JOURNAL OF

THE

INDIAN INSTITUTE OF SCIENCE

THERMODYNAMIC PROPERTIES OF PHOSGENE

BY D. N. SESHADRI, D. S. VISWANATK AND N. R. KULOOR (Department of Chemical Engineering, Indian Institute of Science, Bongalore-12, India)

(Received : January 30, 1958)

ABSTRACT

Thermodynamic properties of phosgene have been evaluated up to a temperature of 600°K and a pressure of 150 atmospheres using Martin and Hou equation of state. The results are presented in tabular form and as an entropytemperature diagram.

INTRODUCTION

Phoseene is used in chemical warfare. It is also used as an intermediate, capable of producing a wide variety of new products in very many fields ranging from solvents to plastics. However, thermodynamic data useded for the purposes of design are completely lacking. Hence it is desirable to know the thermodynamic properties of phoseene.

SURVEY OF EXISTING DATA

1. Molecular weight and critical data:

The available data on the critical constants of phosgene are presented in Table 1.

TABLE 1

Molecular weight and critical constants of phosicene

Year	Investigator	Т., °К	P., atra.	d, grn./c.c.	Mathod*	Reference
1919	Hackspill and Mathicu	456,31	41.10F	• toty	Ą	ŝ
1926	Germann and Taylor	455.16	3 6 0	0.52	a, b	4
Value	s selected :	455.16	56.0	0.52		
a: 1	Disappearance m	teniscus.				
b:	Law of rectiline:	ar diamete	13.			

Molecular weight of Phosgene=98 924

Hickspill and Mathleu⁸ fractionally distilled the industrial phosgene to remove contaminants consisting of sulfur compounds and removed chlorine by coatact with mercury for 24 hours.

For obtaining a relatively pure sample, Germann and Taylor⁴ repeatedly fractionated commercial phosgene. However, these investigators could not condense the sample completely at constant pressure. The temperatures of disappearance and reappearance of the meniscus were found to be 454.96° K and 454.76° K respectively. The critical pressure found by observation was 55.3 atmospheres where as by extrapolation of vapour pressure curve, it was found to be 55.6 atmospheres. The value reported by these investigators namely 455.16° K for the critical temperature has been accepted for this investigation.

Vapour pressure equation as given by these investigators⁴ predict a pressure of 56.0 atmospheres at the accepted critical temperature. Hence a pressure of 56.0 atmospheres for the critical pressure was accepted for this investigation.

Critical density was determined by using the law of rectilinear diameters by making use of the density data of Paterno and Mazzachelli⁴¹, by Germann and Taylor.

For this investigation, the critical data of Germann and Taylor⁴ have been used. Thus the critical constants used for this work are :

$$T_c = 455.16$$
 K
 $P_c = 56.0 \text{ atms.}$
 $d_c = 0.52 \text{ gm}/c.c$

1. Vapour pressure:

The vapour pressure data of phosgene has been experimentally determined by Aikinson *et al.*¹, Paterno and Mazzucchelh¹¹, Germann and Taylor⁴ and Giauque and Jones⁵. Vapour pressure data is also presented in the International Critical Tables⁹. Table 2 gives the available data along with the range of availability.

The method adopted by Germann and Taylor⁴ for the purification of the sample used is mentioned earlier. The vapour pressure data are stated to be uccurate to 0.1 atm. The sample used by Giauque and Jones⁵ is stated to be 99 993 mole % pure. However, the accuracy of the vapour pressure data are not reported. Paterno and Mazzucchelli¹¹ have not reported the accuracy of the data. Germann and Taylor⁴ determined vapour pressure of phosgene over two temperature regions, namely 273 16 - 301.06 °K and 420.26 - 455 16 °K. These authors fitted their data to the equation:

$$\log P = 4.4659 - (1207.9/T) + (13297'T^2)$$
[1]

where T is in "K and P is in atmospheres.

	vap	our pressure of phose	ene	
Vear	Investigator	Range of Temperature, "K	Range of Pressure, atms.	Reference
1920	Atkinson et al.	193.16-373.16	0.00-16 07	1
1920	Paterno and Mazzuc- chelli	249.74-294.29	0 25-1.75	11
1926	Cermann and Taylor	273.16-455.16	0.73-56.00	4
1928	International Critical Tables	281.11-455.15	1.00-56.00	9
1948	Giauque and Jones	215.48-281.10	0.03-1.02	5

TABLE 2

The vapour pressure data was calculated using Equation [1] and was found to be in very good agreement with that presented in International Critical Tables.

For this investigation, the vapour pressure data above 1 atm. has been taken from the International Critical Tables. Below 1 atm., the data of Giauque and Jones⁵ has been used.

Giauque and Jones⁵ fitted their data to the equation :

 $\log P = 7.7994 = (1690 \ 3/T) = (7.8981 \times 10^{-3}T) + (5.5847 \times 10^{-6} \ T^2)$ [2] where, P is in atmospheres and T is in ⁶K.

Equation [2] predicts the vapour pressure data with a maximum diviation of 0.1%.

In the present work, the vapour pressure data above 1 atm. was fitted to the equation,

$$\log P = A + (B/T) + C \log T + DT$$
[3]

where, A = 3.7349229 B = -1290.8709 C = 0.41355479 $D = -5.5134925 \times 10^{-4}$

This equation predicts vapour pressure $data^9$ with average absolute and maximum deviations of 0.1% and 0.23% respectively.

For this work Equations [2] and [3] have been used.

3. Saturated Liquid and Vapour Densities :

Saturated Liquid and Vapour Densities of phosgene have been determined over a temperature range of 163 to 323 K by Atkinson *et al*¹ and over a temperature range of 258 to 455 K by Paterno and Mazzucchelli¹¹.

Both the investigators did not mention the purity of the sample used and the accuracy of the data. Vapour density of phosgene has been determined by Paterno and Mazzucchelli^{II} over a temperature range of 333-455 $^{\circ}$ K.

Liquid and vapour density data over a temperature range of 281 to 455 $^{\circ}$ K are presented in the International Critical Tables⁹. For this investigation all the available data on the densities of saturated liquid and vapour were combined and smoothened. Smoothened data have been used for this investigation. The smoothened data agree with the raw data within a maximum deviation of 1%.

4. Heat Gapacity from Calorimetric Data:

Heat capacity of phosgene over a temperature range of 15 $^{\circ}$ K to 280 $^{\circ}$ K has been determined by Giauque and Jones⁵. As stated earlier, the sample used by these investigators was very pure. Later, in a careful study Giaque and Ou⁶ found, that the data of Giauqe and Jones⁵ below a temperature of 118.3 K was applicable to pure solid II and above this temperature, to solid I. These authors have presented heat capacity data for solid I, which is the most stable state and also for solid II. The accuracy of the data are not reported. The entropy evaluated using the beat capacity data of solid 1 at 280 71 $^{\circ}$ K (normal boiling point) is in very good agreement with their entropy calculated using the sum of the entropy calculated using the set of the

5. Heat Capacity of Ideal Gas:

Heat capacity of phosgene in the ideal gaseous state have been evaluated by Thompson¹³, Gordon and Goland⁷ and by Giauque and Ott⁶. Giauque and Ott used the constant recommended by Rossini *et al.*¹² and Dumond and Cohen³. The data of Gordon and Goland⁷ deviates by about 5% with the data of Giauque and Ott⁶.

For this investigation, the data of Giauque and Ott has been used. The heat capacity data of Giauque and Ott was fitted by the method of least squares to the equation :

$$C_p^* - a + b T + cT^2 + dT^3$$
 [4]

where, a = 3.3388

 $b = 5.6707 \times 10^{-2}$ $c = -8.8784 \times 10^{-5}$ $d = 5.4200 \times 10^{-3}$

Equation [4] predicts heat capacity data with maximum and average absolute deviations of 0.03% and 0.02% respectively. For the calculation of thermodynamic properties, Equation [4] has been used.

6. Heat of Vaporization:

Heat of vaporization of phosgene has been experimentally determined by Giauque and Jones⁵. No other data is available on the heat of vaporization of phosgene.

As already mentioned, Giauque and Jones⁵ used very pure sample of phosgene. They claim an accuracy of 99.9 %.

Heat of vaporization was calculated using Clausius-Clapeyron equation,

viz.,
$$\Delta H_v = (dP/dT)T \cdot (V_g - V_l)$$
 [5]

by making use of the experimental specific volumes. The heat of vaporization calculated at the normal boiling point agrees within 2% with the experimental lata of Giauque and Jones⁵.

CALCULATION OF THERMODYNAMIC PROPERTIES

For the calculation of thermodynamic properties Martin and Hou (MH) equation of state:

$$P = \frac{RT}{(\nu - b_0)} + \frac{A_2 + B_2T + C_2}{(\nu - b_0)^2} \frac{\exp((-KT/T_c))}{(\nu - b_0)^2} + \frac{A_3 + B_3T + C_3 \exp((-KT/T_c))}{(\nu - b_0)^3} + \frac{A_4}{(\nu - b_0)^4} + \frac{B_5T + C_5 \exp((-KT/T_c))}{(\nu - b_0)^5}$$
[6]

with K = 5.475 has been used.

The constants in Equation (6), evaluated following the procedures outlined by the authors¹⁰ are:

$$\begin{aligned} k_0 &= 0.04516972 \\ A_2 &= -16.059997 \\ B_3 &= 1.2038081 \times 10^{-2} \\ C_2 &= 142.96485 \\ A_3 &= 2.0331332 \\ B_3 &= -1.3197412 \times 10^{-3} \\ C_3 &= -22.568742 \\ A_4 &= -9.005015 \times 10^{-2} \\ B_5 &= 5.0038055 \times 10^{-6} \\ C_5 &= 3.849143 \times 10^{-2}. \end{aligned}$$

Using the available experimental specific volumes of saturated vapour in Equation [6], pressures were computed. For 21 points tested, the average absolute and maximum deviations were found to be 1.23% and 3.08% respectively. Such a comparison is shown in Table 3. Comparison could not be made in the superheated vapour region because of lack of data.

Specific volumes of saturated and superheated vapour were calculated using Equation [6] by making use of Newton-Raphson iterative method on IBM 1620 digital computer, for various temperatures and pressures.

Entropy and Enthalpy of the Superheated Vapour:

Considering the entropy and enthalpy to be function of volume temperature, we have,

$$dS = (\Im S/\Im T)_V dT + (\Im S/\Im V)_T dV$$
^[7]

Т, °К	P, atms	PCOM, atms.	% Deviation
340 0	6.295	6.0908	3.244
350.0	8.100	7.9941	1.308
360.0	10.21	10.1397	0.688
370.0	12.72	12.6762	0.344
380.0	15,70	15.4213	1.775
385.0	17.40	17.009	2.247
390.0	19.15	18.673	2.491
395.0	21.10	20.449	3.085
400.0	23.00	22.384	2.677
405.0	25.15	24.592	2.219
410.0	27.50	26.98	1.892
415.0	30.05	29.626	1.410
420.0	32.55	32.456	0.281
425.0	35.50	35.208	0.822
430.0	38.45	38.278	0.448
435.0	41.50	41.551	- 0.124
440.0	44.80	44.881	- 0.1 8 0
445.0	48.15	48.317	0.347
450.0	51.95	52.013	0.121
455.0	55.95	55.883	0.119
455.16	56.00	56.000	0.000

T	ABLE	3
-	a ser par ser	~

Comparison of Calculated Pressures

sing Maxwell's relations, we obtain,

$$dS = (C_{\nu}^* / T) dT + (\partial P / \partial T)_{\nu} d\nu$$
[8]

sing dH = TdS + VdP in Equation [8] we obtain

$$dH = C_{\nu}^* dT + T(\partial P/\partial T)_{\nu} dV + VdP$$

= $C_{\nu}^* dT + d(PV) - PdV + T(\partial P/\partial T)_{\nu} dV$ [9]

From Equation [6] we have

$$(dP/dT)_{V} = \frac{R}{(V-b_{0})} + \frac{B_{2} - (K_{i}^{T}T_{c}) C_{2} \exp(-KT^{T}T_{c})}{(V-b_{0})^{2}} + \frac{B_{3} - (K_{i}^{T}T_{c}) C_{3} \exp(-KT/T_{c})}{(V-b_{0})^{3}} + \frac{B_{5} + C_{5} (K^{T}T_{c}) \exp(-KT/T_{c})}{(V-b_{0})^{5}}$$
[10]

Using Equations [8] and [9],

$$S = \int \left(C_{\nu}^{*} / T \right) dT + \int \left(\partial P / \partial T \right)_{\nu} d\nu \qquad [1]$$

and

 $H = \int \left(C_{\nu}^{3} \right) dT + \int T \left(\Im P/\Im T \right)_{\nu} dV - \int P dV + P V \qquad [12]$

Using Equations [4] and [10] in the above equations and carrying out the integration, we obtain expressions for entropy and enthalpy as:

$$S = (a - R) \ln T + bT + (c/2)T^{2} + (d/3)T^{3} + R \ln (V - b_{0})$$

$$- \frac{B_{2}}{(V - b_{0})} - \frac{B_{3}}{2(V - b_{0})^{2}} - \frac{B_{5}}{4(V - b_{0})^{4}}$$

$$+ \left[\frac{C_{2}}{(V - b_{0})} + \frac{C_{3}}{2(V - b_{0})^{2}} + \frac{C_{5}}{4(V - b_{0})^{4}} \right] (K/T_{c}) \exp \left(- KT/T_{c} \right) + C_{5} \quad (13)$$

and

$$H = (a - R) T + (b/2) T^{2} + (c/3) T^{3} + (d/4) T^{4}$$

$$+ \frac{A_{2} + (1 + KT/T_{c}) C_{2} \exp((-KT/T_{c})}{(V - b_{0})} + \frac{A_{3} + (1 + KT/T_{c}) C_{3} \exp((-KT/T_{c}))}{(V - b_{0})^{2}}$$

$$+ \frac{A_{4}}{3 (V - b_{0})^{3}} + \frac{(1 - KT/T_{c}) C_{5} \exp((-KT/T_{c}))}{4 (V - b_{0})^{4}} + PV - RT \cdot C_{H} \qquad [14]$$

where $C_{\mathcal{S}}$ and $C_{\mathcal{H}}$ are the constants of integration.

Reference State :

The reference state chosen depends upon the available data. The reference state chosen should ficilitate easy comparison and utilization of the tabulated data. The reference state H = 0 and S = R in P = 0 for elements⁴ is applicable for pure substances and also for pure substances that undergo a chemical reaction.

In the present work the reference state as given above has been used.

Entropy value at the normal boiling point was evaluated using the ideal gas thermodynamic properties and the Berthelot correction. Enthalpy at the normal boiling point was evaluated by making use of the heat of formation at $O^{\circ}H$, the ideal gas thermodynamic properties and the Berthelot correction for enthalpy The integration constants C_S and C_H were evaluated using the values of entropy and enthalpy at the normal boiling point.

Entropy and enthalpy of saturated vapour were evaluated by using the experimental specific volumes in Equations [13] and [14]. Wherever the experimental data were not available these were calculated using Equation [b] and were used.

Entropy and Enthalpy of the Saturated Liquid :

The entropy of vaporization is related to the heat of vaporization by the relation

$$\triangle H_r = T \triangle S_r \tag{15}$$

The entropy and enthalpy of the saturated liquid were calculated using the equations

$$S_l = S_g - \Delta S_v \tag{16}$$

$$H_l = H_g - \Delta H_\nu \tag{17}$$

The properties of saturated and superheated phosgene are presented in the graphical form as Fig. 1.

Internal Consistency of the Tabulated Results :

The relation dH = TdS + VdP may be used to check the internal consistency of the entropy and enthalpy values.

At constant pressure,

$$dH = TdS$$
[18]

Hence, dH = d(TS) - SdT from which

$$H_1^2 = T_2 S_2 - T_1 S_1 - \int_1^2 S dT$$
 [19]

Internal consistency checks were made for superheated region by using Equation [19]. The definite integral in Equation [19] was evaluated by Simpson's rule. Table 4a gives the comparison of calculated and tabulated values of changes of enthalpy ΔH for 5 isobars.

Isohar atro.	Range of temp. °K	ΔH_{calc}	∆H tables	% Deviation
0.10	240 - 600	5500.0	5501	0.02
0.00	300 - 600	4706.0	4704	0.04
10 00	380 - 600	3584.0	3583	0.03
50.00	460 - 600	2760.2	2760	0.01
00.00	540 - 600	1466.7	1465	0.08

m .	nT 10	An	
- 1 A	BLE	44	

Comparison of the values of △ H

NOMENCLA? URE

A, B, C, D	Constants in Equation [3]
a, b, c, d	Constants in Equation (4)
$b_0, A_2, B_2, C_2,$	
$A_3, B_3, C_3, A_4,$	Constants in Equation [6]
B_5, C_5, K	
C _p	Heat capacity at constant pressure, cal./gram mole K
C_{i}	Heat capacity at constant volume, cal./gram mole "K
C_S, C_H	Constants of integration in Equations [13] and [14]
Н	Enthalpny, cal./gram mole
Р	Pressure, atmospheres
R	Gas constant
<u>S</u>	Entropy, cal./gram mole [°] K
Т	Temperature, °K
V	Specific volume, litres/gram mole
$\triangle H_{F}$	Enthalpy of vaporization, cals./gram mole
ΔS_{V}	Entropy of vaporization, cals /gram mole K
Supers ript	
*	Properties at zero pressure or ideal gaseous state
Subscripts	
с	Critical point
С,	Gas or vapour
1	Liquid
р	Pressure
Т	Temperature
r	Volume

, e¹

TABLE 4	Properties of Saturated Liquid and Vapour	V_i $V_{\mathbf{f}}$ S_i ΔS_p S_z H_l ΔH_p $H_{\vec{s}}$	0.06477 221.8 41 27 27.90 69.17 - 56439 6417 - 50/22	0.06557 128.2 42.18 26.46 68.64 - 50247 6350 - 49897	0.06661 79.07 43.04 25.02 68 06 - 56021 6255 - 49766	0.06/70 50.77 43.89 23.69 67.58 - 55800 6159 - 49641	0.06887 33.71 44.80 22.39 67.19 - 55500 6045 - 49235	0.07008 23.54 45.54 21.36 66.90 - 55360 5980 - 49380	0.07138 22.74 46.33 20.31 66.64 -55138 5890 -49.248	0.07267 16.82 47.09 19.33 66.42 -54917 5800 -49117	0.07553 9. 39 47.84 18.40 66.24 - 54702 5705 - 45997	0.07704 6.896 48.55 17.51 66.06 - 54461 5603 - 48858	0.07874 5.302 49 27 16.71 65.96 -54247 5514 -48733	0.08045 4.148 49.98 15.88 65.86 - 53986 5399 - 48587	0.08231 3.257 50.70 15 00 65.70 - 53733 5250 - 48483	0.08439 2.601 51.38 14.20 65.58 -53488 5112 - 48.76	0.08658 2.099 52.16 13.32 65.48 -53202 4928 -48.74	0.08780 1.705 52.91 12.51 65.42 -52919 4753 -48166	
		V,	0.06477 2:	0.06557 12	0.06661 75	0.06/70 5(0.06887 3.	0.07008 23	0.07138 23	0.07267 1(0.07553 9.	0.07704 6.	0.07874 5.	0.08045 4.	0.08231 3.	0.08439 2.	0.08658 2.	0.08780 1.	
		P, Atm.	0.0850	0.1534	0.2585	0.4180	0.6517	0.9640	1.390	1.965	2.693	3.650	4.845	6.295	8 100	10.21	12.72	15.70	
	-	Х°Т	230 0	240.0	250.0	260.0	270.0	280.0	290.0	300.0	310.0	320.0	330.0	340,0	350.0	360 0	370.0	380 0	

PHOSGENE

. Spinkers

162

D. N. SESHADRI, D. S. VISWANATH AND N. R. KULOOR

	Нg	- 48073	- 47995	- 47947	- 47935	- 47927	- 47939	- 47968	48010	- 48077	- 48208	- 48719	- 48880
	۵H۵	4540	4276	3948	3541	3277	3014	2736	2407	2011	1525	373.1	0.0
	H	- 52613	- 52271	- 51895	- 51476	- 51204	- 50953	- 50704	- 50417	- 50088	- 49733	- 49092	- 48880
	s,	65.32	65.23	65 09	64.87	64 77	64.64	64.48	64.29	64.07	63.70	62.52	62.19
-(concld.)	ه S	11.64	10.69	9.63	8.43	171	10.7	6.29	5.47	4.52	3.39	0 82	00.0
TABLE 4-	S	53.68	54.54	55.46	56.44	57.06	57.63	58.19	58.82	59.55	60,31	61.70	62.19
	٧¢	1.399	1.149	0.9263	0.7342	0.6595	0.5854	0.5152	0.4517	0.3910	0.3243	0.2096	0.1902
	٧ı	0.08921	0.09208	0.09569	0.1005	0.1034	0.1068	0.1111	0 1161	0.1226	0.1226	0.1667	0.1902
	P. atm.	19.15	23.00	27.50	32.55	35.50	38.45	41.50	44.80	48.15	51 95	55.95	56.00
	Х°Т	390.0	400.0	410.0	420.0	425 0	430.0	435.0	440.0	445.0	450.0	455.0	\$55.16

Thermodynamic Properties of Phosgene

50 . 20 . 5	1 1 1 1	196.7 49898 69.38 213.1 49643	0.20 106,4 49644	0.30 70.84 49644	0.50	0 8 0	1.00	1.50	2.00	
.78 70.40 69 9.2 229.5 11 78 -49378 -493 76 71.38 70	70.40 69 229.5 11 49378 - 493 71.38 70.	69 11 493 70.	03 79 01	68.23 76.29 - 46379 66.20	45.65 49379 68,19	28.42 - 49379 67.27				
2.0 245.9 122 06 -49106 -4910 70 72.32 70 9	245.9 122 19106 – 4910 72.32 70 9	122 - 4910 70 9	8.12.4	81.75 - 49107 70.14	48.93 49103 69.13	30. 46 - 49110 68.1 9	24.31 - 49111 67.75	16.10 - 49114 66.95		
.8 262.3 131.0 26 -48826 -4882 50 73.22 71.8	262.3 131.0 8826 - 4882 71.8	131.(- 4882 71.8:	0 5 10	87.22 - 48828 71.04	52.21 - 48830 70.02	32.52 - 48833 69 09	25.95 - 48834 68.65	17 20 48838 67.84	12.82 48843 67.27	8.439 - 48852 66.45
.7 278.7 139.2 40 -48540 -48541 47 74.09 72.71	278.7 139.2 -8540 -48541 74.09 72.71	139 2 - 48541 72.71		92.69 48542 71.91	55 50 	34.57 48548 69.95	27,60 - 48550 60 51	18 30 - 48555	13.65	8.993 48572

PHOSGENE TABLE 5

164

D. N. SESHADRI, D. S. VISWANATH AND N. R. KULGOR

						,		Pres	sure Range:	0.05 to 3.0) atm.
T°K	P Atms.	0.05	01.0	0.20	0.30	0.50	0.80	1.00	1.50	2.00	3.00
360.0	> H	590.5 - 48247	295.1 - 4 8248	147.4 48249	98.18 48250	58.79 48252	36.63 48256	29.25 - 48258	19.40	14,48 48271	9.551 48283
	s v	76.30 623.3	74.93 311.5	73.55 155.6	72.74 103.7	71.72 62.08	70.79 38.70	70.34 30 ,90	69.53 20.51	68.95 15.31	68.13 10.11
380 0	HS	- 4 7949 77.11	- 47950 75.73	- 47951 74'35	- 47952 73.55	- 47955 72.53	- 47958 71.59	- 47961 71.14	- 47968 70.33	- 47974 69.75	- 47987 68.93
400.0	V H	656.2 - 47646	32 8 .0 47646	163.8 47648	109.1 - 47649	65. 38 - 47652	40.76 - 47656	3256 - 47658	21.62	16.15 - 47672	10.67
	s v	77.89 689.0	76.51 344.4	75.13	74.32 114.6	73.31 68.68	72.37 42.83	71 92 34.21	71.11 22.73	70.33 16.98	69.70 11.24
420.0	н s	- 4 7338 78.64	- 47338 77.26	- 47340 75.88	- 47341 75.08	- 47344 74.06	- 47348 73.12	- 47350 72.67	- 47357 71.86	- 47364 71.28	- 47378 70.45
440,0	> H S	721.8 - 47025 79.37	360.8 47026 77.99	180.3 - 47027 76.61	120.1 - 47029 75.80	71.97 - 47031 74.78	44 89 47035 73.85	35.87 47038 73.40	23.83 47045 72.58	17.82 - 47052 72.00	11.80 - 47065 71.18
460,0	> H S	754.7 - 46709 80.07	377.2 - 46710 78.69	188.5 - 46711 77.31	125.6 - 46712 76.51	75.27 - 46715 75.49	46.96 - 46719 74.55	37.52 - 46722 74.10	24.94 - 46728 73.29	18.65 - 46735 72.71	12.36 - 46749 71.88

Thermodynamic Properties of Phosgene

TABLE 5- (contd.)

	;		1	-	i			Presi	sure Range:	0.05 to 3 0() atms.
Trk	P Atrus	. 0.05	0.10	0.20	0 30	0.50	080	1.00	1.50	5.00	3 00
480 0	> H s	787 5 46389 80.75	393 7 46390 79.37	196.7 - 46391 77.99	131.1 - 46392 77.19	78 57 - 46395 76.17	49.03 46399 75.23	39.18 46401 74.78	26 05 - 46408 73.97	19'49 - 46414 73.39	12.92 - 46428 72.57
500.0	> H v	\$20.3 - 46065 81.41	410.1 46066 80.03	204 9 46067 78 65	136 6 46068 77.85	81.86 46071 76.83	51.09 - 46075 75.89	40.83 46077 75.44	27.16 46084 74 63	20.32 - 46090 74.05	13.48 46103 73.23
520.0	> H s	853.2 - 45738 82.05	426.5 - 45739 80.67	213.2 - 45740 79.30	142.0 45741 78.49	85.16 45744 77.47	53.16 - 45747 76,53	42.49 - 45750 76.09	28 27 45756 75.27	21.16 - 45762 74.69	14.04 - 45775 73.87
540.0	У Н S	886.0 45408 82.68	442.9 - 45408 81.30	221.4 - 45409 79 92	147 <i>5</i> - 45411 79.11	88 45 - 45413 78.10	55.22 - 45417 77.16	44.14 - 45419 76.71	29.37 45425 75.90	21.99 - 45431 75.32	14.60 - 45443 74.50
560.0	N H S	918 9 45074 83.28	459.3 - 45074 81.90	229 6 45076 80 53	153.0 - 45077 79.72	91.75 - 45079 78.70	5728 - 45083 77.76	45 80 - 45084 77 32	30 48 45(91 76.51	22 82 - 45096 75.93	15.16 - 45108 75.11
580.0	> H s	951 7 - 44737 83 87	475.8 - 44737 82.50	237.8 44° 38 81.12	158.5 - 44740 80 31	95.04 - 44742 79.29	59 35 44745 78.36	47 45 - 44747 77.91	31 58 - 44753 77.10	23 65 - 44759 76.52	15 72 - 44770 75.70
600.0	νΗs	984.5 44396 84.45	492.2 44397 83.07	246 0 	164.0 - 44399 80 89	98.33 - 44401 79.87	61 41 44404 78 93	49 10 44407 78.49	32 69 46412 77.68	24 48 44417 77.10	16.28 44428 76 28
1 International Contraction		-									

TABLE 5-(conid)

166

D. N. SESHADRI, D. S. VISWANATH AND N. R. KULOOR

1	1.111.00.000 Million		resulter and					ā	cessure Range :	5.0 to 150	atms.
Г°К	P Atms	9. 5.0	8.0	10.0	15.0	20.0	30.0	50.0	80.0	100.0	150 0
0.0	V H S	5.267 - 48595 66 27						andra value a			
0.0	> H s	5 607 - 48309 67.08	3.383 - 48350 66 10								
0.0	> H s	5.950 - 48015 67 88	3.604 48058 66.89	2.819 48088 66.40	1.764 - 48170 65.48						
0.0	N H S	6.293 - 47713 68.65	3.826 - 47757 67.66	3.001 - 47788 67.17	1.895 - 47870 66.25	1.332 47962 65.54					
0.0	> Ħ s	6 638 47406 69.40	4.048 47450 68.41	3.183 47480 67.92	2.025 - 47561 67.00	1.409 47650 66.30	0 8326 - 47869 65.14				
0.0	N H S	6.982 - 47094 70.13	4.270 - 47137 69.14	3.365 - 47167 68.65	2.154 - 47245 67 14	1.544 47331 67.04	0 9,98 47530 65 93				
00	S H	7.326 46776 70.83	4,492 46819 69,8 4	3.546 46848 69.36	2 282 - 46924 68.45	1.646 47005 67.76	1.002 - 47189 66.69	0.4399 - 47747 64 76			
-	- And - Berney										

TABLE 5-(contd.)

								Press	ure Range:	5.0 to 150) atms.
УчТ	P Atok	s. 5.0	8.0	10.0	1.50	20.0	30.0	50.0	80.0	100.0	150.0
480.0	N H S	7.669 - 46455 71.52	4 712 - 46 96 70.53	3.726 - 46524 70.05	2.409 - 46597 69 15	1.748 46675 68 47	1 080 46846 67.42	0.5212 - 47298 65.71		e Be	
500.0	> H s	8 011 - 46129 72.18	4.932 - 46169 71.20	3 9 05 46196 70.72	2.534 46267 69.82	1.847 4 6340 69.15	1 155 46500 68.13	0.5871 - 46892 66.54	0.2415 47844 64.07		
520,0	N H S	8.353 - 45800 72.83	5.152 45839 71 84	4.084 45865 71.37	2.659 45932 70,48	1.945 46002 69.81	1.228 -46152 68.81	0.6457 - 46502 67.31	0.3045 47225 65.29	0.2079 47738 64.07	
540 0	ΥHS	8.694 - 45467 73.45	5.370 - 45505 72.48	4.262 - 45530 72.00	2.783 45594 71.11	2.042 - 45661 70.46	1.300 - 45801 69.47	0.6998 - 46119 68 03	0.3559 46717 66.25	0.2493 47156 65.17	
560.0	V H S	9.035 - 45132 74.07	5.588 - 45167 73.09	4.438 - 45191 72.62	2.905 - 45253 71.73	2.138 - 45316 71.08	1.369 - 45448 70.11	0.7509 - 45740 68.72	0.4002 - 46257 67.09	0.2882 - 46633 66.12	0.1755 47307 64.44
580.0	N H S	9.375 - 44792 74.66	5.805 - 44827 73.69	4.614 - 44850 73.22	3 027 - 44908 72.34	2.233 44969 71.69	1.438 - 45093 70.74	0.7997 - 45364 69.38	0.4401 45822 67 85	0.3239 - 46149 66.97	0.1951 - 46809 65.32
600.0	У Н ^S	9.714 - 44450 75.24	6.021 44483 74.27	4.790 - 44505 73.80	3.148 - 44561 72.93	2.327 - 44618 72.29	1.505 - 44736 71.34	0.8467 - 44987 70.02	0.4770 - 45402 68.56	0.3569 - 45691 67.75	0.2156 - 46318 66.15

TABLE 3-(conid.)

168

D. N. SESHADRI, D. S. VISWANATH AND N. R. KULOOR

ana ing kana ing kana

References

I	Atkinson, R. H., Heycock, C. T. and Pope, W. J.	<u>1</u>	J Chem Soc (London), 1920, 117, 1410.
2	. Canjar, L. N. and Manning, F. S.		Hydrocarbon Processing, 1962, 41, 121.
3.	Dumond, J. W. M. and Cohen, E. R.	• •	Phys. Rev., 1951, 82, 555.
4.	Germann, A. F. O. and Taylor, Q. M	•••	J. Am. Chem Soc., 1926, 48, 1154.
5.	Giauque, W. F and Jones, W. M.	• •	Ibid, 1948, 70, 120
6.	, and Ott, J. B.		Ibid. 1960, 82, 2689.
7.	Gordon, J. S. and Goland, D.	• •	J. Chem. Phys., 1958, 27, 1223.
8.	Hackspill, L. and Mathieu	• •	Bull de la Societe chimique de France, 1919, 25, 482.
9.			International Critical Tables, 1928. 3 and 5, (New York. McGraw Hill)
10.	Martin, J. J. and Hou, Y. C.	••	A. I. Ch E Journal, 1955, 1, 142.
11.	Paterno, E. and Mazzucchelli, A.	••	Gazz. Chim Ital., 1920, 50, 43.
12.	Rossini, F. D., Gucker, F. T. Jr., Johnston, H. L., Pauling, L. and Vinal, G. W.	••	J. Am. Chem. Soc., 1952, 74, 2699.
13.	Thompson, W. M.	• •	Trans. Faraday Soc., 1941, 37, 251.