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ABSTRACT 

A method consisting in finding a two dimemional elementary transPormatioa 
for obtaining eigen values has been discussed with details of programming aspects 
and it has been shown with the help o f  numerical examples that tbis method is 2s 
cRcienr as L-R transforrnatioo so far as the number of iteration steps ar; 
sonccmed and moreover, it demands less machine time, less nurnbei of arithmetic 
operations @articulariy divisions and multiplications) per iteration and less 
memory storage. Like L-R transformation this method is always stable For 
positive d-finite matrices and takes eubstantiolly less machine Lime than Q-K 
transformailon and moreover, can be used both for symmetric and unrymmetric 
matrices. 

Jocobi's iteration method for  finding eigen values and eigen vectors of 
symmetric matrices as revived by Von ~ e u r n a n n "  for  moderr. inrpe computers. 
is \ ~ c l i  know,,  and popular. A Jauobi-like method suggested by ~ b c r 1 e : i i ' ~ ' ' ~  
for unsymm~tr ic  matrices has a wide range o f  application, but they r rqui~e  the 
calcufation of several square-root functions in  each iieration leading to 
rounding error and more computaiional time per iteration. The present 
method. houevcr, does not  involve clilcution of aforesaid function thus 
obviating such rounding error and saving o n  o p e r a t i o ~ a l  % m e .  It requires 
simple operations like addition, subtraction, multiplicarion end  division ahile 
however utilizing, like the  aforesaid methods, t he  principle of siailai 
transformation. Like L-R transformation t he  presenr method also may no1 
work in the  case o f  singular matrices. In t he  following the  method is discussed 
vis-a-vis L-R transformation stressing the  programming aspects. Nmerical 
examples are given t o  provide illustration. The  r e l a the  compuring t i r e  as 
well a s  memory reqdrements and number of arithmetic operations are aim 
indicated. 

Method I : ( ~ a s e d  on  two ditnansianal elementary transformation). 
This method coaaists in finding a sequence of two dimensional elementary 



trausformations E, such that if E =  II Ej then E-' A E are approximate$ 

diagonal with the approximations to the eigen values appearing on the 
diagonal, where A is a matrix of order n. The Ei which range over all two 
dimensional subspaces are determined a t  each step of the iteration t o  reduce 
to zero all the i-th row elements of A excluding, however, the first i elements. 
The matrix Ek will be an upper triangular1' matrix of the forin 

el,-1, j = l , 2 , 3 ,  a , n 

~ ! . . - a ~ , / a ~ k ,  i = k + l  . k + 2  , k + 3  . . - a  , r i - 1 ,  n 

em-0,  p = 1 , 2 . 3 ,  . . n - 2  , n - 1  ; q = p + l ,  p + 2  , - - - n 
p + k  

and consequently EL is also an  upper triangular matrix of the form 

e i j=I ,  j - 1 , 2 , 3 .  - - - , n - 1 ,  n  

eki=o, , /ckk,  i - k + l  , k + 2 ,  k c 3  , . - - , n 

cD,,=O p = 1, 2, 3, . . , n - 2 ,  n - l  ; q - p +  l, p i 2 ,  . a .  . n 

P + &  
Sour 

E S ' B ~ E ~ ~ - A , ~ + ~  A l - A  , k - 1 , 2 , 3 ,  - . . , n - 2  , n-B 

All the matrices Ak , k  - l ,  2. 3. - IP - 2  , I )  - 1 will assume the 
=me memory locations as  rhe original matrix A. According to  the principle 
of similar transformation, the roots of Ah+, and AM will be the samc. The 
process will continue till almost all  the elements above the left diagonal of 
Ah turn out to b e  very small or zero depending on the accuracy desired. 

Method 2 :  (L-R transformation). A square matrix A can be expressed 
nniqueiy as the product of a lower triangular matrix L and upper triangular 
matrix X, provided the diagonal elzments of one o f  these matrices are 
spccificd. In this method suggested by ~ u t i s h a u s e r ~ ~ ,  ali  the dixgonal 
elements of L are taken a s  1. If A - A,. we can decompose A ,  into Lt 
and Rj such that 8, =Li  Rl . The elements of L, and R1 are determined 
from the original matrix A, . We then form t h e  reverse product XI L, . It  
wil l  be different from A1 . Let it be denoted by Az , Wc can decompose .42 

into Lz and R2 such that  X z  - Lz R2. Similarly li2& = Ag = L3 RJ and 5 0  0% 
whore A3 is the matrix formed by the product of R1 and La. 

This yields an  infinite sequence of matrices Ak.  After a large number 
of steps ?his process converges resuitins in an upper triangular mntrix Ar 
while the lower triangular matrix converges to  an idm!ilv matrix ; the number 
of Kiansformations required for  such convergence deper%ds on the nnturc of 

@haen t s  of the original matrix. 
This L- R transformation is also a sinlilarity transfornla~ion and hence 

keeps the characteristic equation of Ab2s invariant. 



k ~ ~ t ~ ~ ~ d  I .  (a) Formulae o f  transformation : The elements of ite 
matrix A* will be  transformed due to the  post multiplication of A>: by & 

and the remaining will remain unchanged. The a's on the r h s of [ri] are the 
elements of Ar throughout the transform:ition acd  not in afiy case the eltmecb 
of A,' E*. 

Now Ah El, has the  same locations a s  A,; and  to  find E i L  Ah i?% we will 
refer to the elements of A*, since Ap = Ay: Ek. I h e  to the pre muitiplieation 
by E;' the transformed elements o f  Ak (i .e.  A;, E ~ )  w ~ l l  be 

The rest of the elements of A, ( i  e. Ah E ? ~ )  will remain unchanged for a 
particular k. The elements on,/ara were the elements of the original matrix 
A:. 3.e before the formation of A], Ek. T h r  other elenlents on the right hrnd 
side of [iii] and [iv] wzre the elements of Ah (i.r. Ag E*) and not in any care 
the  elements of E ; '  Ate For a single iteration k-- 1, 2, 3, . - - , n- 2, n-  1. 

( b )  Checks. Trace check is performed 

( c )  lvlemory requirements. About n' + n + 65 words are necessary of 
which n2 locations are  rtquircd for the storage of nlatrix A of order n, n 
foeations for the storage of one row (or column) of A, and 65 locations for 
the program. 

(dl Computing time per iteration. (referring to formulae i, ii, iii, i*) 
"-1 a - 1 n - 1 

It is about Z ( n  - k) 1.1 + 2 1: (n - k)' v, + Z (n - k)' I., 
70-1 k r l  k=l 

-- 
* 'a' will ~ I W ~ Y S  meaD ' i s  replaced by'  in discussions under ' Programming Aspects' 



%here the first 4 terms with Y'S deleted indicate nuwber o f  divisions, 
Il,ulLipiications, subtractions and  additions respec1ively, and 7, (n) is the time 
,,,?ed b y  inpnt and output units inclusive of that due to logical operations. 
,,, ,,?, .i, and P~ a r e  t he  division, multiplication, suhtraelion and addition time 
respecti~dp. 

For actual corrpiitation we assume a fixed ia lue  fur j (which has :a be taken 
as I firsi) and then prsceed varying i- 1 ,  2. 3, . - . , n-  1, n and a s  a result 
ue find rll.  then 4,. 1 3 , ,  lag. . * . I,,-,, ,, I,,, , respectively. We then take 
j - 2  and proceed varying i -  1, 2, 3, - . - , n -  1, n and as a result me find 

r22; then 132. 142. 15LI - . , Ips-I, 2, 13,. respectively ; next j -  3, i =  ;, 2, 
2 ,  - . . n- 1, n ; Me fiod r,,, i,,, r 3 , ,  then Id,. lh3, IG3. + . , I ,  ha, respec- 
tively and so on. In case r j j  - O3 the: procedure will,  however. coliapse. 

The general formula for  the  p r o d ~ ~ c t  matrix S I PL, the rewlts of whkh 
will consri:ute the  first iteration step, is given as follons 

In the computer  he elements [aj,] are replaced by the elements [sill or in 
other words, n o  qI - storage is necessary. Therefore S,J in ( v i i )  and (viii) 
can be subs:itutcd by ail This mikes the program more automatic and more 
efficicnt and :educes the  computing time. Moreover n2 lorations are preseawd. 
It is importaut t o  note in I b i s  connection t h a t  storage often phys  a V e l Y  
importent part in this type of problsn~s.  

(b) Check. Tracc check is perfirrmed. 



( r )  Memory requirements. About rt2 + n  (n + 1)/2 + n (n+ I ) /?+  g0 
locations are necessary of which n2 locations are  required f o r  the nr+r:x  A,  
n (n + I)/L for L, n  (n + 1112 for R and about  90 words for the program. 

( d )  Computing time per iteration. (referring to formulae v ,  vi, vij ,  vifi) 
It is absut  

where the Erst 4 terms with pr9s deleted indicate nomber of divisions, multipli- 
cations, subtractions and additions respectively and 7, (n) is the time needed 
by input and output units inclusive of that  due to  logical operations. 

The difference between 7, (n) and TZ (n) is small, so that in the course 
of comparison these quantities can be  neglected without aff~cting the process 
much. 

*When n - 5, i. e. for a matrix of order 5, computing time per iteration 
for method 1 is 70s: t 548; + I, (n) and for method 2 it is 9 6 4  v 60v; + q ( n ) .  
When n=7,  computing time per iteration for method 1 is 203.; + 101~: i ~ , ( n )  
and for n-ethod 2, it is :60v; s 182~: + T, (n).  When n - 5, total srorape 
recpired fcr method 1 is about 95 words while for method 2 it is 140 words. 
Therefore method 1 obviously saves on operational time and storage. 

Calculations in all the examples are carried out in 8 dlt floating point 
arithmetic and the resulrs a r t  retained correct up to  4 decimal plascs, links 
otherwise atated. Zeros on the least significant side are avoided. 

Example. I Matrix with double latent roots 

'" '6 4 4 11 -15 0 0 13- 
14 6 1 4 ; _ / I I 0 @ / 12 passel. 
1 4 1 6 4  5 0 5 0 method 1, 
!I 4 4 - 6 1  ! I  3 l - l ] \ I ~ - - S ' i  - 

--- 
*ri=avrrage time for one multipllcatm or one &vision 

y-auersp+ time for one additjoo or one subtraction. 



~ ~ ~ : y , ' e .  2. Matrix with disorder o f  latent roots 

T i e  (2, 31th element varies with t h e  number of iterations. Is becomes. 
,ti73, ,316, ,1837, .0947, .0481, ,0242, :.0121, ,0059, ,0010, - ,0036, 
-,?249, - ,1278, - .6107, - 3.2043, - 16.0218, - 80.1091, - 400.545 

in  the !st, Znd, 3 r 4  , . . . . , iOrh and 17th iterations respectively and does not 
iocverge. 

- - 
10 - 6.7513 2 1 

1 0 
5 

i 15 passes, method 2 - 22 5038 
0 0 2 ,  - 

The la tcnt  roots are 10, 1, 5, 2. The differences between A&'S In method 1 
2nd merhcd 2 are due to roundi j~g errors only. Round-off errors are, however, 
more in method 2. 

Example 3 Real matrix with one pair of complex roots 

The exact roots are  6, f i 4 3  
- 

6.0002 - 41108.1277 1 
.0001 - 82222.5061 2 I t  passses, method 2 
5.7987 - 338 x 10" 82222.5665- 



in both the methods the Inst two diagonal terms go on oscillstifig wi,hi7 
:he rouuling error due to  divlsion as fo:!ows : 

TABLE 
No. of 
itera- Method 1 
tioos 

1 - $7, I8  
2 - -9391, - e2609 
3 137.9167, - 138.0001 
4 .6!43 x lo", .2076 x lo-' 
5 - 1732.5131, 1732.5800 
6 - -5211 u - .I740 x lo-' 
7 21463.6185, - 21463-6192 
8 .3662 x lo-', . I22  x 

4 46736.7895, - 46736.7895 
10 0, 0 
11 2.5582, - 2.5582 
12 .2739 x lo-', -a3074 x lo-' 

Method 2 

The above tabies also shows the effect of rounding errors due to divisions 
in both the methods. The rounding errors appear t o  play more important 
part in method 2. 

If a reni matrix possesses a pair of complex roots in  its i-th and (i+ I )  th 
rous, the elements in the i-th row and those in the i-th column below the 
diagonal'3 wili not converge in the nornial way ; the  didgonai elements in the 
:-$1; and [ i  + i] rh row may go on oscillating as  has been shown above. 

Exampi8 4. Matrix of order 4 with a pair of complex roots 

A -  - $ 4 - 5  o 37 
- Exact roots ; !2,  1 4 iu'5. 2 

For real roots the first and last diagonal elements of Al, converge to 12 and 2 
after 15th inieralion For complex roots the  [ 2 , 2 ] t h ,  [2, 3]tb, [3,2]th and 
[3,3]th clcments do  not appear to converge in the normal way. In the 7rh 
iteration they becoma 



ynw the roots j12. ,us of  B can be given by 

/.0072-j~ -5.1709 
; 5.042 1.9336 - ,u , 

Therefore ,uz,3 - .9704 jt. i 5-0145 
The divergence of ~ 2 .  from the exact roots are due to rounding errors. 
12 the case of single or  muitipie pairs of  complex roo!s tounding errors play 
2 very important part. These errors can be reduced by increasinp the number 
of digits of the Boating point arithmetic". 

Erample 5 : A symmetric matrix with distinct latent roots (convergence is 
slow for this particular matrix) : - - - 

i -1 21 7.4683 o 0 
I ? 3 2 -31-1-1.2335 3.2713 0 

@ 15 passes, 
A - '  - 4 4 2 6 2  -I.U&j 

2.157 9146 8965) - I 6  

Ex~mple 6 : A defective matrix : 

2 i 
2.3569 : i 5 passes, 
.9147 1 method 2 
3 9 7  

E 1 14 passes, 
0.00" 4j method 1 
0.7029j 

- - 
1 5.5713 - 1.141 5.4818 1 
/ 0.0985 4 9008 -7.2257 - 2 0478 14 passes, 

0 
I 

0.825 0.4358 method 2 
0 - 0.0086 0.7029- 

Example 7 : Wilson's matrix : 

- 
30.2887 42.27 10.0199 5 

3.8581 1.0071 -71122 11 passes, 
0 

-1 
,8431 - .316$/ method2 

0 0 .0[02_i 



E k m p f e  8 : A stochastic matrix of' o-der A 

A square maiiix A = (ai,:) with non-negative elements is cslle~ 
stoch~scicPo if 

Such matrices a n  of g e a t  irnpoxrai.cz iu L ~ G  theory of probnliihiy. 

Cxomple. 9. Hilbert's matrix 

These matrices are typical examples of near singular matrices. Tbei; 
aingul2ri;y becomes more pronounced a s  their order is increased I n  !he 
following Hilbert's matrices of order 3, J and 5 have been considered, re(;;;- 
iug every element correct up to 8 decimal places. 

Hilbert's matrix of order 3 (determinant value = .453 x .0-') 

i1.4083 0 0 
- 

-- 1 ,8455 .I223 0 4 passes, method 1 
.3333 .0647 .2087 x 10-t  

Method 2 gives the same results (correct up to 4 decimal p!nccs) in t h e  ssnie 
number of passes a s  method 1. 

HiEbert's matrix of order 4 (dctermioaut value - .I653 x 10.') - - 
11.5002 0 0 0 

-+ )1.10?1 .1'91 0 0 
; .Ti78 .I483 .573S x 0 

i , 6 passes, method 1 

! .25 ,5744 x 10'' .391S x 10-* .967 x 10-3 - 
Method 2 gives the same result as method . l .  

W~lbert's mairix of order 5 (determinant value 3743 x ID-") 
Xccord~ng to both thc methods the soots are 1.5671, .2085, .I141 X 10-' 

.XIS") i0"3,. 3232 ( lo-' tn 7 passes. 
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