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ABSTRACT 

A technique For evaluating the exact elastic conslants of anisotropic crystak 
from ultrasonic velocities along arbitrary directions is developed. This involves 
a numerical itcraticn o i  the full cubtc Christoff~l equation to correct the approxi- 
mat: analytic expressions for the velocities in terms of the e1as:ic constantr. Thc 
rnothod is tested oo cubic sodium chlorate. Prom the three ultrasonic pulse echo 
velocities along an arbitrary direction the c:, are evaluated. The results agree wjth 
the values obtained from simple [I031 and 11113 dlrect~ons, viz., c,,==4.95, e12=I.4i 
and c,,=-3.14 L x l W 0  N!rn'). 

F o r  any direction in n single c rysr l l  three types of waves, one quasi- 
longitudinal a n d  two quesi-transverse, may be propagated. The three 
corresponding velocities are the  roots o i  a cubic  equation- the Chri$to!Tei 
equation - whose coeflicients are funcrions o f  the  elastic constants and the 
cosines cP :he direction of  propagation of the sound. For  highly asyrnnttric 
crystals, especially for general directions, t h e  Christoffel equation 

where rjk-ei lklrs la, .  a] and o l  being t h e  direction cosines, r,jai :he 
rtitfnesses, p the  density of t h e  material a n d  u t h e  wave velocity. cmnot b- 
resolved into pure modes. It is, therefore, customary t o  clrocsc simpis 
directions doerg which equation El] may be solved easily. 

However, in some crystal specimen- th i s  may n o t  always be possible. 
Furthermore, in monoclinic and  triclinic crystals one  has few such simplifica- 
tions by virtue o r  symmetry. Thus o n e  h a s  ofken t o  deal with the  fu:l cubic 
equ3:ion. N o n  in order to obtain all t h e  constants a t  least as  many velociries 
as  the nxrnber of i n d e p e n d e ~ t  elastic constants are required. T h e  calculation 
of elastic constants from ultrasonic velocity measurements along arbitrary 
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djreFIiocs, even i f  in sufficient number, presents two main difliculties. 
~ i ~ ~ t ; ~ .  one Itas a set of simul:aneous cubic equations. Secondly, theproblcm 
is opposite to the usual question of finding eigen voiues and eigen vectors, 
for here the aigen values are known, the eigen vectors are unknown and the 
coe4iriznts of ihc matrix are the quantities to be found. Thus the determi- 

of :he elastic constants of a triclinic crystal, whose elastic bebaviour 
is charrcterised by 21 independent constants and for which no reduction of 
quasion [I] by virtue o r  symmetry is possible, is a task that has not been 
solved so far. 

Hence it is undoubtedly necessary to develop a technique of solving tlie 
Cristoffel equation in its full cubic form. The present exact iteration 
technique was developed principally for application to monoclinic arid 
triclinic crystals t o  be reported later. It was, however, necessary to check 
tbc method wi th  respect to both accuracy and rapidity of convergence. This 
h i s  been done by applying t h e  technique to an arbitrary direction in a cubic 
crystal and is reported in this  conamunicniion, 

2. D E V E L O P ~ ~ E N ~  OF ITERATION TECHNIQUES FOR SOLVING 
CHRiSTOFFEL EQUATION 

11 is a common practice t o  t.tkc the directlom of propagation as Xi and 
11: = q, as c;3, ci, and ci5. Sundara ~ a o ' - "  ~hirnasenachar,"~, M a y a  and 

Hisdemann6 and others resorted to such an approach. But thrs is not quite 
correct. For propagation along X; direction one has. 

The rotated constants can be most conveniently read in terms of cjl from 
ai3ailab:e ta hles 7-9. 

The zero order solution of the secular equation obtained by neglecting 
the off-diagonal terms, they being small, is : 

41 = c;s. qz - CL and 53 - d 3 ,  131 

where q, and y2 are the quasi-transverse modes with displacements respectively 
along X: and X: and p, is the quasi-longitudinal mode. A c o m p ~ t ~ l i o n  of t1.i 

from the above linear equations wil l  give only the zero order approxirna:ion 
to ;he values of the stiffnesses. This is the procedure adopted by the early 
~ o r k e r s  

A better a~proxiruation would be to set 



The correctior! terms ei are usually small and neglecting c: and $icrrns, ;heir 
values obtained from equation 127 are : 

d o n g  with two similar expressions for e2 and f-3 ( ~ ~ u a t i o n s  [5.b] & [5.r]). 
These E, are calculated using the zero order values of c,j and the first order 
values of rk5 - q,  c, - . will be obtained. Such an  iteration procedure was 
adopted by Viswanathan and Raja  opal" in the oase of monoclinic sodium 
rhiosulphate pentahydrate. 

Neighbours and smith" had earlier developed an approximation method 
to obtain ci, from velocity measurements in the case of cubic crystals. They 
applIed it to the case of nickel''. This is equivalent to neglecting the term 
(c$ i  +& +c: ; )  in the denominator of equations [5]. ~ r e n b e r ~ "  adopted the 
method, namely neglecting the term (c$+ c;3 +c!,;) in equation [s], to compute 
the clj of silver chloride. Armstrong and others" also followed in the same 
line. Later N~ighbours's extended the methcd to hexagonal, tetragonal and 
orthorhombic classes. But the term (c:; + c;; + c a )  contributes a fifth or 
more of the denominator in certain cases. Its neglect is not qui!e correct. 
More recently, Wachtman rt 01'' havecalculated tho elastic constants of cubic 
SrTiO, from velocity measurements in a single arbitrary direction; their 
method which uses exact equation and an iteration procedure provides an 
alternative to Neighbours' method. It should also be pointed out that near 
highly symmetric directions, other procedures'7 are better suited and these 
have been used by Krishnan n 01". 

The iteration technique based on equation IS] is basically iricomplet* 
because their values of p, are only :he approximate solutions of the cubic 
cguations for the resjducs e, , q, - cis, s2 - q2 - & and e2 = q2 - ii3. Therefore 
a solution of equations 141 and [5 ] ,  while a better approximation than 
equation 131 is not equivalent t o  full solutions of the Christoffeel equation. 

A numerical procedure of successive approximations which yields the 
exact corrections E, ,  e2 and e3 may be devised as follows. Suppose the zero 
order values of r,, are  obtained and E ,  introduced through equation 141. The 
m e t  quations to be satisfied by e, are : 



If one could obtain the analytical expressions for the roots of equations 
[b] and if one could further solve the simultaneous equations [4] one would 
pet the exact values of the elastic constants cZj. It is not possible to effect 
this and therefore recourse must be had to numerical methods. The 
deficiency of the earlier iteration methods based on equations [5]  is rhe 
iinearization of eqnations [h] to get the roots. Now with the availability of 
c~nicnient 'fables" for the numerical roots of cubic equutions, there is no 
difficulty in soiving equations 161 for the roots 6, of the cubic equation. 

Therefore the numerical procedure for getting the exact values of cfj 
would be a3 follows. Uae the zero order values of c,, as obtained from 
equatron [z] in cqualions [h]  and solve for the E; of the cubic equations. 
Thesc are the exact zero order corrections 6,  - ql - cis, E2 = ((3 - r i d  and 
el - q3 - ci3. The corrected set c:, = q, - E , ,  C& - 9 2  - Q and ci3 - qg - sg 
!a the first order approximations to c&, c:( and cis which are then solved to 
get tile first order values of c , ~ .  The first order values of the corrections ci 
mag then b~ found out and the iteration procedure is continued until the 
convergent limit is approached to the desired accuracy. The convergent 
limit satisfies equations [a] and [b] simultaneously and hence equation 121 also. 
These are therefore the 'srue' elastic constants of the crystal. 

The Christoffel equation [ i ]  involves only squares of the various direction 
cosines while equation [z] involves fourth powers of the direction cosines. 
All the same, the roots of the two equations are identical, because the 
m r i m  I" and c' are related by an orthogonal transformation and it is well 
known tha t  the eigen-values of a matrix are ~nvariant under an orthogonal 
transformation. The equivalence of  the solu~ions of equations [# ]  and [2] 
has been explicity checked by proving the term-to-term correspondence of the 
coefficients. 

It should also be added that the iteration procedure is best done with 
equation [ 2 ]  rather than with equation [I]. Firstly, r I1 ,  S 2 2  and ~ S J  do Jot 
contain all the c,;s and it is impossible to evaluate all the constants in crystals 
of low symmetry. Secondly, the association of cL and c& with the vibration 
directions is s t rs igh~f~rward in equation [2], while this correspondence is not 
easy in the original Christoffel equation. Thirdly, the off-diagonal term in 
r;j are Comparatively larger than those in c;) . The lowest diagonal term i n  
Til matrix is i",, - 1.436 while the largest off-diagonal tcrnl rl, = - 0.806 in 
units of 10'~ N/$. In the c:j matrix the situation C& - 1.191 and &-0.284 
favours a rapid convergence of the iteration procedure. 



4. APPLICATIGN TO N3C103 

T o  test the validity of  the n m  procedure as we:] a s  to got an 
of the speed of convergence such a calcula!ion was applied to the cubit 
sodium chlorate NaCIOs. T h e  crystal has been investigated by many earlie: 
w o i ~ e r s : ~ - ~ ~ .  Sodium cblorate was chosen because large flawless crystlis 
can be ob!ained For a somparativz investigation and also t o  supplement ocr 
measurement on the  isomorphous sodium hromate2'. 

Single cr)r;tals of NaC103 (8DH Laboratory rzagenL quality), oriented 
along the [loo] and [ [ l l ]  dirzctions were grown by slow evaporation ofthe 
aqueous solntion. From a block of size approximately 40 x 31 x l4mm. 
oriented along the  [ I O ~ ]  axis, a smaller piece was ground t o  a thickness of 
6 82 mm. in order t o  obtain a pair of smooth, flat a n d  parollel faces. inclined 
to all the three n~urual ly  perpeadicular crystallographic directions. The 
inclinations t o  the  crystal axes wcre measured by means'of a n  optical gonio. 
meter correct to  1 minute of arc. Tha specimen used is schematically shoan 
in Figure 1. 

Tho velocities of the quasi-longitudinal and  the two non-degenerate 
quasi-transverse waves were determined by the ultrasonic pulse echo method 
using unrectifred pulses a t  10 MHz. Details of the set up are found 
elsewbere". I n  order to obtain the transverse wave velocities, fi:st the Y a :  

F1a. 1 
kbemalic view of NaClO. used in the study. X: is the direction of elastic wave 

propagation and is inclined at 10655', 11294' and 28*20'resp~tlveIy 
to tba OA, 0 5  and OC axes. X i  is the normal to rhe  PQRS face. 



tr:,r.5du~er was oriented with vibration direction aiong the longer edge of the 
i,ecimen ipxpcndicolar t o  Xi axis, see F:gure I ) .  The transducer was thcri 
:itnted tliiough 90' about  this  direction and the  velocity measured for the  
recard time. Wrrh this information it was possible to complete the direction 

scheme of all x:, Xi a n d  X; axes with respect to XI, Xz aand Xs and 
!he result is shown in  Table I. 

TABLE E 
Ditaction cosiom for Lire Orientation of the plate 

X'1 4 x3 

i -  - - -  -- 

The velocity measurements were made at 2 5 ' ~ .  Taking the density ro he 
fJSj ks/m3, tile values of q, obtained were q, = 1.25,, qz - 1440 a~!d q, -4.55,, 
ir. 10" ?i/mZ. 

The rotaied constants c:j were then expressed i n  terms of q aod the 
inown direction cosines ming the well known expressions7-9. The valiies arc 
given in Table 11. Tho zero order values or r , ~  obtained with equation [_?I 
were c,, -j.!48, c,? .- 1.452 and c ,  = 1.0.18 in units of 10" N/m2. The exact 
zpro order corrzciio-rs e, o b h i n c d  using these values were = - 0.0491, 
6 : -  -0.0119 and e3 - 0.06i 1. The first order r:?!nes of r inst ic  coxislanls were 
rll-4970, clz - 1411 2nd cdq - 1.137 ( x 101° ,V/rn2). The subsequent values 
sf G, were - 0 0387, - d' 0017 and 0 0205 respectively, thz values obtained 
from thc final approximation being - 0.C386, - 0 0012 and 0 0399 for E : ,  cz 

sad c, respectively by which time the  computational precision exceeded the 
rrp-rimenla1 accuracy of n~ezsurement of elastic constants, viz., &0.5% fort,, 
and c4,and & 1% for c,,. Tho  convergence of the elastic constants calculaied 
is shown in figure 2, the  limiting values being c,, -4.990, c1z3 1.45~ i t m f  

hr - l.Up all in I O ' % / ~ '  unirs. 

TABLE 11 
Valscs of thc rotaicd eihsric constants 

c:, in terms of ei j .  
c;3 - 0,6278 c,, + 0.37?0 c,, +0.7440 r4< 

c;,-O.22.l5 e,, -02224 cIZ+U.5109 ce4 
c;, =O.i274 rll - 0.1274 cjz -t 0.7451 rh 

c& = 0.2203 c,, -0.2201 clz + 0.4402 CM 

cis - 0.1614 cl,  - 0 1614 c , ~  + 0.3229 PM 

c:, = 0.0648 cIt -- 0.0618 t 0.1296 r e  



Fza. 2 
Cunviirgen~e oPthc elastw constants 

The present procedure is seen to be sufficiently convergent so as tfi b* 
prac;icable in more complicated crystals. The poiut regarding rhe nbsohtc 
accuracy of the method needed t o  bo settled. This was done in two ways. 

Firstly, velocity along [loo] and [ i l l ]  directions werc measured using 
crys!als grown From tho same batoh of material ; c , ,  an3 r4, were o b r a i d  
from the lo~lpitudinal and shear vriocitizs along [IOD] and c12 was derived @ s  
the mean of the two mcasuremeots along [I  111 (both o f  which y lelded resu!U 
to within 0.01%). 'The values were r , ,  - 4.94,, r lz  -. 1.453 and c-.fO - 1.136 in 
units of 10'' LV!rnZ. 



a!, com3nring with the values deduced from the measurements slang 
3;5,[r61y direc~ions c,? is lsrger by 1% and c44 is less bv about 1%. NOW the 

iii !he direct evaluation of  C,j from [100] and [ L I I ]  dirtcrions a n  of 

,.be 0 5% for clr and r4t and 1% for c,,. The accniacy of the velocity 
rr,essurenents along arbitrary directions is slightly inferiop because of the 
deprra t ion of the echo patteril caused by the  difference in the directions of  
prcplgation of the ultrasonic pulse and the  ulrrasonic energy. In iiew of  
tbij ,  the difference between the sets o r  e,, must be considered within t h e  
r;lc;all accuiecy of the measurements. In other words, the measuremc~~ts 
. , h g  arbitrary directions yield the "true" elastic const:ints when the prcser~t 
iterstion procedure is applied. 

A second m y  of checking t h e  accuracy of the procedure w a s  to 
substitute the values of ell, r12 and r4& in the ChristoEel equation [I] and to 
see if rhe equation was identical!y satisfied. The actual residues with the 
derixd d u e s  of cij were - 0.0009, 0.0000 and - 0.0005 which are entirely 
neglig~hie. 

Final!y, the present iteration procedure has two special features which 
&re of great advantage in the  process of numerical coinputation. Firstly, 
since we are solving the fuli Christoffcl equarlon we must get three real 
veiacities. Thus the roots of equation [6 o] when combined ~ i t h  cis yield the 
same three velocities as  the sum of & and the three roots of equation t6.63 
a a ?  the three suixs of c;3 with the three roots of equation :6 c]. To give an 
t\am?le iii the fiist older correction procrss the thrre roots are: a1 - 0  1761, 
-0.049! and 3 361 1 ; sz  = - 0 0119, - 0 2371 aild 3.1731 and el = - 3 1239, 
- 3 349! and 0 0611. Their combination with the zero order values c;, - 
1'25.'a, c;4 - 1.44Co and ci3 - 4.552,  yield only three distinct velocities. 1.418,, 
!.XU, 2nd 4 613, thereby effording a constant check on the numerical calcu- 
lations. Secondly, the trace of the determinant (2) is invarislnt and so the 
sum (c& + E& + c g 3 )  must be a constant in any step of approxim3:ion. In 
effect, this means that with the correct choice oft-, ,  r2 and e3 the sum 
(st i- c2 + t3) milst be zero: The vanishing of the sum can be checked from 
the numerical values given earlier for q in the various orders of  spproxi- 
mnlions. In linearizing the cu bic equations [ 5 ]  to get theapproximatc values of  
E., These two advantages are lost. 
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