then decreases towards the boundary of the tube. The reverse is true in the plane $z=3 \pi / 2$

ACENOWLEDGMENT

The author wiskes to express his deep sense of gratitude to Professor P. L. Bhatnagar for suggesting the problen and constant help and guidance throughout this investigation. He is also thankful to Mr . R. K. Bhatnagar for waluable discussions.

Refrrences

1. Citrom, X. S., . . ASME, J. app. Mach, 1962, $29,188$.
2. Khamrui, S. R., .. . Ind. Jour. Mech. Maths., 1963, 1, 18,
3. Behinfante, D. C., Proc. Cawtb. phil. Soc., 1962, 58. 405
4. Tyagi, V. P.s The Matis. Seminar, 1966, 3, 111.
5. Shatangar, P. L. and Mohan Rao, D.K., Proc., Indian. Acad. Sci., 1965, LXIILA, No.6, 347.
6. Beatbagar, R. K. and Mathur, M. N. J. Indian 7nsi. Sci., 1966, 48, 1.
7. Oldroyd, J. ©. Prac. R. Sac., 1950, 200A. 523
