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ABSTRACT

A piecewise finear method based on the principles of minimum mean square
error between the noun-lincar and an equivalent linear characteristic has been
presented. This enables the non-linear differential equation to be reduced to a
sequence of linear differential equations which are scived by usual methods. The
method is dlustrated by examples.

INnTRODUCTION

Severai approximate methods are available for the solution of vibration
problems governed by non-lincar differential equations. Most of thess
methods are applicable to the so called quasilinear systems, where the system
executes small motions. Some of the approximate methods like the Kryloff
and 8Bogoliuboff method, perturbation method, ete., assume the presence of a
small parameter in association with the non-linear terms of the differsmtial
equation, which renders their contribution quite small as compared to the
linear terms. In the perturbation method, ihe solution is then developed as
a convergent power series im the small parameter, with coefficients which are
determined by sclving a sequence of linear equations. In the Krylofl and
Bogoliuboff method, the generating solution of the quasi-linear system is
assumed to be harmonic. 1t is then assumed that the amplitude and phase
of this harmonic motion vary slowly with time and the original second order
equation is reducedto two first order equations, giving the variation of
amplitude and phase with time. If however the coniribution of the non-
linear terms becomes comparable to that of the linear terms, either because
of large initial values or large values of the parameter, the above methods
will be inaccurate.

Graphical methods like the phase-plane method for second order systems
and the general phase-space methods for higher order systems are available
for the solntion of autoromous, non-linear differential equations. For non~
autonomous systsms, Jacobson’s' phase plane-delia method can be employed.
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wethods however are applicable only on an one-off basis for 80lving
individual problems and lack flexibility as tney cannot be programsned og g
al camputer,

Frgin® has proposed an approximaie method for the transient response of
a non-linear spring mass system.  In this methoed, the non-linear characterigtic
is approximaied by bilinear segments whose slopes are chosen ascording to the
principle of minjmum mean square error, beiween the actual and the approxi-
mate characteristics.  The method seemis fo work well for second order
conservative sysiems as is 1llustrated by three examples®. Although calculations
wade on this basis for first order system {ezample | of this paper) gave good
agreement, the results for a second order non-linear dissipative system were

not satisfactory. (example 5 of this paper}.

EQUIVALFNT PIECEWIST LINSARISATION METHOD

A method is presented here in which the noan-linear characteristic is
replaced by equivalent, lincar segments over finite intervals instead of two
linear segments over the catire charactecistio as in Erpin’s method.  The slops
of these segments are chosen according to the principle of minimum mean
square error between the non-linear and the equivalent characteristics. Ths
modification of the bilinear wethod gives good agreement even in the cass
of the non-linear dissipative system as shown in {example ) this paper. The
principle of the method is explained below.

Referring to Figure 1 let f{¢) be the non-linear chatracteristic of the
system. Comnsider the range £, < £=£,. Let the slope of the equivalent
linear segment over this range be X,,. Then the mean square error in the
differential equation is

£

- , ¢
Eellfies- & [ 17(6) - K- &7d2 (1]

and for a minimum of (1)i
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Wsing this value of K., the associated linear differential equation fobtained
by replscicg F(£) by K., £ is solved for the interval g aésf,. The
process is repeated for subsequent segments.
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The accuracy of the method increases as the interval (&, - £,) dimini-
shes, It has been found that if the segments are chosen so as to coincide
with the original characteristic approximately then the error in the solntion
of the differential equation is negligible.

PrYSICAL INTERPRETATION

The method has an elegant physical interpretaticn at least in case of
certain types of non-linearities. For example {a) in the case of 2 nonlinear
spring if f{x} is the spring characteristic then

X5
J F{z)dx
x1
represents the energy stored in {or released by} the spring over the interval

Rz

XL XL Xy J K, xdx

xg
represents the energy stored in {or relessed by) the spring in the same
fnterval x;< x< ¥, Thus by equating these two integrals, the euery level
of the nonlinear system and the equivalent linear system is maintained the
same over the interval, If the interval is quite small 1t is then reasonable to
expect the behaviour of the two systems to be almost identical.

(8) In the case of a non-linear dissipating device whose characteristic is
¢ (%), the equivalent viscous damping coefficient g * over the range

X EEei,
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is defined by
w0 G arl/( [ 5 d5).
2 Xy

While T g as,

EE

gives the total power diisipated by the nonlinear device

;(2

J Caxdx,

x1
gives the power dissipated by the equivalent viscous damper over the same
range ¥, < X< ¥, For sufficiently small range (%, — ;) an almost identical
behaviour can be expected.

EXTENSION TO THE CASE OF MIXED NCNLINEARITIES

Superficiaily the method appears to be restricted to cascs where the
nonlinearity is a function of a single argument such as X, x etc. However in
part in wiheati s oealyiems mixed tvpes of nonl neanfxeb which are functions

. s Son oy iz exa vples are eited below
o esen man’s’ eview,  lu most of she cases a suitable change of varable
xeduccs the nonLueanty either to the form f(x) or ¢ {x). For example:

[

{1} van der Pol’s equation
Fme{(lea)x4x=0
reduces {o the Rayleigh’s form
Peei-HHi+y=0
by the transformation X w y.
So Fw ) ~ (=M%, s ()= —ec(1~43DJ
{2) pulling into step of a salient pole synchronous mator :
P +{BE-BeospVptasinly={(bsiny) H({t)=d

Hers the non-linsarity is of the type:

Flm )= =15 cos29) 3o .._:'L .‘i!‘:. {(sin 2p) = ~ (8/2) (Ko )

,“!’ o Y
where Bqm{ [ sin2y )/ ['y dy)
1 Yi
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{3) oscillations in a surgetank:
ARy BRIV E 1 BN+ a0

The mixed nonlipearity is
Fp )= KV +9) + B VB +3)) 5

d 2 2
- {25, V(6 +9) + 2 K2 (b + p)¥*}

d .. - s
::{‘t‘b&ea}’} = Lap ¥

2
S B V(B 3} + 2K 5+ y) Py

where, K.,

Fz
Jyay
a

{4) In some cases such a transformation may have to be applied
repeatedly to bring the monlinearity to a form suitable for applying this
method. For ezample under certain conditions the oscillations in a surge

tank are represented by :
7 (&) |35 ray (=B} =0

Hsre the mixed non-linearity is
S =& 5] 5

. .4 .
Let, i (0 3) ={K[»)y = = KImi=K 45
T2 Yy
where Kt eq =( f Iny dy)/( f > dy)
»i Fi

(=1 (3 ) 1]
:Kl c’q}} Ij)f
={(C,, 3} (Sgn. )

J;S 2 . -
where, Caml K05 ) [ 5 49
yi ri
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Therefore aguivalent lipear eq

PGy v,y aby o Q@

Although the physical interpretation is not straightforward in cases 0
to (4), it becomes clear afier effecting the transformation, fe. the energy level
of the non-linear system and the equivalent linear system is maintained same
over the interr al and also the total power dissipated by the equivalent viscous
damper over the same range Xy KX < xy i cqu;:a‘]i to the total power dissipated
by the nov-linear device.

!

Example 1 {(Fig. 2}

Consider the first order non-linear differentizl equation governing the
capacitor dischzrge throngh a diode.*

dxfdt + dx + 8% = 0; x{0) = x5

3

.
——
[ H f i I )
o] O (%] [OR] -4 Q-5 Gl

TIAE {SECONDS)
Fig, 2
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The exact solution is
g exp { — A1)
E T T T
b Buae/d) [C—exp. {400

For illustrating the equivalent linearisation method let =3, 4 =2, B=13.
Then the exact solution is
3 -2t i

X = - ;
(5.5) —{45e™ ) (1.833 ). (1.8)

For the equivalent linearisation method the characteristic of {3x%) Vs x iz
drawn. The characteristic is divided into convenient linear segments, The
equivalent linear cosfficient K, for gach segment is calculated from

g x
Ko U S 32 ada) /([ x dx) =2 (3 + vy 324 51/ (s 4 262)
4 P4

The solntion of the corresponding linear equation will be
XX e, k= xs

»

As a check the approximate and exact values of x are compared and

tabulated.

Tarik 1
—fwt;m 1 2 ) 3 4 3 § 7
* 30 250 - 225 200 .50 160 0.5
5 2.5 2.28 200 1.50 100 150 023
by 827  7.14 6.375  5.28 180 233 11667
E 250 225 2.00 1.50 100 030 025
. 0.01772 002914 004323 0.0827 0.1534 03134 03534
Kesact = % 2.50 225 2.00 1.50 108 0.500 0.25
teesm 0.018 0.0434  0.0797 90.1478
Teract G 01772 002914 00432 00826 0.1530 @313 0.550
Xgegin 2481 2235 1970 1.518 11959

It is seen from the Table 1 that the approximate solution difiers very

little from the exact sclution.
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Example 21 (Fig. 3)
Response of o nonlinear spring mass system to @ Rectangular pulse -
The system considered” is described by
X XA X - F
with %{0)=0=x{0} 30d F=1.

The approximate solution obtained by eguivalent linearisation method i
compared with Ergir's solution {2). The spring tonstant of the equivalen
linear equation is computed as

e " . *g
Key={ [ %Pdx}f{ § x dx}
X3 X1
= (&3 + 332

Tte solution of equivalent linear equation will be
x = [oos /(L 4+ B2+ [5,/V {1 4 )] [sin /(1 + K] ¢
+ [/« K] {t-Teos V(L4 K1 1}

The resulis are tabulated below:

125

e ERGING BILINEAR
METHOD

8
x

QTG

RESPONSE (¥

o
i
Q

!

0-25p
PULSE DURATION

i I 1 i
o] 40 30 120 180 200 240
TIME (MONDIMENSIONAL) DEGREES

! i

Fig, 3
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Taspy 2

T e 0.25 0.03125 8.25 414 0660

2 0.25 0.50 0.15625 0.50 60,25 0.846

3 0.50 0.86 0.4450 0.80 86.03 0,868

4 0.80 .00 0.8200 1.00 94.45 0,706

3 1.0 1.10 1.1050 1.101 123.85 8.000

6 1.191 1.00 1.210 1.00 152.20 —0.734

7 1.00 0.80 0.820 0.8% 166.18 ~ 6.890

g{a) 0.80 0.50 0.443 0.50 185.88 —0.938

g{by ©.80 0.56 0.445 0.585 180,00 — 0889

Pulse duraiion ends

t{c)  0.583 0.50 ©.295 0.500 185.26 ~0.952

9 0.5 0.25 0.15625 0.25 199,44 —~1.056

i 0.25 ¢ 0.03125 o 21271 ~1.089
Example 3: {Fig. 4)

Response of a non-linear spring mass system to a sinusoidal pulse
The differential equation motion is given by (Rcf‘. 2, pp. 640)

RESPONSE {0}

X xSy = g

0 s

sin2t, Os¢= vr/2 radians
[ > /2 ranians

g

g

i f ],

/]

!

)

Eis)

30 s} 50 60
FIME { MONDIMENSIONAL ) DEGREES

Fig. 4



below  along with Ergin’s  bilinear  solution
1 method

No.

1 g o1 0.025 Ot A0 03963

2 3.4 0.2 0125 0.2 52 057 €.20% 0.57¢
3 0.2 .3 0.328 0.298 61 0.661 0.286 0.66%
4 8.3 .4 0.403 70 0.687 $.406 £.634

¥
©
N
<
[
i~
©
g
W

0.498 78 0.622 0.494 0.624
& 0.3 0.6 2.000 0.582 90 0382 0 581 0.38

ANuje: Since there Is a ter n o RHS explizitly invelving time, the approprizte time lag
{time elapsed upto mmencement o4 ihe step) shonld be introduced 3a sach
sten,  bor esampls for step 2, the :quation of motion should read

c=Sin 2 (#+40%)

a0l 30 00.)

Example 4. (Fig. 5}

Consi

. van der Pols oscillator (Ref. 5 pp. 63-64) represented by
the differeniial

hS I3

in the Rayleigh’s form viz.,
P s i 23
E-lE~-38t+z-0

Also assume the initial conditions

£ (0} = —0.05, £ {0}

The equivalest viscous damping coeficient for each linear stretch iz obtained
from

3

g

Z,

—U(r/‘}dc}/ é - (& +£2)fs

o



oo U, b
R e e \i\‘@f
NS ;
4
FiGc. 5

The resulis show very good agreement with £ vs. ¢ plot obtained by integraiion
{Ref. (5)]

of the phase trajectory.
The values are tabulated in Table 4
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Tasrkg 4
fz C«’rz f -
, T er ool —0.19 03013 gm0
z 0.3 0.5 0.057 - 0.028 0,501 4773
3 0.8 0.7 0.123 4,242 0.700 5.2
4 0.7 0.9 0217 +0.8272 0.784™ 6.145
5 o7 0.5 0,123 0.8602 0.4958 £.545
i} 0.3 0 0.048 -+ 1.2050% 0 7.10%
7 o —- 0.5 0.041 1,150 — 0.5 7.463
8 —~0% —99 9177 1.022 — 0.8 7.683
g -~08 13 0.4;7 0.747 —~ 13 7.943
1 —-1.3 15 0.657 0.429 -15 8.163
11{a) ~-1.5 17 0.857 ~0.237* . 1.638* - 1.58
&y <15 _q4 2.237 -~ 0.995 ~ 1.450 9063
1z -5 13 0.657 —1.380 —~ 1.300 9.333
13 —-1.3 90 0.417 —1.840 - 0.910 9.743
i4 ~09% o5 6.177 =1.920 -~ 0,502 10.041
i35 - 0.5 s 0.041 - 2,000% o 16.321
16 8 b 0.041 - 1.972 +0.497 10.546
17 0.5 0.9 0.177 ~ 1.880 + 0.900 10.686
18 0.9 1.3 0.417 — 1,720 + 1.300 16.838
19 LG 1.7 0.687 - 1.500 + L7006 11.042
20 [ 2.0 1.071 2.68* i1.662

* (indicat‘é—rg!:aﬁ;e e?xréme \';sluc;)
Example 5. (Fig, &)
Relaxetion oscillations of the van der po; Dseillgior’ :

Consider the van der Pol equiion, 3 _ (1 )Xty with ¢ having
2 Jarge valye, Here ¢ ig set, egual to 3, The solution of such a system is
characterised by Jerky, nonsinusoidal oscillations. The results available from
& phase plane plot of the above equation are comipared with the approximate
solution obtajged by piecewise linearisation,

The differentia] 2Guation ix ;
F50-53) 5 4y
whers P f mas
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TLe equivalent vissous damping coefficient is calenlated as

# A o
Com (F3 a0 [yl ) =2 G 43D
y

EN

The equivalent linear equation then becomes

3= {5~ Ca 4y =0

-

et
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The resulls are tabolated in Table 5:

Tapre §

! 3 ¥
0.1980 0.0637 6,5071
$.30%0 0.1355 0 8000
0.4080 0,3290 1 1000
05195 0.3680 1.4000
85703 0.4380 1 5000
1.0733 1.2250 1.6820
18235 2.3050 1.50€0
2 5283 3,3800 1.3000
3.2683 4.2940 1.0000
3.5285 4.5248 0.7070
3.7785 46180 2.4000
3.9460 4 6800 0.0000
40114 4.6460 — 0.4000
4 0544 4.5980 — 0.7000
4,1054 4.5150 - 1,1030
4.1474 4.4600 ~ 1.,40060
4.1784 4.4000 - 1.6000
42238 4.2500 - 1.8000
4,2338 4.2200 -1 9060

Nore; Ergin's method gives an unbounded seluiion
for the second bitinear scgment)

Suitability for Digital programming :

On & digital computer, the method can be easily programmed to yield
very accurate resuits. The method is also adaptable for long hand calcula-
tions &5 it only invelves the solution of a sequence of ordinary equivalent
linear differential equations.

Aecuracy of the method :

Here accuracy is meant to indicate the closeness between the equivalent
linear differential =quaiior and the original noulinear differential squation
vather than the closeness of the solutions. If the nonlinear characteristic is
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F{8) and K » ¢ is its lnear equivalent, then the error is proportionsl to
{f{f)—- K £} and by choosing smull intervals in &, the absolute error can be
maintained small in addition to maintaining the mean square error a minimum,
For long hand computation, it is sufficient to draw the characteristic and
divide it into approxzimately linear segmenis and calculate K,, over each

segment,

CONCLUSIONS

Several approximate methods are availabie for the solution of vibration
problems governed by nonlinear differential equations. None of these methods
are general and they are applicable in certain cases only. Here a method has
been presented that is fairly general and covers both the autonomous and
gon-autonomous cases. MNo restriction is laid on the size of the non-linearity.

Some examples of non-linearities mormally occurring in engineering
applications have been solved by this method.
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