ON THE EXACT CALCULATION OF ELASTIC CONSTANTE OF CRYSTALS FROM ULTRASONIC VELOCITIES ALONG ARBITRARY DIRECTIONS-APPLICATION IO SODIUN CHLORATE

BT V. 要ALHA AND E. S. R. GOPAL
(Deparfaiznt of Physics, Indion Instime of Science, Bangalore-12, India)

(Received: February 8, 1968)

Abstract

A technique for evaluating the exact elastic constants of anisotropic crysta's from ultrasonic velocities along arkitrary directions is developed. This muolves a numerical ineration of the full cubte Christoffei equation to correct the approximate analytic expressions for the velocities in terms of the elastic constants. The method is tented on cubic sodium chlorate. From the three ultrasonic puise echo velocities along an arbitrary direction the c_{i}, are evaluated. The tesults agree with the values obtained from simple [100] and [111] directions, wiz., $c_{15}=4.95, c_{13}=1.45$ and $c_{k}=1.14\left(\times 10^{20} \mathrm{~N} / \mathrm{m}^{2}\right)$.

1. Intronuction

For any direction in a single crystal three types of waves, one quasilongitudinal and two quasi-transverse, may be propagated. The three corresponding velocities are the roots of a cubic equation-the Christoffel equation-whose coefficients are functions of the elastic constants and the cosines of the direction of propagation of the sound. For highly asymmetric crystals, especially for general directions, the Christoffel equation

$$
\begin{equation*}
\left|\Gamma_{1}-\delta_{1 k} \rho v^{2}\right|=0, i, k=x 1,2,3 \tag{1}
\end{equation*}
$$

whers $J_{i z}^{2}=c_{i j k \ell} c_{j} \alpha_{l}$, a_{j} and α_{l} being the direction cositues, $\epsilon_{i j k i}$ the stiffnesses, p the density of the material and y the wave velocity, canot be resolved into pure modes. It is, therefore, customary to choose simple directions along which equation [1] may be solved easily.

Howewer, in some crystai specimens this may not always be possible. Furthermore, in monocinic and triclinic crystals one has few such simplifications by virtue of symmetry. Thus one has often to deal with the full cubic equation. Now in order to obtain all the constants ar least as many velocities as the number of independent elastic constants are required. The calculation of elastic constants from ultrasonic velocity measurements along arbitrary
directions, even if in sufficitat number, preseats two main difficulties. Firstiy, one bas a set of simultaneous cubic equations. Secondly, the problem is opposite to the usual question of finding eigen values and eigen vectors, for here the eigen values are known, the eigen vectors are unknown and the coeficients of the matrix are the quantities to be found. Thus the determi. nation of the clastic constants of a trichinic crystal, whose elastic behaviour is characterised by $2 l$ independent constants and for which no reduction of equation [1] by virtue of symmetry is possible, is a task that has not been solved so far.

Hence it is undoubtedly necessary to develop a technique of solving the Cristoffel equation in its full cubic form. The present exact iteration technique was developed principally for application to monoclinic and triclinic crystals to be reported later. It was, however, necessary to check the method with respect to both accuracy and rapidity of convergence. This has been done by applying the technique to an arbitrary direction in a cubic crystal and is reported in this communication.

2. Development of Tteration Techiniques for Solving Christoffel Equation

It is a common practice to take the direction of propagation as X_{3}^{\prime} and $\rho v_{i}^{3}=q_{i}$ as $c_{33}^{\prime}, c_{44}^{\prime}$ and c_{53}^{\prime}. Sundara Rao ${ }^{1-3}$, Bhimasenachar, ${ }^{4,5}$, Mayer and Hiedemann and others resorted to such an approach. But this is not quite correct. For propagation along X_{3}^{\prime} direction one has,

$$
\left[\begin{array}{lll}
c_{55}^{\prime}-q & c_{35}^{\prime} & c_{35}^{\prime} \tag{2}\\
c_{45}^{\prime} & c_{44}^{\prime}-q & c_{34}^{\prime} \\
c_{35}^{\prime} & c_{34}^{\prime} & c_{33}^{\prime}-q
\end{array}\right] \quad\left[\begin{array}{l}
-u_{1}^{\prime} \\
u_{2}^{\prime} \\
u_{3}^{\prime}
\end{array}\right]=0
$$

The rotated constants $z_{i j}^{\prime}$ can be mosi conveniently sead in terms of $c_{i j}$ from available tables ${ }^{7-9}$.

The zero order solution of the secular equation obtained by neglecting the off-diagonal terms, they being small, is:

$$
\begin{equation*}
q_{1}=c_{55}^{\prime} \quad q_{2}=c_{44}^{\prime} \quad \text { and } q_{3}=c_{33}^{\prime} \tag{3}
\end{equation*}
$$

where q_{1} and g_{2} are the quasi-transverse modes with displacements respectively along X_{1}^{\prime} and X_{2}^{\prime} and q_{3} is the quasi-longitudinal node. A computation of $\epsilon_{l /}$ from the above linear equations will give only the zero order approximation to the values of the stiffecsses. This is the procedure adopted by the early workers

A better approximation would be to set

$$
\begin{equation*}
q_{1}=c_{55}^{\prime}+\epsilon_{1}, q_{2}-c_{44}^{\prime}+\epsilon_{2} \text { and } q_{3}=c_{33}^{\prime}+\epsilon_{3} \tag{4}
\end{equation*}
$$

The correction terms ϵ_{i} are usually small and neglecting ϵ_{1}^{2} and ε_{i}^{3} terms, their values obrained from equation [2] are:

$$
\begin{equation*}
\varepsilon_{1}=\frac{c_{35}^{\prime 2}\left(c_{44}^{\prime}-c_{55}^{\prime}\right)+c_{45}^{\prime 2}\left(c_{33}^{\prime}-c_{55}^{\prime}\right)-2 c_{34}^{\prime} c_{35}^{\prime} c_{45}^{\prime}}{\left(c_{44}^{\prime}-c_{55}^{\prime}\right)\left(c_{55}^{\prime}-c_{33}^{\prime}\right)+c_{34}^{\prime 2}+c_{35}^{\prime 2}+c_{45}^{\prime 2}} \tag{5a}
\end{equation*}
$$

along with two similar expressions for ϵ_{2} and ϵ_{3} (Equations [5.b] \& [5.r]). These ε_{1} are calculated using the zero order values of $c_{1 j}$ and the first order values of $c_{55}^{\prime}=q_{1} \quad \epsilon_{1} \cdot \cdots$ will be obtained. Such an iteration procedure was adopted by Viswanathan and Raja Gopal ${ }^{10}$ in the case of monoclinic sodium thiosulphate pentahydrate.

Neighbours and Smith ${ }^{11}$ had earlier developed an approximation method to obtain $c_{i j}$ from velocity measurements in the case of cubic crystals. They applied it to the case of nickel ${ }^{12}$. This is equivalent to neglecting the term $\left(c_{34}^{\prime 2}+c_{35}^{\prime 2}+c_{45}^{\prime 2}\right)$ in the denominator of equations [5]. Arenberg ${ }^{13}$ adopted the method, namely neglecting the term $\left(c_{34}^{\prime 2}+c_{35}^{\prime 2}+c_{45}^{\prime 2}\right)$ in equation [5], to compute the $c_{i j}$ of silver chloride. Armstrong and others ${ }^{14}$ also followed in the same line. Later Nighbours ${ }^{15}$ extended the methed to bexagonal, tetragonal and orthorhombic classes. But the term $\left(c_{34}^{\prime 2}+c_{35}^{\prime 2}+c_{45}^{\prime 2}\right)$ contributes a fifth or more of the denominator in certain cases. Its neglect is not quite correct. More recently, Wachtman et al ${ }^{16}$ have calculated the elastic constants of cubic $\mathrm{Sr}_{\mathrm{TiO}}^{3}$ from velocity measurements in a single arbitrary direction; their method which uses exact equation and an iteration procedure provides an alternative to Neighbours' method. It should also be pointed out that near bighly symmetric directions, other procedures ${ }^{17}$ are better surted and these have been used by Krishonan of al ${ }^{18}$.

3. Outeine of the Present Method

The iteration technique based on equation [5] is basically incomplete because their values of ϵ_{t} are only the approximate solutions of the cubic equations for the residues $\epsilon_{1}=q_{1}-c_{35}^{\prime} \epsilon_{2}=q_{2}-c_{44}^{\prime}$ and $\varepsilon_{2}=q_{2}-f_{33}^{\prime}$. Therefore a solution of equations [4] and [5], while a better approximation than equation [3] is not equivalent to full solutions of the Christoffel equation.

A numerical procedure of successive approximations which yields the exact corrections $\epsilon_{1}, \epsilon_{2}$ and ϵ_{3} may be devised as follows. Suppose the zero order values of $r_{f j}$ are obtained and ϵ introduced through equation [4]. The exact equations to be satisfied by et are :

$$
\begin{align*}
m_{1}^{3}+ & \epsilon_{1}^{2}\left(2 c_{55}^{\prime}-c_{33}^{\prime}-c_{44}^{\prime}\right)+\epsilon_{1}\left[\left(c_{33}^{\prime}-c_{55}^{\prime}\right)\left(c_{44}^{\prime}-c_{55}^{\prime}\right)-c_{34}^{\prime 2}\right. \\
& \left.-c_{35}^{\prime 2}-c_{45}^{\prime 2}\right]+\left[c_{45}^{\prime 2}\left(c_{33}^{\prime}-c_{55}^{\prime}\right)+c_{35}^{\prime 2}\left(\epsilon_{44}^{\prime}-c_{55}^{\prime}\right)-2 c_{34}^{\prime} c_{35}^{\prime} c_{45}^{\prime}\right]=0 \tag{6.a}
\end{align*}
$$

$$
\begin{align*}
& c_{2}^{3}+\epsilon_{2}^{2}\left(2 c_{44}^{\prime}-c_{55}^{\prime}-c_{33}^{\prime}\right)+\epsilon_{2}\left[\left(c_{5 s}^{\prime}-c_{44}^{\prime}\right)\left(c_{33}^{\prime}-c_{44}^{\prime}\right)-c_{34}^{\prime 2}\right. \\
& \left.\quad-\epsilon_{35}^{\prime 2}-c_{45}^{\prime 2}\right]+\left[c_{34}^{\prime 2}\left(c_{55}^{\prime}-c_{44}^{\prime}\right)+c_{45}^{\prime 2}\left(c_{33}^{\prime}-c_{44}^{\prime}\right)-2 c_{34}^{\prime} c_{35}^{\prime} c_{45}^{\prime}\right]=0 \tag{6.b}\\
& \epsilon_{3}^{3}+\epsilon_{3}^{2}\left(2 c_{33}^{\prime}-c_{44}^{\prime}-c_{55}^{\prime}\right)+\epsilon_{3}\left[\left(c_{44}^{\prime}-c_{33}^{\prime}\right)\left(c_{55}^{\prime}-c_{33}^{\prime}\right)-c_{34}^{\prime 2}\right. \\
& \left.-c_{35}^{\prime 2}-c_{45}^{\prime 2}\right]+\left[c_{34}^{\prime 2}\left(c_{44}^{\prime}-c_{33}^{\prime}\right)+c_{35}^{\prime}\left(c_{55}^{\prime}-c_{33}^{\prime}\right)-2 c_{34}^{\prime} c_{35}^{\prime} c_{45}^{\prime}\right]=0 \tag{6.c}
\end{align*}
$$

If oue could obtain the analytical expressions for the roots of equations [6] and if one could further solve the simultansous equations [4] one would gel the exact values of the elastic constants $c_{1 j}$. It is not possible to effect this and therefore recourse must be had to numerical methods. The deficiency of the earlier iteration methods based on equations [5] is the linearization of equations [n] to get the roots. Now with the availability of cnaventent Tables ${ }^{14}$ for the numerical roots of cubic equations, there is no diffeuly in solving equations [6] for the roots ϵ_{1} of the cubic equation.

Therefore the numerical procedure for getting the exact values of $c_{i j}$ would be as follows. Use the zero order values of $c_{2 j}$ as obtained from equation [3] in equations [6] and solve for the ε_{i} of the cubic equations. These are the exact zero order corrections $\epsilon_{1}=q_{1}-\epsilon_{55}^{\prime}, \epsilon_{2}=q_{2}-\epsilon_{44}^{\prime}$ and $\epsilon_{3}=q_{3}-c_{33}^{\prime}$. The corrected set $c_{55}^{\prime}=q_{1}-\epsilon_{1}, c_{44}^{\prime}=q_{2}-\varepsilon_{2}$ and $c_{33}^{\prime}=q_{3}-\epsilon_{3}$ Is the first order approximations to c_{55}^{\prime}, c_{44}^{\prime} and c_{33}^{\prime} which are then solved to get the frst order values of c_{ij}. The first order values of the corrections ϵ_{i} may then be found out and the iteration procedure is continued until the convergent limit is approached to the desired accuracy. The convergent limit satisfies equations [4] and [0] simultaneously and hence equation [2] also. These are therefore the 'rrue' elastic constanss of the crystel.

The Christoffel equation [1] involves only squares of the various direction cosines while equation [2] involves fourth powers of the direction cosines. All the same, the roots of the two equations are identical, because the matrices Γ and c^{\prime} are related by an orthogonal transformation and it is well known that the eigen-values of a matrix are invariant under an orthogonal transformation. The equivalence of the solutions of equations [.] and [2] bas been explicity checked by proving the term-to-term correspondence of the coeficients.

It should also be added that the iteration procedure is best done with equation [2] rather than with equation [1]. Firstly, Γ_{11}, Γ_{22} and Γ_{33} do not contain all the ϵ_{i} 's and it is impossible to evaluate all the constants in crystals of low symmetry. Secondly, the association of $c_{4 s}^{\prime}$ and c_{55}^{\prime} with the vibration directions is straightorward in equation [2], while this correspondence is not easy in the original Christoffel equation. Thirdly, the off-diagonal terms in $\Gamma_{t j}$ are comparatively larger than those in $c_{i j}^{\prime}$. The lowest diagenal term in $\Gamma_{i]}$ matrix is $\Gamma_{11}-1.456$ while the largest off-diagonal term $\Gamma_{23}=-0.866$ in units of $10^{10} \mathrm{~N} / \mathrm{m}^{2}$. In the $c_{i,}^{\prime}$ matrix the situation $c_{55}^{\prime}=1.291$ and $c_{54}^{\prime}=0.284$ favours a rapid convergence of the iteration procedure.

4. Applrcation to NaClO_{3}

To test the validity of the new procedure as well as to got an indication of the speed of convergence such a calculation was applied to the cubic sodium chlorate NaClO_{3}. The crystal has been investigated by many earlier workers ${ }^{20-27}$. Sodium chlorate was chosen because large flawless crystals can be obtained for a comparative investigation and also to supplement our measurement on the isomorphous sodium bromate ${ }^{28}$.

Single crystals of NaClO_{3} (BDH Laboratory reagent quality), oriented along the [100] and [111] directions were grown by slow evaporation of the aqueous solution. From a block of size approximately $40 \times 31 \times 14 \mathrm{~mm}$. oriented along the $[100]$ axis, a smaller piece was ground to a thickness of 682 mm . in order to obtain a pair of smooth, flat and parallel faces. inclined to all the three murually perpendicular crystallographic directions. The inclinations to the crystal axes were measured by means of an optical goniometer correct to 1 minute of arc. The specimen used is schematically show in Figure 1.

The velocities of the quasi-longitudinal and the two non-degenerate quasi-transverse waves were determined by the ultrasonic pulse echo method using unrectified pulses at 10 MHz . Details of the set up are found elsewhere ${ }^{29}$. In order to obtain the transverse wave velocities, first the Y-cut

Fig. 1
Schematic view of NaClO_{8} used in the study. X_{3}^{\prime} is the direction of elastic wave propagation and is inclined at $106^{\circ} 25^{\prime}, 112^{\circ} 24^{\prime}$ and $28^{\circ} 20^{\circ}$ respectuvely to the $O A, O S$ and $O C$ axes. X_{g}^{1} is the normal to the PQRS face.
transuluce was oriented with vibration direction along the longer edge of the specimen (parpendicular to X_{1} axis, see Figure 1). The transducer was then rotated through 90° about this direction and the velocity measured for the secord time. Wath this information it was possible to complete the direction casine scheme of all $\mathcal{X}_{1}^{\prime}, X_{2}^{f}$ and X_{3}^{\prime} axes with respect to X_{1}, X_{2} and X_{3} and the result is shown in Table I.

Table I
Difection cosinas for the Orientation of the plate

	X_{1}	X_{2}	X_{3}
X_{1}^{\prime}	0.959_{2}	-0.112_{3}	0.259_{3}
X_{2}^{\prime}	0.0	0.917_{7}	0.397_{3}
X_{3}^{\prime}	-0.282_{6}	-0.381_{2}	0.880_{2}

The velocity measurements were made at $25^{\circ} \mathrm{C}$. Taking the density to be $248_{5} \mathrm{~kg} / \mathrm{m}^{3}$, the values of q_{1} obtaiaed were $q_{1}=1.25_{2}$, q_{2} wo 144_{0} and $q_{3}=4.55_{2}$, is $10^{10} \mathrm{~N} / \mathrm{m}^{2}$.

The rotated constants c_{j}^{\prime} were then expressed in terms of $c_{i j}$ and the tnown direction cosines asing the well known expressions ${ }^{7 \mu 9}$. The values are given in Table II. The zero order values of r,jobiained with equation [s] were $c_{11}=5.48, c_{12}=1.452$ and $c_{44}=1.048$ in units of $10^{10} \mathrm{~N} / \mathrm{m}^{2}$. The exace zre order cortections ϵ_{1} obtained using these values were $\epsilon_{1}=-0.0491$, $t_{2}=-0.019$ and $\epsilon_{3}=0.0611$. The first order values of elastic constants were $c_{11}=4970, c_{12}=1411$ and $c_{44}-1.137\left(\times 10^{10} \mathrm{~N} / \mathrm{m}^{2}\right)$. The subsequent values of ϵ_{i} were - $000387,-00017$ and 00405 respectively, the values obtained from the final approximation being $-0.0386,-00012$ and 00399 for ξ_{2} and ϵ_{3} respectively by which time the computational precision exceeded the experimental accuracy of measurement of elastic constanis, viz, $\pm 0.5 \%$ for $c_{1 t}$ and c_{44} and $\pm 1 \%$ for c_{12}. The convergence of the elastic constants calculated is shown in figure 2 , the limiting values being $c_{q 1}=4.99_{0}, c_{12}=1.45$, and $e_{44}=1.12 \%$, all in $10^{16} \mathrm{~N} / \mathrm{m}^{2}$ unics.

Table II

Values of the rotated eastic constants
$c_{i j}^{\prime}$ in terms of $c_{i j}$.
$c_{33}^{r}=0.6278 c_{11}+0.3710 c_{12}+0.7440 c_{44}$
$c_{44}^{f}=0.2246 c_{11}-0.2224 c_{12}+0.5109 c_{40}$
$c_{55}^{\prime}=0.1274 \varepsilon_{11}-0.1274 c_{12}+0.7451 \varepsilon_{44}$
$c_{34}^{\prime}=0.2203 c_{11}-0.2201 c_{12}+0.4402 c_{44}$
$c_{35}^{\prime}=0.1614 c_{11}-0.1614 c_{12}+0.3228 c_{44}$
$c_{49}^{4}=0.0688 c_{11}-0.0648 c_{12}+0.1296 c_{44}$

Fig. 2
Convergence of the elastic constants

5. Duscussion

The present procedure is seen to be sufficiently convergent so as to be practicable in more complicated crystals. The point regarding the absolute accuracy of the method needed to be settled. This was done in two ways.

Firstly, velocity along [100] and [111] directions were measured using crystals grown from the same bateh of material; c_{51} and c_{44} were obtained from the longitudinal and shear velocities along [100] ard $c_{i z}$ was derived as the mean of the two measurements along [111] (both of which yselded results to within 0.02%). The values were $c_{11}=4.94 \% c_{52}=1.45_{3}$ and $c_{44} \times 1.13_{5}$ in units of $10^{30} \mathrm{~N} / \mathrm{m}^{2}$.

On comparing with the values deduced from the measurements slong aburary directions c_{13} is larger by 1% and c_{44} is less by about 1%. Now the errors in the direct evaluation of $\epsilon_{1 j}$ from [100] and [111] directions are of the order 05% for c_{11} and c_{46} and 1% for c_{12}. The accuracy of the velocity measurements along arbitrary directions is slightly inferior because of the degentration of the echo pattern caused by the difference in the directions of propigation of the ultrasonic pulse and the ultrasonic energy. In waew of this, the difference between the sets of $c_{1 j}$ must be considered within the oreall accuracy of the measurements. In other words, the measurements along arbitrary directions yield the "true" elastic constants when the present iteration procedure is applied.

A second way of checking the accuracy of the procedure was to stbstitute the values of c_{11}, r_{12} and r_{44} in the Christoffel equation [1] and to see if the equation was identically saisfied. The actual residues with the derived values of $c_{i j}$ were $-0.0009,0.0000$ and -0.0005 which are entirely negligibie.

Finally, the present iteration procedure has two special features which ars of great advantage in the process of numerical computation. Firstly, since we are solving the full Christoffel equation we must get three real velocities. Thus the roots of equation $[6 a]$ when combined with $r_{s s}$ yield the same three velocities as the sum of c_{44}^{\prime} and the three roots of equation $[6 . b]$ and the three sums of c_{33}^{\prime} with the three roots of equation [$\left.6 c\right]$. To give an example in the first onder correction process the thece roois are: $\epsilon_{1}=0.1761$, $-0.049!$ and $3.3611 ; \varepsilon_{2}=-00119,-02371$ and 3.1731 and $\epsilon_{3}=-31239$, -33791 and 000 ll . Their combination with the zero order values $c_{s s}=$ $1250_{0}^{2}, c_{4 \beta}^{\prime}=1.440_{0}$ and $c_{33}^{\prime}=4.552_{0}$ yield only three distinct velocities, 1.428_{1}, 1.202_{9} and 4613_{1} thereby affording a constant check on the numerical calculations. Secondly, the trace of the determinant (2) is invariant and so the sum $\left(c_{55}^{\prime}+c_{44}^{\prime}+c_{33}^{\prime}\right)$ must be a constant in any step of approximation. In effect, this means that with the correct choice of $\varepsilon_{1}, \epsilon_{2}$ and ϵ_{3} the sum $\left(\epsilon_{1}+\epsilon_{2}+\epsilon_{3}\right)$ must be zero: The vasishing of the sum can be checked from the numerical values given earlier for ϵ_{i} in the various orders of approximations. In linearizing the cubic equations [s] to get the approximate values of ϵ_{i}, these two advantages are lost.

Acknowledgements

The authors wish to thank Professor R. S. Krishang for his kind interest in the work, Dr. R. Viswanthan for help in getting the single crystals and the C.S.I R. For the award of a Junior Research Fellowship to one of us (Y. R.)

References

1．Sendara Rav，R．V．G．\quad ．Proc．Indian Acad．Scl．1949，29， 352.
2．$\quad \cdots \quad I b i d, 1949,30 A_{1} 302$.
3．… Ibid，1949，304，173．
今．Enimasemachar，J．\quad Proc．Nat．Inst．Sci．India 1950，16，241．
5．－and Venkataratmam，G．．．J．Acoust．Soc．Amer．1955，27，922．
6．Mayer，W．G．anfi Hiedemann，E．A．．．Hid．1958，30， 756
7．Lieberman，D．S．and Ziriasky，S．．．Acta Cryst．1956，9， 931.
8．Hearmon，R．F．S．．．Ibid．1957， $10,121$.
9．Becbmats，R．．．Hbid．1960，13， 110 ．
10．Viswanathan，R．and Raja Gopal，E．S．I．Sci．Industr．Res． 1961 208， 463.
11．Neighbours，J．安．and Smith，C．S．．．J．Appl．Phys．1950，21， 1338.
12．．and Bratten，F．W．and ．．Sbid．1952，23， 389. Smith，C．S．

13．Arenberg，D．I．．．Bbid．1950，21，94
14．Armstrong．P．E．Carlson，O．N．and ．．Ibid．1959，30， 36. Smith，J．F．
15．Neighbours，J．Re．．．J．Acolist．Soc Amer．1954，26， 865.
16．Hachtman，F．B．，Wheat，M．L．and ．．J．Res．Nat．Bur．Stand．Wasil 1963，67A， Marzulio，S．
193.

17．Raja Gopal，E．S．
．．J．Sci．Industr．Res．1961，20R． 50.
18．Krishean，R．S．Chandrasekharan，V．．．Nature，Lond．1958，182， 518. and Raja Gopal，E．S．
19 Salzer，H．E．，Richards，C．H．and ．．Table for the Solution of Cubic Equations Arsham． 1.
20．Mason，W．P．
McGraw－Hill Book Co．Sre 1958.

21．Bhagavantam，S．and Suryanarayana，D．
22．Sundara Rao，Re V．G
Plys．Rev．1946．70，529．

23．Jona，F．
ibid．1947，71， 553.

24．Bectuman，R．
$\cdots \quad$ Curr．Sci．Incia，1949，18， 204.
．Proc．Phys．Soc．Lont．1951，648， 323.
25．Namachaniran，G．N．and
．Acta Cryst．1951．4，431．
Wicoster，W．A．
26．Fiaussuht，S．\quad Phys kondens Moterie，1964，3， 139.
2．．Viswancihan，R．
\cdots 3．Appl．Phys．1966，37，884．
28．Kadia，V．and Gopal，E．S．R．
\cdots J．Mnd．Inst．of Sci．，1963，50， 26.
2．Viswanathan，R ．
．Indion Jour．，Pure andi Appl．Phys． 1964 2,53 ．

