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ABSIRACT

Lattice dynamics of caesium chioride has been worked out employing ths
shell model of Cowley et a1%., taking into sccount the polarisabilities of both the
jons, With the phonon branches at the fifty six representative voints in the
Briliouin zone, the frequency distributions and the specific heats are calculated ani
8 fair agreement 1s found between the infrared maxima predicted by the modet and
1130 the specific heats obtained from calorimeiric data. However it is shown that
the modified shell model put forward by Deo and Dayal are not consistent with the
symmetry of the normal modes on the zone boundary and also the agreement betweea
the calenlated and observed specific heats are not satisfactory in this model,

INTRODUCTION

In recent years, there has been considerable success in the application of
shell model to describe the lattice vibrations in ionic {NaF, KI, KBr,
Nal” * ¥ and covalent (Ge, C)* 2 crystals. Phonon dispersion in caesiom
halides have not been measured so far, probably due to the large neutror
absorption cross section of caesium and therefore there has not been much
progress on the dynamics of these crystals. However the validity of te
latiice dynamical models for these crystals could be tested from their ability
to explain the thermal properties and the sscond order Raman and Infrard
spectra of these crystals, It was with this view that one of us®, worked out
the dynamics of caesium iodide to enumerate the distribution of intensities
in the second order Raman spectrum of caesium iodide. This was followed
by a detailed investigation of the dynamics™ of caesium halides and Rubidiu
chloride employing the shell models to interpret the two phonon Raman and
Infrared spectra using the combined density of states of Johnson and Cochrar.
Recently, 2 modified shell model for potassium iodide has been put forward
by Deo and Dayal® to include many body forces and to cxplain the Cauchy
discrepancy. It was therefore felt necessary to study the utility of their
mode] for caesium chloride structures and to compare the results of simple

and modified shell models and the results of such an investigation us
presented in this note.
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Ty SHeELL Mopr

The equations of motion for the cores and shells of the ions in the unit
cell in the harmonic — adiabatic — electrostratic approximations are given by

W2 MU, = R+ Zg CZ5) Us + (T + Z:CTa) W [1]
0—(T*+ Yy CZI U, +{s+ Y, C¥,) W, £2]

On eliminating W, in [1] usirg [2] we obtain the dynamical matrix

(R4 2y CZY = (T + Z,CY) (s + ¥y CY) "\ T* 5 Y4CZ)
—w? MU, =0 {31

giving the frequencies of the normal modes and their polarisation vectors.
In these equations, R, 7, S are the martrices specifying the short range inter-
actions while C is the matrix of Coulomb coefficients. My, Y and Z, are
diagonal matrices representing the mass, charge on the sheil and the ionic charge.
U, is a column vector specifying the amplitude of the displacement of the ion
Y W, is the electronic dipole moment of the ions. The long range and short
range matrices are defined as

STkk o o {11 . 1’
[4]- 5 6 () oo c-r00 ()

Rki! ~ LR u’) . '
and [xy ] =X ¢y Kk exp. (~iqr) o {s]

The expressions for T and § are similar to those for R.

The matrix
Sy = S+ Yiay 8y Brrr [6]

where a, is the polarisability of the kth ion. Following Woods et alL™ we
assume R = T = § which implies that the short range interaction aets through
the shells,

In order to work out the short range coupling coeficients, we define the
parameters 4, B, 4y, B, and 4,, B, for the nearest and next nearest neighbour
anion-anion and cation-cation interactions respectively,
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with these parameters, the short range matrix elements turn out to be

2 .
o Z 4 (A 1 2B) 4 Ay + 2By ~ Ay 0052w gy — By (€08 Zwig, + coslng]
9

,...‘N.,
—
A
[
=)

X[ -
o
IR R AR

LY

b

,.‘
SR,

il
!

i 2{d +28) cosm g, cos gy COS 1 g
2

5 ¥

H

e s
wildn
-
.

4 - B) cogr g, sinw g, sin = g,

i
¥
i

g
o
1o

H

s

by

Py
e

+2B) 4 Ay + By — 4y c08 27 g, — 5, (cos 2m g, +cos?

s

[
w4l

e i
5

¥

s
13
58]

,D,m
-
e

Al the other clements can be obtained by a cyclic interchange of x, y and 2
The expression for the elastic constants and the equilibrium conditions wre
Cry=e 18 org) [{A4 + 2 B3/6 + {4y + 43)/4 + 1.40179 27)

Crow (6¥ord (574 ~48) — L (B + By) ~ 1.37935 27) I
Conw (e 1Y {4 42B) 4+ 378 + 8) - 0 70089 7] L

The expressions for wy, and wy, Are obtained by selving the dycamical iy
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e &2 {z A
wwrp = Ry -;»gne (z+di - ) (en +_g_)_ fis]
Yvea
2 2 3
where Ry = Rg— s’(é’— + fj_z_> and Rg=% 2{4+28) f19]
ay €p )/ v
it can also be shown that
2 [ eo2
A f20]

Therefore, from these equations, one can obtain dy ~ &, R§ and hence
the parameters 4, B and 4y, d, the distortion polarisabilities of the ions,
asgsuming z = 1 and using the relation (d/R,) is a constant for each jono.

For the computations on a simple shell model it was assumed that the
short range interaction extends upto the nearest neighbours only and the
following set of parameters were obtained from the compressibility and ihe
infrared maxima, '

A=9.34716

B e ~0.67847
{ay/v) = 0.04105
{xa/v) = 0.04206

dy = 0.05471

dy = 0.18094

The pararoeters of the model being known, a program was written for
the CDC-3600 computer at Tata Institute Fundamental Research Bombay,
to generate the dynamical matrix and to diagonalise it by a modified Jacobi
method, The eigen values of the dynamical matrix at properly weighted
fifty-six nonequivalent points, were used to construct the frequency distribution
shown in Fig. 1. The peak corresponding to transverse optical branches
agrees well with the infrared maximum’.

Using the  frequency distribution, the specific heat of the crystal was
computed over a range of temperatares, by numerical integration of

C,=3kn [ g{w) E (hew/kT} dw
3
where 1 s the atomisity of the crystal and E (hw/k7°} is the Einstein {urction
82d [ g{w) dw=1. The experimental and calculated values agree well as
©

shown in Table 1. n

From the specific heat values, the Debye temperatures (CBES czx.chuﬁ;ueLl
and the temperature variation of @p is shown in Fig. 2 and exhibits the
characteristic dip at low temperutures,
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Fig. 1
Frequency Distribution of Cs Ci
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Variation of 4 p with temperature for Cs Cl

C-—experimental values
s~ Calculated values

Tapre I

8y ecific Heat of CsCl, experimentai and
calculated, at different temperatures.

Temp. X° Cy (erle.) Cy (Expt.)

i0 0.317 0.335
20 2.114 2.141
30 4.213 4.158
40 6.030 5912
&0 8.432 8.244
80 9.701 9.549
100 10.408 10282

Tae MobiFiep SHELL MoDEL

Even though the shell model accounts for the dielectric properties of
crystals, the expressions for the elastic constants remain the same as in the
rigid icn model and hence it fails to explain the Cauchy discrepancy in alkali
halides.  Lowdin® was the first to show that the Cauchy discrepancy can be
explained by including manybody forces. Following Lundquist, Verma utd
Dayal worked out the Fuch's relations for rocksalt structures by includiog
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volume dependent forces to represent approximately the three body interactions,
Iu their rigid ion model containing these volume forces, the dynamical matsix
is given by

(&+V+2,C2)~ Ms0'] U =0 :
[1]

where the elements of the matrix * J7° are given by
i . ' . ’
v ik _‘_Z e 11, 77 11,
xy kk Lk
and ¢l (hK ) = e T2 13

¢ is a volum= dependent force constant and the introduction of this potential
affects only the longitudinal vibrations. Deo and Dayal® incorporate these
forces in the stell moedels by assuming that the volume dependent forces
operate only between the cores of the iens to arrive at the dynamical matsix

[((R+V+2,C2) ~{T+ZsC Y s+ YaCYa) I x
(T + YaC Z)} ~ My e?] U, =0 [24]
Bmploying the definition of the volume dependent coupling coeflcients,

we get

v {! 1] ={~{4a;+30y) 40 {cos2mg.+ cosZﬂq,+cos2nq,)}—g’i—f‘"f
xy q

27
v [""3 [ {402+ 30m) + 952(co52 m gy + OS2 11 gy + cOs 2 m g, }] T2

xy 7
v ll 2] =4 043808 71 g COS 71 g, CO8 T ¢ gif’i {25}
xy q

where ¢4, is a force constant for unlike neighbours and oy and ey, are those
for like n-ighbours. Employing the method of long waves the contribution
of these volume forces to the elastic constants is found to be

cf -t W__.'_’_l_z_‘:lf’;i_z) f26}
YT e 2 J
ciaf (utantlan o7
2org 2

Ch=0 {:8]
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Thus the inclusion of the many body forces contribute to the elastic
constant Cyp and not to the shear constant Cy and also from symmetry
considerations, the contributions to 2 and Oy are egual. With these
contributions included in equations 14 to 16 and assuming that the equilibrium
condition remains unaltered and restricting to nearest neighbour interactions
slone, the parameter Z and B can be obtained from the equilibrivm condition
and Gy A can be obtained from

? [4+28 -
(Cidorpr == <—+€—~ +1.40179 Z2) 4 (€12 = Casdonor.
0

while the parameter oy = oz, is obtained from (Cy - Cy) expt. assuming
gp=0.

Thus in the modified shell model the expression for B is the same as in
the simple shell model except that Z is not necessarily equal to one. Also the
value of 4 is identical with that obtained with shell model with an adjusted
value of C); which is obtained 'after subtracting the Cauchy discrepancy
(€13~ Cuy) from the experimental Cy;. The longitudinal optical made at &—>0
is given by

2 2 2 2 3

parko = Ro— & (E.t + L’z) t oy S8 (Zrd—d L o

&y O3 v Y ew
while the transverse optical branch remain unaffected by the introduction of
the volume forces.

An attempt was made to compute the phonon dispersion in thallium
bromide in addition to the computation of the specific heats of caesium
chloride. The parameters of this model taking into account second-neighbour
interactions also, were calculated from the elastic constants, infrared frequencies
wroand wyo and the equilibrium condition, assuming ¢y = o2 and ¢, =0 and
that the second neighbour interactions between the anjon-anion and cation-
cation are jdentical. The volume dependent forces o), increase with the
increasing (Cyy — Cuy) expt.  For example oy = —~ 0.0954 for potassium iodide
with Cjp = 0 22 and Cy =0.368 while ¢y is - 0.821 for lithium fouride with
Ciz=4.24 and Cyy = 6.49. Nevertheless in the case of TiBr and CsCl, Ci2> Ca,
and {Cyy — Cy4) is fairly high in the former and the constant ¢y, is positive for
both the crystals and have values oy =0.60446 in TIBr and o, = 0.09648 in
CsCl.  The cffective charge on the ions was also found to be very nearly equal
o unity when the second neighbour forces were taken into account.

With these parameters, the dynamical matrix was solved for the fifty six
ron-equivalent points in the reduced zone. On account of the high symmetry
of the CsCl structure it is found® that there is a pair of threefold degenerate
modes et the zone comer R (0.5, 0.5, 0.5) and a pair of doubly degenerate
modes for all points on the surface of the zome with ge—g, =03, in our
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earlicr rigid ion model calculations.  The shell model computation alse give
us similar ype of normal modes consistent with the symmetry of the e
However, with the volume forces included, we obtain for exumple at R{DS

“r

0.5, 0.5} non vanishing
, .
V(h] and Vizz
R34 XY

terms which split up the degeneracy of the modes  This is also found to be
in case for all points with ¢, =g, =0.5 where instead of 2 pair of doubly
degenerate roots, we obtain four non degenerate roots, the reason for this
dlSC!’Cpur‘ny being the choice of this particular form of the ¢}, {kk') invoiving
{qu},q Thus in the modified shell model, the expression for the frequencleg
are not exactly periodic in reciprocal space and also the zone bourdary
phonons are highly influsnced by the choice of the volume dependeat
potertial.  Since the volume forces are small, one can assume 4 wave vector
dependence of these forces and assume that they are zero at the zone
boundarie:, thereby satisfying the symmetry requirements. A plot of 6.7
for CsCl in the modified shell model is given in Fig. 2, and the agreement
between theory and experiment is not satisfactory. 1t is felt that a better
way of introducing volume forces involving reciprocal latiice vectors will hs]p
10 golve the dynamics of alkali halides explaining the dieleciric and elastiz
properties in addition to phonon dispersion and thermal properiies.
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