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ABSTRACT

A technique for evaluating the exact eliastic constants of anisotropic crystals
from ultrasonic velocities along arbitrary directions is developed. This mvolves
a numerical iteration ol the full cubiwc Christoffei equation to correct the approxi-
mate analytic expressions for the velocities in terms of the elastic constants. The
method is tezted on cubic sodjum chlorate. From the three ultrasonic pulse eche
velocities along an arbitrary directicn the ¢;, are evaluated. The results agree with
the values obuained from simple [100] and {111] directions, viz., €:3==24.95, ¢);=1.45
aeg ca=1.14 (<1020 Nim®).

1. INTRODUCTION

For any direction in = single crystal three types of waves, one quash
longitudinal and two quasi-transverse, may be propagated. The three
corresponding velocities are the roots of a cubic equation — the Christoffel
equation — whose coefficients are functions of the elastic constants and the
cosines of the direction of propagation of the sound. For highly asymmetiic
crysials, sspecially for general directions, the Christoffel equation

IFp—brpo?|=0, k=123 il

where g =gy o, ap and o, being the direction cosines, o the
stiffnesses, p the density of the material and o the wave velocity. camnot be
resclved into pare modes. It is, therefore, customary to choose simple
directions along which equation [1] may be solved easily.

However, in some crystal specimens this may not always be possible.
Furthermore, in monoclinic and triclinic crystals one has few such simplifica-
tions by virtue of symmetry. Thus one has often to deal with the full cubic
equation. Now in order to obtain all the constants at least as many velocities
as the sumber of independent elastic constants are required. The calculation
of elastic constants from ultrasonic velocity measurements along arbitrary
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directions, even if in sufficient number, presents two male difficulties.
Firstiv. one has a set of simultaneous cubic equations. Secondly, the problem
is opposite to the usual question of finding eigen values and eigen vectors,
for here the cigen values are known, the eigen vectors are unknown and the
coefficients of the matrix are the quantities to be found. Thus the determi-
nation of the elastic constants of a triclinic erystal, whose elastic behaviour
ijs characterised by 21 independent constants and for which no reduction of
equation [13 by virtue of symmetry is possible, is a task that has not been
salved so far.

Hence it is undoubtedly necessary to develop a technique of solving the
Cristoffel equation in its full cubic form. The present exact iteration
technique was developed principally for application to monoclinic and
triclinic crystals to be reported later. It was, however, necessary to check
the method with respect to both accuracy and rapidity of convergence. This
has been done by applying the technique to an arbitrary direction in a cubic
crystal and is reported in this commuaication.

2. DEVELOPMENT OF ITERATION TECHNIQUES FOR SOLVING
CHRISTOFFEL EQUATION

it is a common practice to tauke the direction of propagation as ¥ and
ptl =g, as ¢is, cia and cis.  Sundara Rao'”®, Bhimasenachar,™®, Mayer and
Hiedemann® and others resorted to such an approach., But this is not quite
correct.  For propagation along Xy direction one has,

T o 1 v
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{ i i

[ ’ . i T 5
| Cas - ¢ Cig | i |- Y iz
I ’ ' | i

RS €34 fn—4g | IR

The rotated constants <§]- can be most convepiently read in terms of ¢y from
available tablies 77°.

The zero order solution of the secular equation obtained by neglecting
the off-diagonal terms, they being small, is:

@ =cis, @ eci and gy=ci, 3]

where g, and ¢, are the quasi-transverse modes with displacements respectively
alopg X/ and X, and g3 is the quasi-longitudinal mode, A computation of ¢;
from the above linear equations will give only the zero order approximation
to the values of the stiffnesses. This is the procedure adopted by the early
workers
A better approximation would be to set
.
@ melshey, B=cister and g=cute
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The correction terms ¢; are usually small and neglecting & and & ierms, thejs
values obrained from equation [2] are:

il ’ U t9) i 2 ! r 7
f3 (chy — css) + €4 (eaa — ¢4} — 2 ciq €35 Chs

gy = 7 7 7 7 ] ) 12
(F44 ~ css) (€55 — i) + 034 + €38 + €43

5]

along with twe similar expressions for e and e; (Equations [5.8] & [5.¢]).
These ¢, are calculated using the zero order values of ¢; and the first order
values of cis =gy €y » + - will be obtained. Such an iteration procedure was
adopted by Viswanathan and Raja Gopal'® in the case of monoclinic sodium
thiosulphate pentahydrate,

Neighbours and Smith!! had earlier developed an approximation method
to obtain ¢ from velocity measurements in the case of cubic crystals. They
applied it to the case of nickel’?, This is equivalent to neglecting the term
(chi + ¢ + chi) in the denominator of equations [5]. Arenberg'® adopted the
method, namely neglecting the term {chi + chs +¢4s) in equation [5], to compute
the ¢;; of silver chloride. Armstrong and others'* also followed in the same
line. Later Nuighbours' extended the methed to hexagonal, tetragonal and
orthorhombic classes. But the term (ci; + cis + ¢43) contributes a fifth or
more of the denominator in certain cases. (is neglect is not quite correct.
More recently, Wachtman ef al'® have calculated the elastic constants of cubic
SrTiO; from velocity measurements in a single arbitrary direction; their
method which uses exact equation and an iteration procedure providesan
alternative to Neighbours’ method. It should also be pointed out that near
highly symmetric directions, other procedures’” are better suited and these
have been used by Krishnan er al'®.

3. OUTLINE OF THE PRESENT METHOD

The iteration technique based on equation [5] is basically incomplete
because their values of ¢ are only the approximate solutions of the cubic
equations for the residues e; =gy — Cis, €2 = ga ~ € and ez = g —~ ¢}3. Therefore
a solution of equations [4] and [5], while a better approximation than
equation {3] is not equivalent to full solutions of the Christoffel equation.

A pumerical procedure of successive approximations which yields the
exact corrections ¢, ¢, and €3 may be devised as follows, Suppose the zero
order values of £y are obtained and & iatroduced through equation [4]. The
exact equations to be satisfied by e are :

o +ef (2ee-cly - cau) + 1 [(chs - 55} (che ~ cs) — 3t

= 53— ]+ [eld (el — chs) + €33 (el ~ cds) ~ 2 cha cis cis] =0 [6.0]
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& +é (204'4 - ey~ )+ [(Cgs - 4‘:’14) (Cga - 4‘;4) ~ 3
—eif - cad) + [ed (chs ~ cha) + i (el ~ che) — 203 c3s ] =0 [6.8]

e {20k ~ciy— chs) + e3 [(ch — c3s) (chs — ¢33) - ¢33
— i} = i3]+ [e5d (bt - e33) + 633 (55 ~ 5} — 2l s cis] = 0 [6.c]

If one could obtain the analytical expressions for the roots of equations
[6] and if one could further solve the simultansous equations [4] one would
get the exact values of the elastiv constants ¢ It is not possible to effect
this and therefore recourse must be had to numerical methods. The
deficiency of the earlier iteration methods based om equations [5] is the
linsarization of equations [0} to get the roots. Now with the availability of
copvernent Tables™ for the numerical roots of cubic equations, there is no
dificulty in solving equations {6} for the roots e, of the cubic equation.

Therefore the numerical procedure for getting the exact values of ¢;
would be as follows. Use the zero order values of c; as obtained from
equanion [3] in zquations [6] and solve for the & of the cubic equations.
Thest arc the exact zero order corrections e; =gq— Css, € =gz — Ciq and
g =gy — 3. The corrected set Cis=q1~¢€, Cu=gy—e and Cy3=g3— €3
15 the first order approximations to cgs, cig and c3; Which are then solved to
get the first order values of ¢,;. The first order values of the corrections «;
may tlien bs found out and the iteration procedure is continued until the
convergent limit is approached to the desired accuracy. The convergent
limit satisfies equations {4] and [6] simuitaneously and hence equation [2] also.
These are therefore the ‘true’ elastic constants of the crystal.

The Christoffel equation [1] involves only squares of the various direction
cosines while equation [2] involves fourth powers of the direction cosines.
All the same, the roots of the two equations are identical, because the
matrices I' and ¢’ are related by an orthogonal transformation and it is well
known that the eigen-values of a matrix are invariant under an orthogonal
transformation. The equivalence of the solutions of equations [,] and {2}
has been explicity checked by proving the term-to-term correspondence of the
coefficients,

1t should also be added that the iteration procedure is best done with
equation {2] rather than with equation [I]. Firstly, 'y, Iz and I'sys do not
contain all the ¢,’s and it is impossible to evaluate all the constants in erystals
of low symmetry. Secondly, the association of Cis and ¢ss Wwith the vibration
directions is straighiforward in equation [2), while this correspondence is not
¢asy in the original Christoffel equation. Thirdly, the off-diagonal terms gn
Ty are comparatively larger than those in cj;. The Jowest diagonal term in
Ty matrix is I'y; = 1.436 while the largest off-diagonal term I'y = - 0.866 in
units of 10’ N/m?.  In the c,; matrix the situation 45 = 1,291 and ¢34 =0.284
favours a rapid convergence of the iteration procedure,
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4. AppriCATION TO NaClO,

To test the validity of the new procedure as well as to get an indicatigy
of the speed of convergence such a caleulation was applied o the cupye
socium chlorate NaClO;. The crystal has been investigated by many earfier
workers’®"?".  Sodium chlorate was chosen because large flawless crystas
can be obtained for a comparative investigation and also to supplement oy
measurement on the isomorphous sodium bromate™,

Single crystals of NaClO; (BDH Laboratory reagent quality), oriented
along the [100] and [{11] directions were grown by slow evaporation of the
aqueous soluiion. From a block of size approximately 40 x 31 x l4mm,
oriented along the [10u] axis, a smaller piece was ground to a thickness of
682 mm. in order to obtain a pair of smooth, flat and parallel faces, inclined
to all the three mutually perpsadicular crystallographic directions, The
inclinations to the crystal axes were measured by means of an optical gonio-
meter correct to 1 minute of arc. The specimen used is schematically showe
in Figure 1.

The velocities of the quasi-longitudinal and the two non-degenerate
quasi-transverse waves were determined by the ultrasonic pulse echo method
using unrectified pulses at 10 MHz. Details of the set up are found

elsewhere®.  In order to obtain the transverse wave velocities, first the Y-cut

Fic. 1

Schematic view of NaClOg used in the study. X_; is the direction of elastic wave
propzgation and is inclined at 106°25%, 112°94’ and 28°20’ respectively

to the OA, OB and OC axes. Xé is the normal to the PQRS face.



Application to Sodium Chlorote 7S
sansducer Was oriented with vibration direction along the longer edge of the
specimen iparpmdlcular to X; axis, see Figure i}). The transducer was then
cototed through 90° about this direction and the velocity measured for the
secord time.  With this information it was possible to complete the direction
cosine scheme of all X5, X5 and X axes with respect to Xy, X, and X, and

the result is shown in Table I,

Tasre 1
Direction cosines for the Orientation of the piate
X X X
] ——
X E 0.939, —0.112, 0.259,
X, | D0 0.917; 0.397,
X} 0.282 ~0.381, 0.880,

The velocity measurements were made at 25°C. Taking the density 10 be
485 kg/m®, the values of ¢, obtained were g, = 1.25,, ¢; = 144q and g3 =4.55,,
in 10'° Nfm?,

The rotated constants cf; were then expressed in terms of ¢y and the
nown direction cosines using the well known expressions”™®.  The values are
given in Table 1I. The zero order values of ¢,; obtained with equation i3]
WETE €1y = 3.148, ¢ppem 1.452 and ¢y = 1.048 in units of 10" H/m?  The exack
wre order corrections €, obiained using these values were € = - 0.0491,
= - 0.0119 and e, = 0.0611. The first order values of elastic constants were
=4970, epp=1411 and ¢ - 1.137 ( x 10'° N/m*).  The subsequent values
of ¢, were — 00387, — Q0017 and 00403 respectively, the values obtained
from the final approximation being — 0.0386, — 0 0012 and 00399 for &y, €
and €3 respectively by which time the computational precision sxceeded the
eiperimental accuracy of measurement of elastic constants, viz.,, =+ 0.5% forey,
and ¢yyand 4 1% for ey, The convergence of the elastic constants calculated
is shown in figure 2, the limiting values being ¢y =4.99%, ¢;2=1.45; and
a4 =1.125, all in 10N/m® units.

TasLe If
Values of the rotated eiastic constants
c,'j in terms of ¢;.

33 = 06278 ¢y +0.3720 eq + 0.7440 04y
Cha o 0,2246 ¢gp - 0.2224 ¢35 + 0.5109 cqy
cos =0.1274 £1p ~ 0.1274 ¢4y + 0.7451 ¢y
Chy = 0.2203 ¢y, —0.2201 ¢45 + 0.4402 €44
cgs w 0,1614 7 — 0.1614 ¢13 + 0.3228 cy4

chs = 0.0648 ¢}y — 0.0648 cyn + 0.1296 44
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Convergence of the elastic constants

5. IDMsCcUssion

The present procedure is szen to be sufficiently convergent so asio be
praciicable in more complicated crystals. The point regarding the absolute
accuracy of the method needed to be setiled.  This was done jn two ways.

* Firstly, velocity along [100] and [111] dircctions were measured using
crystals grown from the same batch of material; ¢, and cy were obtained
from the longitudinal and shear velocities along [100] end ¢;; was derived os
the mean of the two measurements along [111] (both of which yielded resuits

1o within 0.02%). The values were ¢y = 4.94s, Ccrpe 1455 and g = 1135 i2
units of 10% Wim?,
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On comparing with the values deduced from the measurements siong
artirary directions ¢y is larger by 1% and ¢y is less by abont 1%, Now the
ecrors in the direct evalvation of ¢; from [100] and [111} directions are of
cpe order 0 5% for ¢y; and ¢4 and 1% for ¢, The accuracy of the velocity
measurements along arbitrary directions is slightly inferior because of the
degeneration of the echo pattera caused by the difference in the directions of
propagation of the ultrasonic pulse and the ultrasonic energy. In view of
this, the difference between the sets of ¢; must be considered within the
cverall accuracy of the measurements. In other words, the measurements
wlong arbitrary directions yield the “true” elastic constants when the present
jteration procedure is applied.

A second way of checking the accuracy of the procedure was to
substitute the values Of €31, €12 and ¢y in the Christoffel equation [1] and to
see if the equation was identically satisfied. The actual residues with the
derived values of ¢; were - 0.0009, 0.6000 and - 0.0005 which are eatirely
segligible.

Finally, the present iteration procedure has two special features which
arg of great advantage in the process of numerical computation. Firstly,
since we are solving the full Christoffc]l equation we must get three real
velocities. Thus the roots of equation [6 «] when combined with cke yield the
same three velocities as the sum of ¢, and the three roots of equation [6.5]
and the three sums of ¢j; with the three roots of equation [6 ¢}. To give an
example in the first order correction process the three roots are: ¢ = 0.1761,
~0.043! and 3.3611; ;= 00119, - 02371 and 3.1731 apd ¢ = ~3 1235,
~33491 and 00eil. Their combination with the zero order values s =
12520, chq = 1,440 and ch; = 4.552, yield only three distinct velocities, 1.428,,
1.202; and 4 613; thereby affording a constant check on the numerical calcu-
lations. Secondly, the trace of the determinant {2) is invariant and so the
sum {ehs + chy +e53) must be a constant in any step of approximation. In
effect, this means that with the correct choice of ¢, «; and « the sum
{er+ a2 €3} must be zero: The vanishing of the sum can be checked from
the numerical values given earlier for ¢; in the various orders of approxi-
mations, In linearizing the cubic equations [5] to get the approximate values of
«, these iwo advantages are lost,
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