THERMODYNAMIC PROPERTIES OF CHLOROFORM

BY SESHADRI, D. N., VISWANATH, D. S. AND KULOOR, N. R.

(Department of Chemical Engineering, Indian Institute of Science, Bangalore-12, India)

[Received: January 30, 1968]

ABSTRACT

Thermodynamic properties of chloroform have been evaluated up to a temperature of 750°K and a pressure of 200 atmospheres, using Martin and Hou equation of state. Tables of thermodynamic properties and a temperature entropy diagram are presented.

LITERATURE SURVEY

(1) Molecular Weight and Crivical Constants:

The data on the critical constants of chloroform determined by various investigators are presented in Table-1.

Year	Investigator	Т., °К	Pc, atm.	d _c gm./c.c.	Method	Rc ference
1878	Sajotchewsky	533.16	54.9		a	20
1895	Pictet and Altschul	531.96			а	17
1902	Kuenen and Robson	535.06	53.8		а	12
1923	Herz and Neukirch	535.66	61	0.496	a, b	10
1934	Harand	536.66			a	9
1943	Fischer and Reichel	536.76			с	6
/alues	selected	536 71	54.0	0.50		

TABLE 1 Molecular weight and critical constants of chloroform

b - law of rectilinear diameter.

c - disappearance of the droplets after the meniscus has broadened.

In the above table, the data prior to 1900 are included for historical completeness only. Chloroform used by Kuenen and Robson¹² was prepared from chlorol and was carefully dried with calcium chloride.

Herz and Neukirch¹⁰ have not stated the purity of chloroform used in their investigation. However, the accuracy of the temperature determinations is stated to be $\pm 0.2^{\circ}$ C.

Though Harand⁹, and Fischer and Reichel⁵ did not state the purity of the sample, they have done careful work. The value for the critical temperature determined by Harand, and Fischer and Reichel agree very closely. Hence the values are averaged and this value has been used for the present investigation.

The critical pressure and density are not known to a great degree of accuracy. Hence the values were rounded off to two significant digits and were used for this work.

2. Vapour Pressure:

The vapour pressure of chloroform has been determined by various investigators like Beckmann and Liesche¹, Drucker *et al*⁵, Herz and Rathmann⁶, Scatchard and Raymonds²¹, Kuenen and Robson¹⁸, Rex¹⁹. and Schmidt^{22, 23}. Stull²⁷ has made a critical compilation of the vapour pressure of chloroform up to the critical point. Data up to a temperature of 433°K are available in the International Critical Tables³³. The available vapour pressure data along with the range of availability are presented in Table-2.

Kuenen and Robson¹² dried chloroform carefully with calcium chloride, but they were unable to reduce the action of chloroform on mercury (which takes place at high temperatures). They did not mention the accuracy of the vapour pressure data. Beckmann and Liesche¹ have not mentioned the method of preparation of chloroform and the accuracy of their vapour pressure determinations.

Year	Investigator	Range of temperature, °K	Range of pressure, atm.	Reference
1902	Kuenen and Robson	517.7 - 536 2	42 7 - 54 6	12
1912	Herz and Rathmann	300 2 - 334.2	0.29 - 1.0	11
1914	Beckmann and Liesche	291.2 - 343.2	0.2 - 1.4	1
1915	Drucker et al.	209.0 - 262 9	0.0 - 0.04	5
1916	Rex	273.2 - 303.2	0.08 - 0.32	19
1921	Schmidt	293.2 - 373 2	0.22 - 3.2	22
1926	Schmidt	273.2 - 303.2	0.08 - 3.2	23
1928	International Critical			
	Tables	213.2 - 433.2	0.0 - 11.6	33
1938	Scatchard and Raymonds	308.2 - 333.2	0.3 - 0.96	21
1947	Stull	215.0 - 536.2	0.0 - 54	27

TABLE 2

F.

The vapour pressure data of chloroform determined by Drucker *et al*⁵, pertain to pressures up to 0.04 atm. Though the purity of the sample used is not reported, the errors in the pressure measurements are stated to be around 0.001 mm. However, as this work does not encompass such a low pressure, the data of Drucket *et al.* have not been used for this investigation.

Rex¹⁹ used the Merck A. R. quality chloroform. The sample was carefully fractionated, then shaken with concentrated sulfuric acid, and finally with distilled water, and dried. The accuracy of the vapour pressure data is not presented.

Schmidu^{22, 23} also did not state the purity of the chloroform used except to state that the sample was subjected to careful drying and fractional distillation. The accuracy of the data is not mentioned.

Scatchard and Raymonds²¹ did not mention the purity of the sample used. The errors in the measurement of pressure are stated to be less than 0.05 mm.

For this investigation all the available vapour pressure data were combined and smoothened. The smoothened vapour pressure data have been used for this investigation.

The vapour pressure data over a temperature range of 275° K to 340° K, which covers a pressure range up to 1.2 atmospheres, were fitted by the method of least squares, to the equation:

$$\log P = A + B/T + C \log T + DT$$

where A = -29.593966 B = -1025.8492 C = 14.881037 $D = -1.4702661 \times 10^{-2}$.

This equation was found to predict vapour pressures with average absolute and maximum deviations of 0.75% and 1.43% respectively.

The vapour pressure data over the temperature range of 340° K to the critical point which covers a range of pressure of 1.2 atmospheres to 54 atmospheres was fitted to the equation :

$$\log P = A_1 + B_1 / T + C_1 \log T + D T$$
[2]

where $A_1 = 14\ 0880803$

 $B_1 = -1958.5807$ $C_1 = -3.3974131$ $D_1 = 1.06028811 \times 10^{-3}$

The average absolute and maximum deviations of vapour pressures evaluated using this equation are 0.58% and 1.52% respectively.

182 SESHADRI, D. N., VISWANATH D. S., AND KULOOR, N. R.

3. Saturated Liquid and Vapour Densities :

The density of saturated liquid has been determined by Morgan and Lowry¹⁶, Schulze²⁶, Smyth and Morgan²⁵, Coop³, Thorpe²⁸, and by Herz and Neukirch¹⁰. The range of available liquid densities of various investigates is presented in Table-3.

TABLE	-3
-------	----

Year	Investigator	Range of temperature, °K	Reference
1880	Thorpe	273 - 334	28
1921	Schulze	278 - 299	24
1923	Herz and Neukirch	506 - 536	10
1928	Morgan and Lowry	213 - 333	16
1928	Smyth and Morgan	203 - 333	25
1937	Coop	193 - 293	3

Saturated liquid densities of chloroform

Thorpe²⁸ determined the density of saturated liquid up to the boiling point. Though the accuracy of the data is not mentioned his data agree very closely with those of Smyth and Morgan and Morgan and Lowry, who claim their volumes to be determined with a precision of 1 part in 160,000.

Ramsay and As'on¹⁸ have presented some data on the liquid density of chloroform. These values are stated to be those of Thorpe.

 Coop^3 did not mention the purity of the sample and the accuracy of the data.

Liquid density at high temperatures have been determined by Herz and Neukirch⁶. The sample of chloroform used by these investigators was from Kahlbaum and was parified by drying over calcium chloride and carefully fractionated. The accuracy of the density data has not been mentioned.

Herz and Neukirch¹⁰ have also determined saturated vapour densities of chloroform over a temperature range of 482 to 536°K.

The vapour densities over a temperature range of 285° K to 430° K were evaluated using Martin and Hou equation (Equation 5). For this investigation the saturated liquid densities of Thorpe, Herz and Neukirch, Morgan and Lewry and Smyth and Morgan, the vapour densities of Herz and Neukirch and the calculated vapour densities were combined and a smooth curve was drawn. The densities of saturated liquid wherever not available (over the temperature range of 330°K to 500°K) were evaluated from the smooth curve taking into consideration the observance of the law of rectilinear diameters.

(4) Heat Capacity of the Saturated Liquid :

The heat capacity of saturated liquid has been determined by Williams and Daniels³¹ over a large of temperature of $295 - 319^{\circ}$ K, by Dolezalek and Schulze⁶ over a temperature range of $223 - 293^{\circ}$ K and by Staveley et al.²⁶ over a temperature range of $284 - 329^{\circ}$ K. The extent of purity of the samples used is not reported by these investigators. However Stavely et al.²⁶ claim their data to be accurate to $\pm 1\%$.

For this investigation the heat capacity data of all the investigators were combined, smoothened, and were used. The smoothened data agree with the actual values within 1%.

(5) Heat of Vaporization:

Latent heat of vaporization of chloroform has been experimentally determined by the calorimetric method over a range of temperature of $273 - 314^{\circ}$ K by Fletcher and Tyrer⁷. The values are claimed to be accurate to within ± 0.1 cal/gm Heats of vaporization at the boiling point have also been determined by Marshall¹³, Mathews¹⁵, Writz³² and by Tyrer²⁹ The data of Mathews¹⁵ is in very good agreement with that of Fletcher and Tyrer⁷. The samples used by Mathews¹⁵ were checked for purity against density and refractive index at 20°C and by determining the normal boiling point. The samples used by Tyrer²⁹ and Marshall¹³ were fractionated and the purity of the sample was checked by the density and the boiling point. The data of Fletcher and Tyrer⁷ at the normal boiling point is about 1% higher than that of Tyrer and 2% higher than those of Marshall and Mathews. The smoothened data of all the investigators were used for this work.

Heat of vaporization calculated by Clausius-Clapeyron equation namely,

$$\Delta H_{e} = \frac{dP/dT}{T(V_{g} - V_{1})}$$
^[3]

agrees with the smoothened data with maximum and average absolute deviations of 1.5% and 0.5% respectively.

Heat of vaporization above a temperature of 330°K was evaluated using the Clausius-Clapeyron equation.

(6) Heat Capacity of the Ideal Gas:

Heat capacity of ideal gas have been evaluated by Vold³⁰ up to a temperature of 500° K and by Gelles and Pitzer⁸ up to a temperature of 1500° K. The data of Vold³⁰ are stated to be accurate to 97%. The data of Gelles and Pitzer⁸ are more recent and extend to a large temperature range. Hence, the data of Gelles and Pitzer were gitted by the method of least squares to the equation,

$$C_{p}^{*} = a + bT + cT^{2} + dT^{3}$$
^[4]

where a = 7.1033 $b = 3.6969 \times 10^{-2}$ $c = -2.9613 \times 10^{-5}$ $d = 8.4214 \times 10^{-9}$

over a temperature range of 250 - 1500°K.

Equation [4] fits the data with maximum and average absolute deviations of 1.1% and 0.43% respectively. For this work Equation [4] with the constants as given above is used.

CALCULATION OF THERMODYNAMIC PROPERTIES

For the calculation of thermodynamic properties Martin and ${\rm H}_{\rm OU}$ equation of state, namely,

$$P = \frac{RT}{(V-b_0)} + \frac{A_2 + B_2 T + C_2 \exp(-KT/T_c)}{(V-b_0)^2} + \frac{A_3 + B_3 T + C_3 \exp(-KT/T_c)}{(V-b_0)^3} + \frac{A_4}{(V-b_0)^4} + \frac{B_5 T + C_5 \exp(-KT/T_c)}{(V-b_0)^5}$$
[3]

with K = 5.475 has been used.

The constants evaluated by the method outlined by the authors¹⁴ are:

$$b_0 = 6.054802 \times 10^{-2}$$

$$A_2 = -21.5847159$$

$$B_2 = 1.31856963 \times 10^{-2}$$

$$C_2 = 30.306821$$

$$A_3 = 3.17370469$$

$$B_3 = -1.4828215 \times 10^{-3}$$

$$C_3 = 5.4014024$$

$$A_4 = -1.93684745 \times 10^{-1}$$

$$B_5 = -1.19430307 \times 10^{-5}$$

In the range of available data Equation [5] was found to predict pressures with average absolute and maximum deviations of 1.27% and 2.70%respectively.

Specific volumes of saturated and superheated vapour were calculated using Equation [5] by making use of Newton-Raphson iterative method on an IBM 1620 digital computer, for various temperatures and pressures.

Entropy and Enthalpy of the Superheated Vapour :

Considering the entropy and enthalpy to be functions of volume and temperature, we have,

$$dS = (\partial S/\partial T)_{\mathcal{V}} dT + (\partial S/\partial V)_{T} dV$$
[6]

Using Maxwell's relations, we obtain,

$$d\mathcal{L} = (C_{\nu}^{*}/T) dT + (\partial P/\partial T)_{\nu} dV \qquad [7]$$

Using
$$dH = TdS + VdP$$
 in Equation [7] we obtain
 $dH = C_{\nu}^{*} dT + T(\Im P/\Im T)_{\nu} dV + VdP$
 $= C_{\nu}^{*} dT + d(PV) - PdV + T(\Im P/\Im T)_{\nu} dV$ [8]

From Equation [5] we have

$$(dP/dT)_{V} = \frac{R}{(V-b_{0})} + \frac{B_{2} - (K/T_{c}) C_{2} \exp(-KT/T_{c})}{(V-b_{0})^{2}} + \frac{B_{3} - (K/T_{c}) C_{3} \exp(-KT/T_{c})}{(V-b_{0})^{3}} + \frac{B_{5} + C_{5} (K/T_{c}) \exp(-KT/T_{c})}{(V-b_{0})^{5}}$$
[9]

Using Equations [7] and [8],

$$S = \int \left(C_{\nu}^* / T \right) dT + \int \left(\partial P / \partial T \right)_{\nu} dV \qquad [10]$$

and

$$H = \int \left(C_{\nu}^{*} \right) dT + \int T \left(\partial P / \partial T \right)_{\nu} d\nu - \int P J \nu + P \nu$$
 [11]

Using Equations [4] and [9] in the above equations and carrying out the integration, we obtain expressions for entropy and enthalpy as:

$$S = (a - R) \ln T + bT + (c/2)T^{2} + (d/3)T^{3} + R \ln (V - b_{0})$$

$$- \frac{B_{2}}{(V - b_{0})} - \frac{B_{3}}{2(V - b_{0})^{2}} - \frac{B_{5}}{4(V - b_{0})^{4}}$$

$$+ \left[\frac{C_{2}}{(V - b_{0})} + \frac{C_{3}}{2(V - b_{0})^{2}} + \frac{C_{5}}{4(V - b_{0})^{4}} \right] (K/T_{c}) \exp \left(- KT/T_{c} \right) + C_{5} \quad [12]$$
and
$$H = (a - R) T + (b/2) T^{2} + (c/3) T^{5} + (d/4) T^{4}$$

$$+ \frac{A_{2} + (1 + KT/T_{c}) C_{2} \exp \left(- KT/T_{c} \right)}{(V - b_{0})} + \frac{A_{3} + (1 + KT/T_{c}) C_{3} \exp \left(- KT/T_{c} \right)}{(V - b_{0})^{4}}$$

+
$$\frac{A_4}{3(V-b_0)^3}$$
 + $\frac{(1+KT/T_c)C_5\exp(-KT/T_c)}{4(V-b_0)^4}$ + $PV - RT + C_H$ [13]

Link and

where C_S and C_H are the constants of integration.

Reference State :

The choice of the reference state depends on the convenience and the information available. The values of the constants of integration are dependent on the reference state chosen. Further, the reference state chosen should facilitate easy comparison and utilization of the tabulated data.

As has been pointed out by Canjar and Manning², the choice of the reference state as H=0 and S+R ln P=0 for elements at absolute zero of temperature and at zero pressure would be applicable not only for pure substances but also for a mixture of pure sustances that undergo a chemical reaction. But it is necessary to have a knowledge of the heat of formation of the compound. In the present work as the heats of formation were available, the reference state H=0 and S+R ln P=0 for elements at absolute zero of temperature and at zero pressure has been used.

Entropy value at the normal boiling point was evaluated using the ideal gas thermodynamic properties and the Berthelot correction. Enthalpy at the normal boiling point was evaluated by making use of the value of -22.8 K cal./mole for ΔH_0^2 , the heat of formation at 0°K, the ideal gas thermodynamic properties and the Berthelot correction for enthalpy. The integration constants C_S and C_H were evaluated using the values of entropy and enthalpy at the normal boiling point. The values thus evaluated are:

$$C_{S} = 25.30 \text{ cal./mole}^{\circ} \text{K}$$

 $C_{H} = -22915 \text{ cal./mole}.$

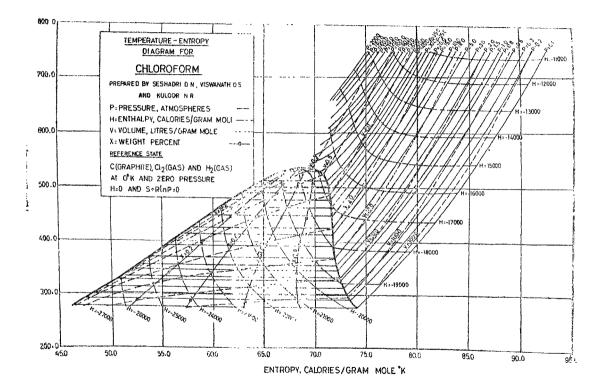
Entropy and enthalpy of the superheated vapour were evaluated by making use of the calculated specific volume in Equation [1.] and [13].

Entropy and enthalpy of saturated vapour were evaluated by using the the experimental specific volumes in Equations [12] and [13]. Wherever the experimental data were not available these were calculated using Equation [5] and were used.

Entropy and Enthalpy of the Saturated Liquid :

The entropy of vaporization is related to the heat of vaporization by the relation

$$\Delta H_{\nu} = T \Delta S_{\nu}$$
^[11]


The entropy and enthalpy of the saturated liquid were calculated using the equations

$$S_1 = S_g - \Delta S_q \tag{15}$$

. .

$$H_1 = H_g - \triangle H_v$$
[16]

The properties of saturated and superheated chloroform are presented in Tables 5 and 6 and in graphical form as Figure. 1.

INTERNAL CONSISTENCY OF THE TABULATED RESULTS

The relation dH = TdS + VdP may be used to check the internal consistency of the entropy and enthalpy values.

At constant pressure,

$$dH = TdS$$
 [17]

Hence, dH = d(TS) - SdT from which

$$H)_{i}^{2} = T_{2}S_{2} - T_{1}S_{i} - \int_{1}^{2} SdT$$
 [18]

Internal consistency checks were made for superheated region by using Equation [18]. The definite integral in Equation [18] was evaluated by Simpson's rule. Table 4 gives the comparison of calculated and tabulated values of changes of enthalpy Δ H for 6 isobars.

Isobar aim.	Range of temp. °K	△H.alc.	AH Tables	% Deviation
Ű. 1	270 - 750	9136 0	9147	0 120
1,0	310 ~ 750	8219.7	8217	0 033
10 0	430 - 750	6602.2	6606	0.058
50.0	530 - 750	6518,2	6515	0 04 9
100.0	610 - 750	4147.2	4149	0 043
200.0	670 - 750	2248.0	22 54	0.266

TABLE 4

NOMENCLAI	URE
-----------	-----

A, B, C, D,	- Constants in Equation [1].
A_1, B_1, C_1, D_1	- Constants in Equation [2].
a, b, c, d,	- Constants in Equation [4].
$b_0, A_2, B_2, C_2,$	
A3, B3 C3, A4.	- Constants in Equation [5]
B ₅ , C ₅ , K	
C _p	- Heat capacity at constant pressure, cal /gm. mole °K.
C ,	- Heat capacity at constant volume, cal./gm mole °K.
C_{S}, C_{H}	- Constants of integration in Equations [12] and [13] respectively.

H	- Enthalpy, cal /gm. mole.
p	- Presšure, atmospheres.
P	- Gas constant. liter atm/gm. mole $^{o_{K}^{i}}$.
s	- Entropy, cal./gm. mole °K.
T	- Temperature, °K.
F.	- Specific volume, litres/gm. mole.
$\wedge H_0^0$	- Heat of formation at 0°K, cals./gm. mole;
ΔH	- Enthalpy of vaporization, cals./gm mole.
ΔS_r	-Entropy of vaporization, cals /gm. mole °K.
Superscript:	
4	- Properties at zero pressure or ideal gaseous state,
Subscripts :	
с	- Critical point.
g	- Gas or vapour.
Ĩ	– Liquid
	-

- p Pressure
- T Temperature
- v Volume.

			Ηζ	- 19743	– 19667 –	- 19515	- 19351	- 19206	- 19050	- 18894	- 18738	- 18581	- 18426	-18.72	- 18120	- 17969	- 17821	17675	-17534	1
			ΑH,	6177	7697	7613	7509	7390	7264	7148	7045	6944	6840	6738	6623	6494	6356	6203	6035	
			Ηι	- 27462	-27364	- 27128	- 26860	- 26596	26314	- 26042	- 25783	- 25525	- 25266	- 25010	- 24742	- 24463	- 24177	- 23878	- 23569	
		d Vapour	Se	74.16	73.95	73.54	73.21	72.93	72.69	72.49	72.31	72.15	72.02	71.93	71.86	71.80	71.77	71.75	71.73	
CHLOROFORM	TABLE 5	Proparties of Saturated Liquid and Vapour	ъ Sp	28.07	27.49	26.25	25.03	23.84	22.70	21.66	20.72	19.84	19.00	18.21	17.43	16 65	15.89	1513	14 37	
CHLOR	TAB	s of Saturate	Sı	46.09	46.46	47 29	48.18	49.09	49.99	50.83	51.59	52.31	53.02	53.72	54.43	55.15	55.88	56.62	57.36	
		Propartie	٧ _e	252.3	201.8	129.7	85.02	58 91	42.76	30.78	22.68	16 81	12.80	9.864	7.796	6.280	5,073	4.1/1	3 437	7
			V _l	0.07831	0.07880	0 07987	0.08091	0.08197	0.08299	0.08410	9.08540	0.08681	C.08818	0.08969	6.09132	0.09311	0.09488	r.09681	C 09811	:
		a de la versa d	P Atm.	0.08921	0.1138	0.1836	0.2895	0.4296	0.6118	0.8678	1.208	1.660	2.226	2.940	3.780	4.760	5.960	7.320	8.940	1
			Х°Т	275.0	280.0	290.0	300.0	310.0	320 0	330.0	340.0	350.0	360.0	370.0	380,0	390.0	400.0	410.0	420.0	-

190 SESHADRI, D. N., VISWANATH, D. S. AND KULOOR, N. R.

Т°К	P atm.	۲ı	۲ <i>°</i>	Sl	^S ^p	S _e	Η	۵Hø	Hg
430.0	10,83	0.1013	2,831	58.10	13.61	71.71	- 23250	5852	- 17 - 98
440 0	13.22	0.1040	2.326	58.87	12.81	211.68	- 22902	5636	- 17266
450.0	1580	0.1068	1.934	59.67	11.97	71.64	-22540	5387	- 17153
460 0	18 55	0.1099	1 630	60.45	11.14	71.59	- 22174	5124	- 17050
470 0	21.90	0.1135	1.363	61.20	10 32	71 52	-2,810	4850	- 16960
480.0	25 66	01170	1.148	62 00	9.46	71.46	- 21439	4541	- 16898
490.0	29.78	0.1212	0.9547	62.80	8 59	71.39	- 210:8	4209	- 16829
500.0	34.21	0 1264	0 8039	63.62	7.68	71.30	- 20616	3840	- 16776
505.0	36.58	0.1292	0.7373	64.04	7.20	71.24	- 20398	3636	- 16762
510.0	39 02	0.1332	0 6740	64.47	6.71	71.18	- 20170	3422	- 16748
515.0	41.52	0.1370	0.6154	64 91	6,18	71.09	19936	3183	- 16753
520.0	44.10	0.1424	0.5580	65.40	5.58	70.98	- 19665	2902	- 16763
525.0	46 81	0.1484	0.4985	65 92	4.89	70.81	- 19367	2567	- 16800
530.0	49.78	0.1585	0 4285	66.57	3.93	70.50	- 19004	2083	- 16921
535.0	52.82	0,1818	0.3133	67.55	1.99	69.54	- 18401	1063	- 17336
536.6	54.00	0.2388	0.2388	68.35	0.00	68.35	- 17826	0.00	- 17876

Thermodynamic Properties of Chloroform

				ha n	^s roperties of	Superheated	Froperties of Superheated Chloroform		fessure range	Pressure ranke : 010 to 4 00 of the	a state
1	P Atms.	0.10	0.20	0.30	0.50	0.80	1.00	1.50	2.00	3.00	5.00
	> Ħ ∞	229.1 - 19687 74.29		-						- 	
300.0	∧ H S	245.6 - 19376 75.36	122.5 - 19379 73.98	81.45 - 19382 73.17							
	N H S	262.0 - 19057 76.39	130.7 19060 75.01	86.96 - 19063 74.20	51.95 - 19069 73.17	32.26 - 19077 72.22					
	N H S	278 5 18729 77.39	139.0 18732 76.01	92.47 	55.27 18740 74.18	34.35 - 18748 73.23	27.37 - 18754 72.78	18.07 - 18769 71.95			
	N H S	294.9 18394 78.34	147.2 - 18396 76 96	97.98 18399 76.15	58.59 18404 75,13	36,44 18412 74,18	29.05 - 18418 73.73	19.20 - 18432 72.91	14 27 		
	H S	311 4 18051 79.27	155.4 - 18053 77 89	103 5 - 18056 77.08	61.91 - 18061 76.06	38 52 	30 72 18074 74.66	20.33 18087 73.84	15.13 18100 73.25	9.924 18127 72.40	

YABLE 6

			4	:				Pro	Pressure Range	0.10 to 5 00	0 atms.
T"K	P Atms.	is. 010	0.20	0.30	0.50	0.80	1.00	1.50	2.00	3.00	2 00 5
	٨	327.8	163.7	0 601	65.22	40 60	32.40	21.45	15 98	10 50	6.116
400.0	H	- 17700	- 17703	-17705	-17710	- 17718	- 17722	- 17735	- 17748	- 17773	-17827
	ŝ	8() 17	78.79	36.17	76.96	76.02	75.57	74.74	74.15	73.31	72.22
	Λ	344.2	6 1/1	1145	68 53	42.68	34.07	22.58	16.83	11.08	5.934
420.0	Ħ	- 17342	- 17345	- 17347	- 17352	-17359	- 17363	- 17375	- 17387	- 17412	-17462
	s	81.04	79.66	78 85	77.83	76.89	76.44	75.62	75 03	74.19	73.10
	2	360.7	180.2	120 0	71.84	44.76	35 73	23.70	17.68	11.66	6 298
440,0	Н	- 16979	- 16981	- 16984	- 16988	- 16995	- 16999	- 17011	- 17022	- 17045	- 17093
	ŝ	81.89	80.51	19.71	78.68	77.74	77.29	76.47	75.88	75.05	73.97
	Δ	377.1	188.4	1:5.5	75 14	46 84	37.40	24.82	18.52	12 23	6 657
460.0	Н	- 16608	- 16610	- 16612	- 16617	- 16623	- 16627	- 16638	- 16645	- 16671	- 16716
	ŝ	82.71	81.33	80.52	79.50	78.56	78.11	77.29	76.71	75.87	74.80
	۸	393 5	196.6	131 0	78.45	48.91	39.06	25 93	19.37	12.80	7 014
480.0	피	- 16232	- 16234	- 16236	- 16240	- 16246	- 16250	- 16261	- 16271	- 16292	210.4
	ŝ	83.52	82.14	81.33	80.31	79.37	78.92	78 10	77.52	76.68	75.61
	٨.	410.0	204.8	136.5	81.75	50.98	40.72	27.05	10 00	13 27	020 4
500.0	Ξď	- 15850	- 15852	- 15854	- 15858	- 15864	- 15867	- 15877	- 15887	- 15907	- 15948
	'n	84 30	82.92	82.11	81.09	80.15	79.70	78.89	78.30	77.47	76.40
	ł	Service and the service of the servi	The second se								

Thermodynamic Properties of Chloroform

TABLE 6--(contd)

	ļ		ord an ann an Anna an Anna an Anna an Anna	a de la companya de la			Î	<u>, 14</u>	Pressure Range :	3e: 0.10 to 5	0.10 to 5.00 atma.
NoL	P atms.	ns. 010	0.20	0.30	0.50	0.80	1.00	1.50	2.00	3.00	5.00
520.0	N H S	426.4 - 15463 85 60	208.9 15465 83.68	141.9 	85.05 - 15470 81 85	53 05 - 15476 80.91	42.38 - 15480 80.46	28.16 - 15489 79.65	21.05 - 15498 79.06	13.94 - 15518 78.23	8.245 - 15556 77 17
540.0	ΝΗS	442.8 15070 85.79	217 2 - 15072 84.41	147.4 15073 83.61	88.35 - 15077 82.59	55.12 15082 81.65	44 04 15086 81.20	29,27 - 15095 80.38	21.89 - 15104 79.80	14.50 - 15122 78.97	8.593 - 15159 77.01
560.0	N H S	459.3 - 14672 86.51	225.4 14673 85.14	152.9 14675 84.33	91.65 - 14679 83.31	57.19 - 14684 82.37	45.70 - 14687 81.92	30 39 14696 81.11	22.73 - 14704 80.53	15.07 - 14722 79.70	8 939 - 14757 78 6A
580.0	νHS	475.7 - 14270 87.22	237.7 - 14271 85 85	158.4 14273 85.04	94.95 - 14276 84 02	59.26 - 14281 83.03	47.36 14284 82.63	31.50 - 14293 81.82	23.56 	15.63 - 14317 80.41	9.284
600.0	> H S	492.1 13843 87.91	245.9 - 13864 86.53	163 9 13866 85.73	98 25 + 13869 84.71	61.32 - 13874 83.77	49 01 - 13877 83.32	32.60 	24 40 - 13892 81.93	16 19 	9 627 - 13941 - 13941
620.0	> H S	508.5 - 13451 88.58	254 2 - 13453 87.21	169 4 	101 5 - 13458 85 38	63 39 13462 84 44	50.67 - 13465 84.00	33.71 - 13473 83.18	25 23 	16.75 	9 970 - 13526
					A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PROPERTY AND A REAL PRO				1	2	

TABLE 6-(contd.)

194

SESHADRI, D. N., VISWANATH, D. S. AND KULOOR, N. R.

į	1			1			ĺ,	Pres	Pressure Range :	0.10 to 5.00 atms.	atms.
Ya.L	P atms,	. 0.10	0.20	0.30	0.50	0.80	1.00	1 50	2.00	3 00	\$ 00
	٨	525.0	262.4	1749	1048	65.45	52.32	34 82	26.07	17.31	10.31
640.0	Н	- 13036	- 13038	- 1303	- 13042	- 13047	- 13049	- 13057	- 13064	- 13078	- 13108
	S	89,25	81.87	87.06	86 05	85.11	84.66	83.85	83.27	82.45	81,40
	٨	541.4	270.6	180.3	108.1	67.52	53.98	35 93	26 90	17.87	10.65
660.0	Н	- 12618	-12620	- 12621	- 12624	- 12628	-12631	- 12638	- 12645	- 12659	- 12f 87
	S	89.89	88.51	17.78	86.69	85 75	85.30	84.49	83 91	83.09	82.05
	Λ	557 8	278.8	185.8	111.4	69,58	55.63	37 03	27.73	1843	10.99
680.0	Н	- 12195	- 12197	- 12198	- 12201	- 12205	-12207	- 12214	- 12221	- 12234	- 12261
	S	90.52	89 14	88.34	87.32	86.38	85.93	85.12	84.54	83 72	82 68
	٨	574.2	287.0	191.3	114.7	71.64	57.28	38.14	28 56	18 99	11,33
700.0	Н	-11770	- 11771	- 11773	- 11775	- 11779	- 11782	- 11788	- 11795	- 11807	- 11833
	s	91.14	89.76	88.95	87.94	87.00	86.55	85.74	85.16	84.34	83.30
	>	9 06 5	2953	196.8	118.0	73.70	58.93	39.24	29.39	19.55	11.67
720.0	Η	- 11341	- 11342	- 11344	- 11346	- 11350	- 11352	- 11358	- 11365	- 11377	- 11402
	ŝ	91.74	90.37	89.56	88 54	87.58	87.16	86.35	85.77	84 95	83.91
	٨	615.3	307.6	205 0	123 0	76.80	61 41	40.90	30.64	20.38	12.18
750.0	H	- 10692	- 10693	- 10694	-10697	-10700	-10703	- 10708	- 10714	- 10726	-10749
	so a	92.62	91.25	90.44	89.42	88.46	88.04	87.23	86 65	85.84	84.80

TAPLE 6-(conid)

Thermodynamic Properties of Chloroform

									Pice	Pressure Range: 8.0 to 200.0 atms.	8.0 to 20	0.0 atms.
ToK	P Atms.		8.0 %	10.0	15.0	20.0	30.0	50.0	80.0	100.0	150.0	200,0
420.0	V H S	3.877 - 17544 72.04	1	3.004 - 17603 71.51								
440,0	V H S	4 116 - 17170 72.92	16 70 92	3.204 - 17224 72.40	1 972 - 17375 70.61							
460 0	N H S	4 351 - 16788 73.76	51 88 76	3.400 16839 73.25	2.121 - 16977 71.52	1.463 - 17139 71.43						
480,0	N H S	4.583 - 16403 74.59	83 59 59	3.593 - 16450 74 08	2.264 - 16577 73.10	1.587 16722 72.32						
500 0	N H S	4 812 - 16012 75.39	12 39 .	3.782 - 16056 74.89	2.402 - 16174 73.93	1.704 - 16305 73.17	0.9764 16632 71.89					
520.0	γHS	5.040 - 15617 76.16		3 970 - 15658 75.67	2.538 - 15768 74.72	1.815 15888 73 99	1.075 - 36172 72.79					

TABLE 6--(contd.)

P Atms. 80 10.0 1.50 20.0 30.0 50.0 80.0 H -15216 -15556 -15558 -15558 -15526 -15553 80.0 80.0 V 5.265 4.155 2.670 1.923 1.164 0.4859 V 5.265 -15556 -15558 -15549 73.64 71.40 V 5.710 76.42 75.49 74.78 73.64 71.40 Y 5.7705 77.16 76.24 75.54 74.40 72.56 Y 5.7712 4.520 2.929 2.131 1.327 0.6670 0.32 Y 5.772 74.40 72.56 73.69 -1578 -15911 Y 5.93 4.701 75.54 74.40 72.56 70.35 Y 5.93 -14438 -14529 -14836 -15369 -167 Y 5.93 76.29 76.29 75.22 73.52 70.75						T V BY	1 VBEE 0 (CONTA.)	a.)	Press	Pressure Range:	8.0 to 200.0 atms.	0 atms.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	T°K	P Atm		10,0	1.50	20.0	30.0	50.0	80.0	0.001	150.0	200.0
H -15216 -15726 -15723 -15722 -16553 S 76.91 76.42 75.49 74.78 73.64 71.40 H -14811 -14848 -15734 -15732 -16553 Y 5.489 4.338 2.801 2.029 11.248 0.5867 H -14811 -14848 -15048 -15278 -15911 S 77.65 77.24 75.54 74.40 72.56 V 5.712 4.520 2929 2.131 1.327 0.6650 0.2577 H -14403 -14438 -14529 -14435 -15767 0.3280 Y 5.933 4.701 3.056 2.332 14.403 -15767 0.3280 Y 5.933 4.701 3.056 2.332 14.403 -15369 -16749 Y 5.933 4.701 3.056 2.332 14.433		>	5.265	4.155	2 670	1.923	1.164	0.4859				
S 76.91 76.42 75.49 74.78 73.64 71.40 H -14811 -14848 -15048 -15278 0.5867 H -14811 -14848 -15048 -15278 0.5867 Y 5.7765 77.46 75.24 75.54 74.40 72.56 Y 5.712 4.520 2929 2.131 1.327 0.6650 0.2577 H -14403 -14529 -15048 -1556 72.56 70.61 Y 5.712 4.520 2929 2.131 1.327 0.6650 0.2577 H -14403 -14529 -14625 -14836 -15767 0.3280 V 5.933 4.701 3.056 2.332 1.403 0.7267 0.3280 H -19390 -144023 -14110 -14200 -14361 -15367 0.5369 Y 6.1537 7.403 7	40.0	Н	- 15216	- 15256	-15358	- 15469	- 15722	- 16553				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ŝ	16'91	76.42	75 49	74.78	73 64	71.40				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		٨	5 489	4 338	2.801	2.029	1.248	0.5867				
S 77 65 77.16 76.24 75.54 74.40 72.56 H -14403 -14438 -14529 -14655 -14836 -1569 -16749 S 78.37 77 78.37 77.88 76.97 76.29 75.21 1.3569 -16749 S 78.37 77 78 76.97 76.29 75.22 73.52 70.61 Y 5.933 4.701 3.056 2.332 1.403 0.7267 0.3280 H -113990 -14623 -14110 -14300 -14361 -15887 Y 5.933 4.701 3.056 2.332 1.403 0.7267 0.3280 H -113990 -14023 -14110 -14320 -14361 -15887 Y 6.153 4.880 3.188 77.00 74.359 -14361 -15887 Y 6.153 4.880 3.182 2.331 1.477 0.7853 0.3869 H	60.09	Н	- 14811	- 14848	- 14945	- 15048	- 15278	- 15911				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ŝ	77 65	77.16	76.24	75.54	74,40	72.56				
H -14403 -14438 -14529 -14625 -14836 -15369 -16749 S 78.37 7788 76.97 76.29 75.22 73.52 70.61 V 5.933 4.701 3.056 2.332 1.403 0.7267 0.3280 H -11990 -144023 -14110 -14200 -14304 0.7267 0.3280 H -113990 -144023 -14110 -14200 -143661 -15887 N 6.153 4.880 3.182 2.331 1.477 0.7853 0.3869 H -13573 -13687 -13312 -14333 -14511 -15196 V 6.153 4.880 3.182 2.331 1.477 0.7853 0.3869 H -13567 -13367 -133637 -14333 -14371 -15196 V 6.1573 78.37 77.711 76.69 75.18		٨	5.712	4.520	2 929	2.131	1.327	0.6620	0.2577			
S 78.37 77.88 76.97 76.29 75.22 73.52 70.61 W 5.933 4.701 3.056 2.332 1.403 0.7367 0.3280 H -113990 -144023 -14110 -14200 -14361 -15887 0.3280 H -113990 -144023 -14110 -14200 75.97 74.38 72.07 S 79.07 78.58 77.68 77.00 75.97 74.38 72.07 V 6.153 4.880 3.182 2.331 1.477 0.7853 0.3869 H -113573 -13667 -13772 -14233 -14371 -15196 V 6.1553 4.880 3.182 2.331 1.477 0.7853 0.3869 H -113573 -13667 -13772 78.37 77.11 76.69 75.18 73.20 V 6.372 5.059 3.366 2.429 1.549 0.3869 V 6.3	580.0	H	-14403	- 14438	- 14529	-14625	- 14836	- 15369	- 16749			
V 5.933 4.701 3.056 2.332 1.403 0.7267 0.3280 H -13990 -14023 -14110 -14200 -14361 -15887 S 79.07 78.58 77.68 77.00 75.97 74.38 72.07 V 6.153 4.880 3.182 2.331 1.477 0.7853 0.3869 H -13573 -13605 -13687 -13772 -14233 -14371 -15196 V 6.153 4.880 3.182 2.331 1.477 0.7853 0.3869 H -13573 -13605 -13687 -13772 -14233 -14371 -15196 S 79.77 78.37 77.11 76.69 75.18 73.20 V 6.372 5.059 3.366 2.429 1.549 0.8398 0.4367 V 6.372 5.059 3.366 2.429 1.549 0.8391 -14516 V 6.372 5.059 </td <td></td> <td>ŝ</td> <td>78.37</td> <td>77 88</td> <td>76.97</td> <td>76.29</td> <td>75.22</td> <td>73.52</td> <td>70.61</td> <td></td> <td></td> <td></td>		ŝ	78.37	77 88	76.97	76.29	75.22	73.52	70.61			
H -1.3990 -14402 -14110 -14200 -14364 -15887 S 79.07 78.58 77.68 77.00 75.97 74.38 72.07 V 6.153 4.886 3.182 2.331 1.477 0.7853 0.3869 H -13573 -13665 -13687 -13772 -14233 -13519 H -13573 -13665 -13677 78.377 0.7853 0.3869 S 79.75 79.27 78.37 77.71 76.69 75.18 73.20 V 6.372 5.059 3.366 2.429 1.549 0.8398 0.4367 V 6.372 5.059 3.366 2.429 1.549 0.8398 0.4367 S 80.42 79.94 78.05 7.40 75.95 74.17 S 80.42 79.94 79.05 74.17 107.95 74.17		λ	5.933	4.701	3.056	2.332	1.403	0.7267	0.3280			
S 79.07 78.58 77.68 77.00 75.97 74.38 72.07 V 6.153 4.880 3.182 2.331 1.477 0.7853 0.3869 H -11573 -113665 -113687 -13772 -14233 -14371 -15196 S 79.75 79.27 78.37 77.71 76.69 75.18 73.20 V 6.372 5.059 3.366 2.429 1.549 0.8398 0.4367 V 6.372 5.059 3.366 2.429 1.549 0.8398 0.4367 V 6.372 5.059 3.366 2.429 1.549 0.8398 0.4367 S 80.42 79.05 73.40 73.40 73.65 74.17	500 0	H	- 13990	- 14023	- 14110	-14200	- 14394	- 14861	- 15887			
V 6.153 4.880 3.182 2.331 1.477 0.7853 0.3869 H -113573 -113605 -113687 -113772 -14233 -14371 -15196 S 79.75 79.27 78.37 77.71 76.69 75.18 73.20 V 6.372 5.039 3.306 2.429 1.549 0.8398 0.4367 V 6.372 5.039 3.306 2.429 1.549 0.8398 0.4367 W 6.372 7.0381 -13261 -13741 -13746 -13891 -14591 S 80.42 79.96 79.05 73.40 77.40 75.95 74.17		ŝ	79.07	78.58	77.68	77.00	75.97	74 38	72.07			
H -13573 -13605 -13687 -13772 -14233 -14371 -15196 S 79.75 79.27 78.37 77.71 76.69 75.18 73.20 V 6.372 5.059 3.306 2.429 1.549 0.8398 0.4367 V 6.372 5.059 3.306 2.429 1.549 0.8398 0.4367 V 6.372 5.059 3.306 2.429 1.549 0.8398 0.4367 V 6.372 5.929 3.306 2.429 1.549 0.8398 0.4367 S 80.42 79.94 79.05 78.40 77.40 75.95 74.17		>	6.153	4.830	3,182	2.331	1.477	0.7853	0.3869	0.2718		
S 79.75 79.27 78.37 77.71 76.69 75.18 73.20 V 6.372 5.059 3.306 2.429 1.549 0.8398 0.4367 V 6.372 5.059 3.306 2.429 1.549 0.8398 0.4367 I -13153 -13261 -1334 -13746 -13391 -14591 I -13153 -79.94 79.15 78.40 77.40 75.95 74.15	\$20.0	£	- 13573	- 13605	- 13687	- 13772	- 14233	- 14371	- 15196	- 15775		
V 6 372 5.059 3.506 2.429 1.549 0.8398 0.4367 11 -13152 -13183 -13261 -13341 -13746 -13891 -14591 5 80.42 79.94 79.05 78.40 77.40 75.95 74.17		s	79.75	79.27	78.37	11.71	76.69	75.18	73.20	72.01		
li -13153 -13183 -13261 -13341 -13746 -1389114591 5 80.42 79.94 79.05 78.40 77.40 75.95 74.17		٨	6 372	5.059	3.306	2,429	1.549	0.8398	0.4367	03130		
80.42 79.94 79.05 78.40 77.40 75.95 74.17	640.0	П	- 13153	- 13183	- 13261	- 13341	- 13746	- 13891	- 14591	- 85092		
		20	80.42	79.94	79.05	78.40	77,40	75.95	74.17	73.10		

					Tavr	muna) o array	('m	Pri	Pressure Range:	8 0 to	200.0 atm.
T'K	P Atms.	s. 8.0	10.0	15.0	20.0	30.0	50.0	80.0	100.0	150.0	200.0
	Λ	6 590	5.236	3.429	2.525	1.619	0.8914	0.4809	0.3515	0.2213	0.1840
660,0	H N	- 12730 81.07	- 12759 80.60	- 12833	- 12909 79.06	- 13068 73.08	- 13418 76.67	- 14031 75 03	- 14467 74 06	- 15245	- 15564
	а ;		~ · · · · ·	1326		807 1	00400	1163 0			
680.0	> H	- 12302	- 12330	- 12400	- 12472	- 12622	- 12946	- 13495	- 13880	0.4410	1461.0
	S	81.71	81.23	80.36	19.71	78.74	77.38	75.82	74 94	73.29	72.38
	>	7.024	5.588	3.673	2.715	1.756	0.9888	0 5585	0.4202	0.2613	0.2063
700.0	H	- 11873	- 11849	- 119 -	-12035	- 12177	-12479	- 12977	- 13322	-14040	- 14430
	S	82.33	81.86	80,99	80.34	79.39	78.05	76 58	75.75	74.16	73.20
	٨	7.240	5.763	3.793	2.808	1.823	1.035	0.5939	0 4513	0.2817	0.2185
720.0	Н	- 11439	- 11465	- 11529	- 11595	- 11729	- 12012	- 12469	- 12781	- 13458	- 13866
	Ś	82.94	82.47	81.60	80.97	80.02	18.71	77.29	76.51	74.98	74.00
	٧	7.563	6.024	3 973	2 947	1.921	1 102	0 6439	0.4951	0 3119	0 2379
750.0	H S	- 10785 83.83	- 10808 83.36	- 10868 82.50	- 10929 81.87	- 11054 80.94	- 11312 79.66	- 11720 78.31	- 11995 77.58	- 12609 76.13	- 13025 75 14

TABLE 6- (contd.)

198

SESHADRI, D. N., VISWANATH, D. S. AND KULOOR, N. R.

References

1.	Beckmann, E. and Liesche, O.,	••	Z. Physik. Chem., 1914, 88, 23.
2.	Canjar, L. N. and Manning, F. S.,	• •	Hydrocarbon Processing, 1952, 41, No. 8, 121.
3.	Coop, I. E.,	• •	Trans. Faraday Soc., 1937, 33, 583.
4.	Dolezalek, F. and Schulze, A.	• •	Z. Physik. Chem., 1913, 83, 45.
5.	Drucker, C., Jimeno, E. and Kangro,	w.	Z. Physik. Chem. 1915, 90, 513.
б.	Fischer, R and Reichel, T.,	• •	Mikrochemie, 1943, 31, 102.
7.	Fletcher, J. and Tyrer, D.,		J. Chem. Soc. (London), 1913, 103, 104, 517.
۶.	Gelles, E. and Pitzer, K.S.,		J. Am. Chem. Soc., 1953, 75, 5259.
9.	Harand, J.,	• •	Monatsch, 1935, 65, 153.
10.	Herz, W. and Neukirch, E.,	•••	Z. Physik. Chem., 1923, 104, 433.
11.	Herz, W. and Rathmann, W.,		Chem. Ztg., 1913, 36, 1417.
12.	Kuenen, J. P. and Robson, W. G.,		Phil. Mag., 1902, 4, 121.
13.	Marshall, D.,	••	Phil. Mag. 1897, 43, 27.
14.	Martin, J. J. and Hou, Y. C.,		A. I. Ch. E. Journal, 1955, 1, 142.
15,	Mathews, J. H.,		J. Am. Chem. Soc., 1926, 48, 562.
16.	Morgan, S. O. and Lowry, H.H.,		J. Phys. Chem. 1930, 34, 2385.
17.	Pictet, R. and Altschul, M.,		Z. Physik. Chem., 1895, 16, 26.
18.	Ramsay, W. and Aston, E.,	•••	Proc. Roy. Soc. London, 1894, 56, 182.
19.	Rex, A.,		Z Physik. Chem., 1916, 55, 355.
20,	Sajotschewsky, W.,		Beibl. Ann. Physik., 1879, 3, 741.
21.	Scatchard, G. and Raymonds, C L.,	••	J. Am. Chem. Soc. 1938, 60, 1278-87.
23.	Schmidt, G.C.,		Z. Physik. Chem. 1921, 99, 71.
23.	····· ,		Ibid, 1926, 121, 221.
24.	Schulze, A.,	• •	Ibid, 1921, 97, 388, 417.
25.	Smyth, C.P. and Morgan, S.O.,		J. Am. Chem. Soc., 1928, 59, 1547.
26.	Staveley, L.A.K., Tupinan, W.I. and Hart, K.R.,	••	Trans. Faraday, Soc., 1955, 51, 323
27.	Stull, D. R ,		Ind Eng. Chem., 1947, 39, 517.
28.	Thorpe, T. E.,		Trans. Chem. Soc., 1880, 37, 59.
29.	Tyrer, D.,	- •	J. Chem. Soc. London, 1911, 99, 1633.
30.	Vold, R. D,		J. Am. Chem, Soc., 1935, 57, 1192.
31.	Williams, J. W. and Daniels, F.,		Ibid, 1925, 47, 1490.
32.	Wirtz, K.,	· ·	Ann. Physik., 1890, 40, 439.
33.		••	International Critical Tables, Vols. 3 and 5, McGraw-Hill, New York, 1928.