ON AN AUTOMATIC COMPUTATION OF CHARACTERISTIC ROOTS OF A MATRIX

By Syamal Kumar Sen
(Central Insirwments and Services Zaboratory, Indlan Insfitute of Scienee, Bangalore I?, India)

[Received: May 12, 1957]

Abstract

HBSTRACT A metbod consisting in finding a two dimensional elemontary transformation for obtaining eigen values has been discussed with details of programming aspects and it has been shown with the help of numerical examples that this method is as efficient as L-R transformation so far as the number of iteration steps ara concerned and moreover, it demands less machine time, less number of arithnetic operations (particularly divisions and multiplications) per iteration and less memory storage. Like Ler transformation this method is always stable for positive d finite matrices and takes substantially less machine time than $\mathrm{Q}-\mathrm{R}$ transformatson and moreover, can be used both for symmetric and unsymmetric matrices.

INTRODUCTION

Jocobi's iteration method for finding eigen values and eigen veciors of symmetric matrices as revived by Von Neumann ${ }^{19}$ for modern large computers, is well know, and popular. A Jacobilike method suggested by Eberlein. 15 io for unsymmetric matrices has a wide range of application, but they require the calculation of several square-root functions in each iteration leading to rounding error and more computational time per iteration. The present method, houever, does not involve calcution of aforesaid function thus obviating such rounding error and saving on operational ime. It requires simple operations like addition, subtraction, multiplication and division abile however utilizing, like the aforesaid methods, the principle of similar transformation. Like L-R transformation the present method also may not work in the csse of singular matrices. In the following the method is discussed wis-cons L-R transformation stressing the programming aspects. Numerical examples are given to provide illustration. The relative computing tire as well as memory requirements and number of arithmetic operations are aiso indicated.

Metrods

Method 1: (Based on two dimensional elentetary transformation). This mexhod consists in finding a sequence of two dimensional elementary
travsformations E_{i} such that if $E=\prod_{i} E_{i}$ then $E^{-1} A E$ are approximately diagonal with the approximations to the eigen values appearing on the diagonal, where A is a matrix of order n. The E_{i} which range over all two dimensional subspaces are determined at each step of the iteration to reduce to zero all the i-th row elements of A excluding, however, the first $i=$ elements. The matrix E_{k} will be an upper triangular ${ }^{13}$ matrix of the form

$$
\begin{aligned}
& e_{n}=1, j=1,2,3, \cdots, n \\
& e_{k ;}=-a_{k} / a_{k k}, \quad i=k+1, k+2, k+3, \cdots, n-1, n \\
& e_{p q}=0, \quad p=1,2,3, \cdots, \cdots, n-2, n-1 ; q=p+1, p+2, \cdots, n \\
& p \neq k
\end{aligned}
$$

and consequently E_{k}^{-1} is also an upper triangular matrix of the form

$$
\begin{aligned}
& e_{j j}=1, \quad j=1,2,3, \cdots, n-1, n \\
& e_{k i}=v_{k u} / a_{l t h}, \quad i=k+1, k+2, k+3, \cdots, n \\
& e_{R Q}=0 \quad p=1,2,3, \cdots, n-2, n-1 ; q=p+1, p+2, \cdots, n \\
& \quad p \neq k
\end{aligned}
$$

sow

$$
E_{7}^{1} A_{k} E_{f_{5}}-A_{1+1}, A_{1}=A, k=1,2,3, \cdots, n-2, n-1
$$

All the matrices $A_{k}, k-1,2,3, \cdots, n-2, n-1$ will assume the same memory locations as the original matrix A. According to the principle of similar transformation, the roots of A_{k+1} and A_{k} will be the same. The process will continue till alnost all the elenents above the left diagonal of A_{k} turn out to be very small or zero depending on the accuracy desired.

Method 2: ($\mathrm{L}-\mathrm{R}$ transformation). A square matrix A can be expressed uniquely as the product of a lower triangular matrix E and upper triangular matrix R, provided the diagonal elements of one of these matrices are specified. In this method suggested by Rutishauser ${ }^{13}$, all the diagonal elements of L are taken as $I_{\text {. If }} A=A_{1}$, we can decompose A_{1} into L_{1} and R_{1} such that $A_{1}=L_{1} R_{1}$. The elements of L_{1} and R_{1} are determined from the original matrix A_{1}. We then form the reverse product $R_{1} L_{1}$. It will be different from A_{1}. Let it be denoted by A_{2}. We can decompose A_{2} into L_{2} and R_{2} such that $A_{2}=L_{2} R_{2}$. Similarly $R_{2} L_{2}=A_{3}=L_{3} R_{3}$ and so on where A_{3} is the matrix formed by the product of R_{2} and L_{2}.

This yields an infinite sequence of matrices A_{k}. After a large number of steps this process converges resuiting in an upper triangular matrix A_{k} whin the lower triangular matrix converges to an identity matrix; the number of transformations required for such convergence deperds on the nature of the elements of the original matrix.

This $L-R$ transformation is also a similarity transformation and hence keps the characteristic equation of A_{i} 's invariant.

Programming Aspects*

Method 1. (a) Formulae of transformation: The elements of the matrix A_{k} will be transformed due to the post multiplication of A_{k} by E_{k} as

$$
\left.\begin{array}{ll}
\begin{array}{l}
a_{k i}=0 \\
a_{i j}=a_{i j}-\left(a_{k j} j\right. \\
\left.a_{k k}\right)
\end{array} & a_{i z} \\
& i=k+1, k+2, k+3, \cdots, n-1, n \tag{i:}\\
& j=k+1, k+2, k+3, \cdots, n-1, n
\end{array}\right]
$$

and the remaining will remain unchanged. The a 's on the $\mathrm{r} h \mathrm{~s}$ of [ii] are the elements of A_{k} throughout the transformation and not in ary case the elements of $A_{k} E_{k}$.

Now $A_{k} E_{v}$, has the same locations as A_{k} and to find $E_{k}^{-1} A_{k} E_{k}$ we will refer to the elements of A_{k}, since $A_{k}=A_{k} E_{k}$. Due to the pre multiplication by E_{k}^{-1} the transformed elements of $A_{k}\left(i . e . ~ A_{b} E_{k_{k}}\right)$ will be

$$
\begin{align*}
& a_{k j}=\sum_{p=i 0+1}^{n} a_{p \mathrm{j}}\left(a_{k p} / a_{k k k}\right)+a_{l j j}, \tag{ii1}\\
& j \leq k \tag{1v}\\
& a_{k j}=\sum_{p=k_{k-1}}^{n} a_{p j}\left(a_{k p} / a_{h z i}\right), \quad j>k \\
& j=1,2,3, \cdots, n-1, n .
\end{align*}
$$

The rest of the elements of $A_{k}\left(i e . A_{k} E_{k}\right)$ will remain unchanged fora particular k. The elements $a_{k p} / a_{h k}$ were the elements of the original matrix A_{k}.e before the formation of $A_{l k} E_{k}$. The other elenents on the right had side of [iii] and [iv] were the elements of A_{k} (i.e. $A_{i} E_{k}$) and not in any case the elements of $E_{k}^{-1} A_{k}$. For a single iteration $k=1,2,3, \cdots, n-2, n-1$.
(b) Checks. Trace check is performed
(c) Mermory requirements. About $n^{2}+n+65$ words are necessary of which n^{2} locations are requircd for the storage of matrix A of order n, n locations for the storage of one row (or column) of A, and 65 locations for the program.
(d) Computing time per iteration. (refering to formulac i, $i l$, iii, iv)

It is about $\sum_{k=1}^{n-1}(n-k) v_{1}+2 \sum_{k=1}^{n-1}(n-k)^{2} v_{2}+\sum_{k=1}^{n-1}(n-k)^{2} r_{3}$

$$
+\left\langle\left[\sum_{k=1}^{n-1}(n-k)(n-k-1)\right]+(n-1)\right\rangle \nu_{4}+\tau_{1}(n)
$$

* '=' will slways mean 'is replaced by' in discussions under 'Programming Aspects'
where the first 4 terms with y 's deleted indicate number of divisions, nultiphications, subtractions and additions respectively, and $\tau_{1}(n)$ is the time needed by input and output units inclasive of that due to logical operations. y_{1}, r_{2}, y_{3} and w_{4} are the division, maltiplication, subtraction and addilion time respectively.

Hethod 2. (a) Formulae of $L-R$ transformation: We determine the R and I matrices as follows

$$
\begin{array}{ll}
R \text { matrix: } & r_{i j}=a_{i j}-\sum_{p=1}^{i-1} l_{i p} r_{i j}, \text { assuming } l_{i z}=1 \\
L \text { matrix: } & l_{i j j}=\left(a_{i j}-\sum_{p=1}^{j-1} l_{i p} r_{p j}\right) / r_{j j} \tag{vi}
\end{array}
$$

For actua) computation we assume a fixed value for j (which has to be taken as ! first) and then proceed varying $i=1,2,3, \cdots, n-1, n$ and as a result we find r_{11}, theri $l_{21}, l_{31}, l_{41}, \ldots, l_{n-1}, l_{n,}$, respectively. We then take $j \times 2$ and proceed varying $i=1,2,3, \ldots, n-1, n$ and as a result we hind $r_{13} . r_{22}$; then $l_{32}, l_{42}, l_{52}, \cdots, l_{n-1,2}, l_{12,2}$ respectively; mext $j=3, i=1,2$, $3_{3} \cdots n-1, n$; we find r_{13}, r_{23}, r_{33}, thea $l_{43}, l_{53}, l_{63}, \cdots, l_{n-1}, 3, l_{n}, 3$ respectively and so on. In case $r_{j j}=0$, the procedure will, however, collapse.

The general fomula for the product matrix $S=R L$, the reculs of which will constitute the first iteration step, is given as follows

$$
\begin{align*}
& s_{i j 1}=r_{i i} l_{i j}+\sum_{p=i+1}^{n} r_{i p} l_{p j} \tag{vii}\\
& s_{i j}=r_{i j}+\sum_{p=i+1}^{n} r_{i p} l_{p j} \tag{viii}
\end{align*}
$$

In the computer the elements $\left[a_{i j}\right]$ are replaced by the elements [sij] or in other words, no $s_{i j}$-storage is necessary. Therefore $s_{i j}$ in (vii) and (viit) can be substituted by $a_{i j}$ This makes the program more automatic and more efficient and reduces the computing time. Moreover n^{2} locations are preserved. It is important to note in this connection that storage often plays a very iaportant part in this type of problems.

In the second iteration the transformed matrix $\left[a_{i j}\right]$ will be treafed in the same way as it has been done for the first iteration with the otiginal matrix $\left[a_{i t}\right]$. This process will cantinue till the continuously trarsformed matrix $\left[a_{t}\right]$ becones almost an upper triangular matrix of L matrix becomes neary an identity matrix.
(b) Check. Trace check is performed.
(c) Memory requirements. About $n^{2}+n(n+1) / 2+n(n+1) / 2+90$ locations are necessary of which n^{2} locations are required for the matix A, $n(n+1) / 2$ for $L, n(n+1) / 2$ for R and about 90 words for the program.
(d) Computing time per iteration. (refering to formulae v, wi, wii, wiif) It is about

$$
\begin{aligned}
& y_{1} n(n-1) / 2+v_{2}\left\langle\left[\sum_{k=2}^{n} p(p-1) / 2\right]+(n-1)(n-2) / 2\right. \\
& \left.+\sum_{p=0}^{n-1}[n(n+1) / 2-p]-n\right\rangle+v_{3}[n(n-1) / 2+(n-1)(n-2) / 2] \\
& +\left\langle\sum_{n=2}^{n-1} p(p-1) / 2+\sum_{p=0}^{n-2}[n(n-1) / 2-p]\right\rangle v_{4}+\tau_{2}(n)
\end{aligned}
$$

where the first 4 terms with y 's deleted indicate namber of divisions, multipications, subtractions and additions respectively and $\tau_{2}(n)$ is the time needed by input and output units inclusive of that due to logical operations.

The difference between $r_{1}(n)$ and $\tau_{2}(n)$ is small, so that in the course of comparison these quantities can be neglected without afficting the process much.
*When $n=5$, i.e. for a matrix of order 5 , computing time per iteration for method 1 is $70 y_{1}^{\prime}+54 v_{3}^{\prime}+r_{1}(n)$ and for method 2 it is $96 v_{1}^{\prime}+60 v_{3}^{\prime}+r_{2}(n)$. When $n=7$, computing time per iteration for method 1 is $203 v_{1}^{\prime}+161 v_{3}^{\prime}+\tau_{1}(n)$ and for wethod 2 , it is $. ~ 60 \nu_{1}^{\prime}+182 v_{3}^{\prime}+\tau_{2}(n)$. When $n=5$, total storage required for method 1 is about 95 words while for method 2 it is 140 words. Therefore method 1 obviously saves on operational time and storage.

Results

Calculations in all the examples are carried out in 8 dit floating point aritbmetic and the results are retained correct up to 4 decimal places, unless otherwise stated. Zeros on the least significant side are avoided.

Example. 1 Matrix with double latent roots
$\left.A=\left[\begin{array}{rrrr}6 & 4 & 4 & 1 \\ 4 & 6 & 1 & 4 \\ 4 & 1 & 6 & 4 \\ 1 & 4 & 4 & 6\end{array}\right] \rightarrow\left[\begin{array}{rrrr}15 & 0 & 0 & 0 \\ 5 & 5 & 0 & 0 \\ 5 & 0 & 5 & 0 \\ 1 & 3 & 3 & -1\end{array}\right] \begin{aligned} & 12 \text { passes, } \\ & \text { method } 1, \\ & |A|>-375\end{aligned} \right\rvert\,\left[\begin{array}{rrrr}15 & 5 & 5 & 1 \\ 0 & 5 & 0 & 3 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & -1\end{array}\right] \begin{aligned} & 12 \text { passes, } \\ & \text { method } 2\end{aligned}$

[^0]Exampie. 2. Matrix with disorder of latent roots

$$
A-\left[\begin{array}{llll}
5 & 4 & 1 & 1 \\
4 & 5 & 1 & 1 \\
1 & 1 & 4 & 2 \\
1 & 1 & 2 & 4
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
10 & 0 & 0 & 0 \\
-3.5109 & 1 & -16.0218 & 0 \mid 15 \text { passes, method } 1, \\
2 & 0 & 5 & 0|1 A|=100 \\
1 & 0 & 1.5 & 2
\end{array}\right]
$$

The $(2,3)$ th element varies with the number of iterations. It becomes. .6173, .346, .1837, .0947, .0481, .0242, . $0121, .0059, .0060,-.0036$, $-.0249,-.12 \%,-.6407,-3.2043,-16.0218,-80.1091,-400.545$ in the Ist, $2 \mathrm{nd}, 3 \mathrm{rd}, \ldots .$. , 16 th and 17 th iterations respectively and does not ounverge.

$$
\rightarrow\left[\begin{array}{cccc}
-10 & -6.7513 & 2 & 1 \\
0 & 1 & 0 & 0 \\
.0001 & -225028 & 5 & 1.5 \\
0 & 0 & 0 & 2
\end{array}\right] \text { passes, method } 2
$$

The latent roots are $10,1,5,2$. The differences between A_{6}^{\prime} 's in method 1 and method 2 are due to rounding errors only. Round-off errors are, however, more in method 2.

Example 3 Real matrix with one pair of complex roots

$$
A=\left[\begin{array}{lll}
2 & 3 & 1 \\
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
+6 & 0 & 0 \\
-1.3373 & 2.5582 & 3.2722 \\
3 & -2 & -2.5582
\end{array}\right] \begin{aligned}
& 11 \text { passes, method } 1, \\
& |A|=18
\end{aligned}
$$

The exact roots are $6, \pm i \sqrt{3}$

$$
\rightarrow\left[\begin{array}{ccc}
6.0002 & -41108.1277 & 1 \\
.0001 & -82222.5661 & 2 \\
5.7987 & -.338 \times 10^{10} & 82222.5665
\end{array}\right] \text { 11 passses, method } 2
$$

The loth iteration step is $\left[\begin{array}{ccc}6.0001 & 3.5 & 1 \\ -.0001 & -.0002 & 2 \\ .0004 & 7.8946 & .0002\end{array}\right]$
It can be seen that the last two diagonal terms in the llth fteration are very farge. This is evidently due to the fact that the last two diagonal elements of the loth iteration step are very small and that they occut in denominators of (iv).

In beth the methods the last two diagonal terms go on oscillating with the rounding error due to division as follows:

Table

No. of itera. tions	Method 1	Method 2
1	$-17 \% 18$	$-17,18$
2	-.9391, -. 2609	-.9391, -.2609
3	137.9167, - 138.0001	137.9168, - 138.0001
4	. $6143 \times 10^{-1}, \quad .2076 \times 10^{-1}$	$\cdot 6143 \times 10^{-1}, \quad .2076 \times 10^{-1}$
5	- 1732.5731, 1732.5800	-17346.0023, 17346.0718
6	$-.5211 \times 10^{-2}, \quad-.1740 \times 10^{-2}$	$-.5234 \times 10^{-2}, \quad-.1724 \times 10^{-2}$
7	21463.6185, -21463.6192	18328.7695, - 18328.77
8	$\cdot 3662 \times 10^{-3}, \quad \cdot 122 \times 10^{-3}$	$.4883 \times 10^{-3}, \quad .2441 \times 10^{-3}$
9	46736.7895, - 46736.7895	-64673.3895, 64673.3895
10	0, 0	$-.2441 \times 10^{-3}, \quad .2441 \times 10^{-3}$
11	2.5582, -2.5582	-82222.5661, 82222.5665
12	$.2739 \times 10^{-4}, \quad-.3074 \times 10^{-4}$	0, 2441×10^{-3}

The above tables also shows the effect of rounding errors due to divisions in both the methods. The rounding errors appear so play more important part in method 2.

If a real matrix possesses a pair of complex roots in its $i-t h$ and $(i+1)$ th rous, the elements in the i-th row and those in the i-th column below the diagonal ${ }^{13}$ will not converge in the normal way; the diagonal elements in the ith and $[i+1]$ th row may go on oscillating as has been shown above.

Example 4. Matrix of order 4 with a pair of complex roots

$$
A=\left[\begin{array}{cccc}
4 & -5 & 0 & 3 \\
0 & 4 & -3 & -5 \\
5 & -3 & 4 & 0 \\
3 & 0 & 5 & 4
\end{array}\right]
$$

Exact roots; 12, $1 \pm \mathrm{i} \sqrt{\prime} 5,2$

For real roots the first and last diagonal elements of A_{k} converge to 12 and 2 after 15 th interation For complex roots the $[2,2]$ th, $[2,3]$ th, $[3,2]$ th and $[3,3]$ th elements do not appear to converge in the normal way. In the 7th iteration ibey become

$$
B=\left[\begin{array}{cc}
.0072 & -5.1709 \\
5.042 & 1.9336
\end{array}\right]
$$

Now the roots μ_{2}, μ_{3} of $B E$ can be given by

$$
\left|\begin{array}{cc}
.0072-\mu & -5.1709 \\
5.042 & 1.9336-\mu
\end{array}\right|=0
$$

Therefore $\mu_{2}, 3-9704 \pm$ i 5.0145
The divergence of μ_{2}, μ_{3} from the exact roots are due to rounding errors. [n the case of single or multiple pairs of complex roots rounding errors play a very important part. These errors can be reduced by increasing the number of digits of the goating point arithmetic ${ }^{17}$.

Example 5: A symmetric matrix with distinct latent roots (convergence is slow for this particular matrix) :

$$
\begin{aligned}
A=\left[\begin{array}{rrrr}
2 & 1 & -1 & 2 \\
1 & 3 & 2 & -3 \\
-1 & 2 & 1 & -1 \\
2 & -3 & -1 & 4
\end{array}\right] & \rightarrow\left[\begin{array}{ccccc}
7.4683 & 0 & 0 & 0 \\
-1.2335 & 3.2753 & 0 & 0 \\
-4.1801 & -44262 & -1.6405 & 0 \\
2 & 2.357 & 9146 & .8969
\end{array}\right]\left[\begin{array}{c}
15 \text { passes, } \\
\text { method } 1, \\
A l=-36
\end{array}\right. \\
& \rightarrow\left[\begin{array}{ccccc}
7.4683 & -1.2335 & -41801 & 2 & 2.3569 \\
-0.0003 & 3.2753 & -4.4261 & -1.6405 & .9147 \\
0 & 0 & -15 \text { passes, } \\
0 & 0 & 0 & .897
\end{array}\right] \text { method } 2
\end{aligned}
$$

Example 6: A defective matrix:

$$
\begin{aligned}
A=\left[\begin{array}{rrrr}
6 & -3 & 4 & 1 \\
4 & 2 & 4 & 0 \\
4 & -2 & 3 & 1 \\
4 & 2 & 3 & 1
\end{array}\right] & \rightarrow\left[\begin{array}{llll}
5.5713 & -0.024 & 0 & 0 \\
4.6833 & 49008 & 0 & 0 \\
2.5078 & -0.4179 & 0.825 & 0.0024 \\
4 & 5.7137 & -1.5374 & 0.7029
\end{array}\right] \text { method } 1
\end{aligned}
$$

Example 7: Wilson's matrix :

$$
\begin{aligned}
A=\left[\begin{array}{rrrr}
10 & 9 & 7 & 5 \\
9 & 10 & 8 & 6 \\
7 & 8 & 10 & 7 \\
5 & 6 & 7 & 5
\end{array}\right] & \rightarrow\left[\begin{array}{lllll}
30.2887 & 0 & 0 & 0 \\
42.27 & 3.3581 & 0 & 0 \\
10.0199 & 1.0071 & .8431 & 0 \\
5 & .7022 & -.3168 & .0102
\end{array}\right] \begin{array}{l}
11 \text { passes, } \\
\text { method } h_{1} \\
A=1
\end{array} \\
& \rightarrow\left[\begin{array}{llrrr}
30.2887 & 42.27 & 10.0199 & 5 \\
0 & 3.8581 & 1.0071 & .7022 \\
0 & 0 & .3431 & -.3168 \\
0 & 0 & 0 & .0102
\end{array}\right] \begin{array}{l}
\text { 11 passes, } \\
\text { method } 2
\end{array}
\end{aligned}
$$

Example 8: A stochastic matrix of order 4
A square matrix $A=\left(a_{i j}\right)$ with non-negative elements is called stochascic ${ }^{20}$ if

$$
\sum_{j=1}^{n} u_{i}=1 \quad i=1,2,3, \ldots, n-1, n
$$

Such matrices are of greai importance in the theory of probability.

$$
\begin{aligned}
& A=\left[\begin{array}{c}
-31.32 .33 .04 \\
.41 .12 .07 .4 \\
.21 .24 .25 .3 \\
.57 .15 .18 .1
\end{array}\right] \rightarrow\left[\left.\begin{array}{cccc|c}
1 & 0 & 0 & 0 \\
-.9335 & -.1555 & -.0368 & 0 & 14 \text { passes, } \\
-4.885 & 1.951 & -.0971 & 0 & \text { method } 1, \\
.57 & -.2061 & 01.9 & 0326
\end{array} \right\rvert\, \begin{array}{cc}
10.00 .8
\end{array}\right. \\
& \rightarrow\left[\begin{array}{cccc|c}
1 & .5009 & .2608 & .04 & \\
0 & -.1555 & -.3832 & .36 & 14 \text { passes, } \\
0 & .0812 & -.097 & .0835 & \text { meinod } 2, \\
0 & 0 & 0 & .0326 &
\end{array}\right.
\end{aligned}
$$

Example. 9. Hilbert's matrix
These matrices are typical examples of near singular matrices. Their singularity becomes more pronounced as their order is increased Inthe fohowing Hibert's matrices of order 3,4 and 5 have been considered, retiriing every element correct up to 8 decimal places.

Hilbert's matrix of order 3 (deteminant value $=.433 \times .0^{-3}$)

$$
\rightarrow\left[\begin{array}{ccc}
1.4083 & 0 & 0 \\
.8455 & .1223 & 0 \\
.3333 & .0647 & .2637 \times 10^{-4}
\end{array}\right] \quad 4 \text { passes, method } 1
$$

Method 2 gives the same results (correct up to 4 decimal places) in the same number of passes as method 1 .

Hilberts matrix of order 4 (determinant vaine $=.1653 \times 10^{-6}$)
$\rightarrow\left[\begin{array}{llll}1.5002 & 0 & 0 & 0 \\ 1.1031 & .1 \times 91 & 0 & 0 \\ .7178 & .1483 & .6738 \times 10^{-2} & 0 \\ .25 & .5746 \times 10^{-1} & .3918 \times 10^{-2} & .967 \times 10^{-4}\end{array}\right]$ 6 passes, meihod

Method 2 gives the same result as method. 1.
Hilbert's matrix of order 5 (determinant value $=.3743 \times 10^{-1 i}$)
According to both the methods the roots are $1.5671, .2085, .1141 \times 10^{-1}$ $.3055 \times 10^{-3}, .3282<10^{-5}$ in 7 passes.

Examiz 10.
$A=\begin{array}{cccc}-2 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2\end{array} \quad|A|=16$
Roos found by method 1 and method 2 are 2. 2, 2. 2. Roots obtained by 3.1 code (real code) of Eberlein ${ }^{16}$ are shown underscored in the mathx.

Ac:nowledgement

The author wishes to express his sincere thanks to Prof P. L. Bharnagar formaing keeniateresi in the preparation of this paper and to Prof. S. Dhawn for having kindly permitted the publication of this paper.

Reperfaces

1. Whanman, 1 . Compter $J .1955,1.90$

2 . \quad. Ibid. 1958, 直, 148
3. . . J. A.C. A7. 1959, 6, 336
4. ———— Comphier J., 1960, 3, 27
s. . . Nim. Math. , 1950, 2, 319
A. - . and Rollet \quad. Comphier $7,1961,4,177$

8. Francis, 3,G.F. . Mbid, 1961, 4, 265
9. \longrightarrow. \quad Ubid, $1961,4,332$
10. Forsythe G. E. and Henrict, P. .. Trans. Am. Mazh. Soc, 1963 , 94, 1
11. . . Gurvf. J Mech. 1952, 5, 191
12. Houschoider, A.S. and Baver, F. L. . . Nim. Marh. 1959, 1, 29
15. Futishauser, H. . . Nat. Bur. Stofte, Appl. Whow, Sur- 1958, No. 49, 47
14. Handscomb. ©. C. .. Computer J., 1962, 3, 139
15. Givens, W. .. J. Soc. Induri. Agple Masto. 1958, 6, 26

t\%. Sen, S.K. .. J. Indian Inss. of \$et. 1967, 49, 37
12. Pope, D. A. and Tompkins, C. .. J.A.C.A.. 195T, 4, 459
ts. Goddine, H. H., Murnay, F. J. and . . Ibd, 1959, 6, 59 Noumath vary.
20. Erauer, A. . "Recent Advances in Matrix Tharys" ebite by Sempather. H, Univ. af wiscomsia Mress, 1004,10 .

[^0]:
 $y_{3}=$ averafe tho for one addition or one subtraction.

