
X piecewise linen: rnelhod b~!;ed o n  the principlor of minimum mean sqoiire 
error between the non-lincar a n c  an  equivalcnl !incar ciaarac~cristic has been 
prcsznlrd. This eimbles t h t  non-linear d6ereneinl  cquation t o  be rsdnced t o  a 
sequence o f  linear differential equations which aie sc:vcd by usual methods. The 
method i s  ~llssrrat-d by cxamplcb. 

I N T R O D W ~ T ~ N  

Ssverai approximate methods are  available for thc  solution o f  vibratioai 
problems governed by non-linear diffsreitlial cquacions. Most o f  these 
methods are applicable to the  so cailkd yuasiiincar sysiems, where the sgsiem 
executes smali motions. Some of the approximate methods like the Kryloif 
and Bogoiiobotl' method, perturbnrion nier hod, eto., assume the przsence of a 
amail parameter in association with t he  nos-iinear terms of tha differzoiial 
equation, which renders Iheir contribuilon quite small as  compared to the 
h2cah terms. i n  t he  perturbation method, t he  solution is then d~veloped us 
a convergent power series ie the  small parameter, with coeUicients w h c h  a m  
dciemined by solving 3 sequence of linear equations. In the Mryloli' and 
flogoIiuboK method, t he  generatirig solusion of the quasi-linear system ie 
assumed to  be  harmonic. 1t is then assumed tliat the amplitude and phasr: 
OF this harmonic moiion vary slowly with time and  the original second order 
equa?ion is reducsdto  two first order equations. giving the variation of 
amplitude and  phase wi th  time. I i  howewer the  contribution of She noa- 
linear terms becomes cornparable t o  that of the  linear terms, eiLher becsusc 
of large initial values or large values of the  parameter, the abo*ie metbods 
will  be inaccurate. 

Graphical methods like the  p h a ~ c - ~ l a n o  method for second order sysfeims 
and the general phase-space methods for bigher order systems ere available 
for the solution o i  autonomous, non..liilear d i f i rent ia l  equations, For non- 
~ ~ t o u o r u o u s  systcms, ,Jacobson'sP phase plane-delta, meshed can be employed. 
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~ r ~ i i ~ '  Rns propored an  approximate method for the iransieo: response or  
a non-linear spring mass system. In rhis method, the  non-ilnecr charscteiistic 
1% egpmximated by biiineor segments whose siopcs are chosen ahicording to tic 

o f  ir.inimurn mszrn square error, bexween the actual and the  approxi. 
nlate characteristics. The method secnls to work well for second order 
conservarive systems as i s  lilusirated by three examples2. Although calculatioils 
made on chis bosis Tor Erst order system jexnmple 1 of this paper) gave good 
agreen:ent, the  resuits fo r  a second oiiler non-linear dissipative system wcrc 
30t ~ ~ t i s f ~ ~ c t o r y .  (example 5 of this 

A metbod is presented here in wliich thc  nan-linear characieririic is 
repiaced by equivalent, linear segments over fi;,iti: intervills inslead of two 
! i iwe~  =eg:r.r,,ts over  the ::r!ire s1r:irncteris~ic as  i~ Elfin's rnshod.  7 he s1op:r 
o f  i k s s  segments a r e  chosen according to the principle of minirnim mean 
square error be?ween ,the non-linesr and the equivalest characteristics. Th.s 
modification of the bilinear method gives good agreement even in the cas: 
of the non-linear dissipative system as shown in (example 5) this paper. The 
princigle of the method i s  explained below. 

Referring to Figure 1 let f l f b  be the non-linear characteristic of thc 
system. Cc.nslder the range f p  G f G f 2 .  Let the slope of the equivalent 
linear segmmt over this range be K,, . Then t h e  mean square ~ I P O Z  in  the 
di%i.cntial equation is 



The accuracy of the method incresses as the interval (& - f i )  dimini- 
shes. Pt has been found that i f  the segments are chosen so as to  coincide 
wstb the original characteristic approximately then the error in the solution 
of the diiforential equation is negligible. 

The method has an elegant inderpretaticn a t  least in case of 
certain types of non-linearities. For example (a) in (be case of a nonfinear 
spring i f f  (x) is the spring characteristic then 

*presents the energy stored in (or released by) the spring over the interval 

represents the energy stored in (or released by) the spring in the same 
interval xl s x G xz. Thus by equating these two integral& the enery ieve! 
of the nonlinear system and the equivalent linear system is maintained the 
same over the interval. If %he interval is quite small ~t im then reasonable Po 

the bchaviour of the two systems to be almost identical. 

( b )  In the case of a non-linear dissipating device whose characterietic is 
@ the equivalent viscous damping coefficient Cw - over the raw@ 



gives iloe total power dissipated by the nonlinear device 

gives the power dissipated by the equivalent viscous damper over the same 
lause xi s x G xz. Far  suficiently small range (;E., - xi) an alrnorz identical 
behaviour can be expected. 

EXTENSION TO TEE CASE OF MIXED NCNLPNEARITIBS 

Superficklly the method appears t o  be  restricted to  r a m  where the 
nonlinearity ir a function of a single argument such as n, x etc. However in 

... -:'--?ti -- n-+oblrrns mix-d types of nonlFneariries which are functions . . 
,L: S, n.; . ::I:~ i:;,:2 6x3 : , p ? c s  zr.: cited b e i i w  

1 ?  
~ ..' ....- 1, s .cvit.v. Iit most of he cases a suitable change of variabie 

reduces the nonlinearity eithci t o  the form f (x) or $ (x). For example : 

(2) pniilng into step of a s ~ i i e n t  pole syr.ehronous motor : 

$ ' 1 - ( . K - O ~ o s 2 ~ ' s ~ i . o  ~ i n 2 ~ - ( b s i n ~ ) i f ( t ) = d  

Hcrc the non-linearity Is of the type : 



(3) oscillations in a surgetank : 

y ' + ~ / i . /  j,+ j ~ ~ / a / { b + ~ ) + & . e / ( b + ~ ) ; y + a j ~ - ~  

71:~ mixed nonlinearity is 

f { Y ,  Y) = :&/deb + Y )  + K2 d@ + y ] )  jp 

d - - d ( b  + y )  + 4 & (6 + Y)3'2) 
dt 

(4) In some cases such a transformation may have to be applied 
repeatedly to bring the nonlinearity to  a form suitable for applying this 
method. For example unOer certain conditions %be oscillations in a sorgo 
tank are  represented by:  

Here the mixed non-linearity is 

.l'b, J') - (KI?) 13-j Y 

where, 



Corisider the. first order. nnn-linear diiTereiltiz? equation governing the 
capacitor discharge through a 



For the cquivslent Zilvearisatinn method the ~ h a r a c t e r k t k  01 (3x7 VV~.  x is 
drawn. The characteristic is divided into convenient linear segments. Tho 
quivsient Imear cozKkiunt &',, for each seglnent is enlculaled from 

The solul;on of lha coricsponding haoenr equation ail1 be 

As a check the approximate and exact values of x are compared and 
tab~ldted. 



The approximate solution obtained by equivalent linearisation method 8 

compared wish Ergin'r soldciun ('1. The spring tonsiant o f  tho equivalent 
linear equagion is computed as 

?be results are tabulated below : 

PULSE DhlRAXW 



2 0.25 
3 0.50 
4 0.80 

5 ! .00 
6 1.191 
5 E "OF 
8 (a)  0.80 

8 ( b )  0.80 

.. 

.L 

t dcg. x 

41,4 11 660 
50.25 0 846 

80.03 0.UbS 

94.45 x i o h  
123.95 O.lj00 

152.20 - 0.73.1 
166.18 -0.890 
185.85 -0.938 
180.00 - 5 889 

Pulse duration ends 
18526 - 0.952 
i99.'44 - 9,056 
212.71 - 1.089 

.. -. - - 









T1.c equivalent viscous dampiug coeEcient i s  calculated as 



TABLE 5 
- ~-. - - 

1 Y .I' 
.- .- -- 

0.1930 0.0637 0.5071 

0.3080 0.1355 0 8000 

o.rt080 0.a2c.0 1 1 ~ 3 0  

0 5195 0.3650 1.4000 

0.5705 0.4380 i 50~10 

1.0735 1.2250 1.6820 

B 8235 2.3050 1.50CO 

2 5285 3.38CO 1.3069 
3.2685 4.29 40 1.0000 
3.5285 4.5248 0.7070 

3.7785 4 6180 0.4000 

3.9460 4 6800 0.0000 
4.0114 4.6460 - 0.4000 
4 0544 4.5980 - 0.7000 
4.1054 4.5150 - 1.1090 
4.1474 4.4600 - 1.4000 
4.1784 4.4000 - 1.6000 

4.2238 4.2900 - 1.8000 
4.2338 4.2200 - 1 9000 

" 

H@:e : Ergin's method gives an unbounded solu~ion 
for the socond bilinear scgrncnt) 

On a digital computer, the method can be easily programold t o  yield 
very accorale T ~ S U I I S .  The method is also adaptable for long hand calcula- 
tioos as i: only involves the solution of a sequence of ordinary equivalent 
linear diEercntia? equations. 

Accumcy of tire method : 

accuracy is meant to icdizate the closeness between the equivalent 
linear c'iEmx~ial e q c ~ : ; ~ r  mtl the o;iginal nonlinear alfferentiai squation 
rather than the closeness oh the solutions. If zhe nonlinear cha~octsristic i s  



~ ( 2 9  " n d  I;,, j' is iis linear eqilivnlent, then tho arror is proportional t o  E , + ( f ) -  xCJ] and by choosing small intervals in f ,  the absolute error can be 
maintaioed small is sddilion so inarntaining the mean sgnaae error a minimunt. 
For long hard computation, it  is suEciezpt 'to draw the characteristic and 
divide it into approximately linear segments and calculate K, aver each 
iegaent. 

Several approximate method8 are available for the solution of vibration 
problems governed by nonlinear differential equations. None of these methods 
are general and they are applicable in certain cases only. Here a method bas 
been presented that is fairly general and covers bosh the autonomous and 
aon.autonomous eases. No  restrictiopl is Said on  the size of the non-linearity. 

Some examples of non-linemities normaBly occurring in engineering 
applications have been solved by this method. 
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