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ABSTRACT

A method consisting in finding a two dimensional elementary transformation
for obtaining eigen values has been discussed with details of programming aspecis
and it has been shown with the help of numerical examples that this method is as
efficient as L-R transformation so far as the number of iteration steps ars
concerned and moreover, it demands less machine time, less number of arithmetic
operations (particularly divisions and multiplications) per iteration and less
memory storage. Like L-R transformation this method is always stable for
positive d.finite matrices and takes substantially less machine time than Q-R

wransformation and moreover, can be used both for symmetric and unsymmetric
matrices,

INTRODUCTION

Jocobi’s iteration method for finding eigen values and eigen vectors of
symmatric matrices as revived by Von Meumann' for moderr large computers,
is well know.. and popular. A Jacobi-like method suggested by Eberlein'®™®
for ursymmeiric mairices has a wide range of application, but they requite the
caloulation of several square-root functions in each iteration leading to
rounding error and more computational time per iteration. The present
method, however, does not invelve calcution of afcresaid function thus
obviating such rounding error and saving on operational time. 1t reqguires
simple operations like addition, subtraction, multiplication and division while
however utilizing, liks the aforesaid methods, the principle of similar
transformation, Like L-R transformation the present method alsc may not
work in the case of singular matrices. In the following the method is discussed
vis-g-vis L-R transformation stressing the programming aspects. Numerical
examples are given to provide illustration. The relative computing tireas
well as memory requirements and number of arithmetic operations ase also

indicated.
METHCDS

Method 1: {Based on two dimensional elementary transformation).
This method consists in finding a sequence of two dimensional elementary
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trapsformations E, such that if F=1II E; then E"'AE are approximately

¥
diagonal with the approximations to the eigen values appearing on the
dizgonal, where A is 2 matrix of order n.  The E; which range over all two
dimensional subspaces are determined at each step of the iteration to reduce
to zero all the i-th row elements of 4 excluding, however, the first { elements.
The matrix &, will be an upper triangular’? matrix of the form

ey~1, j=1,2,3 .+ ,n
ey =Gy fO P=k+1 , k+2 k43, -« ,n5-1,n
50~ 0, p='l,2,3, cre o n=2,0-1; g=p+l, p4+2, %, n
P#H#K
and consequently Ex ! is also an upper triangular matrix of the form
gi=1, =123 -+, n-1,n
= lpfOur, Fe=k+l , k+2 , k43, 9., p
=0 p=1,2,3, ¢« , =2 ,n0~1; geup+ 1, p+2, ¢+, n

p=k
Now
Ei' dyEymdyyy , Aj=A , k1,23, ¢ ¢, n=2, 51

All the matrices 4, , kei, 2, 3, + v+, n~2, n-1 will assume the
same memory locations as the original matrix 4. According to the principle
of similar transformation, the roots of 4., and 4, will be the same. The
process will continue till almost all the elements above the left diagonal of
Ay turn out to be very small or zero depending on the accuracy desired.

Method 2: (L-R iransformation). A square matrix 4 can be expressed
uniquely as the product of a lower triangular matrix Z and upper triangular
matrix R, provided the diagonal elements of one of these matrices are
specificd.  In this method suggested by Rutishauser', ali the diagonal
elements of L are takenm as 1. If 4=4;, we can decompose 4, into L;
and Ry such that A, =L; Ry. The elements of L, and R, are determined
from the original matrix A;. We then form the reverse product Ry Ly. It
will be different from 4; . Let it be denoted by 4,. We can decompose A
into Ly and R, such that £, =~ Ly R,. Similarly R, Ly = Ay = Ls Ry and so on,
where 4, is the matrix formed by the product of R and L.

This yields an infinite sequence of matrices 4;. After a large number
of steps this process converges resulting in an upper triangular matrix Ay
while the lower triangular matrix converges to an identity matrix ; the number
of wansformations required for such convergence deperds on the nature of
the elements of the original matrix,

This L — R transformation is also a similarity transformation and hence
keeps the characteristic equation of 4,'s invariant,
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PROGRAMMING ASPECIS”

Method 1. (a) Formulaec of transformation: The elements of
matrix 4, will be transformed due to the post multiplication of 4;, by F, 25
Gy = O iek+ L, k+2, 543, -, n-1,n i
a; =6y - {aryfams) o i

iwk+1, k42, k%3, -, n~1,m
Jek+ L, k+2, k43, -,n-1Ln
and the remaining will remain unchanged. Thea’son therhs of [xi] are {he

elements of 4 throughout the trapsformation and not in any case the elements
of Az Fy.

Now Ay Ey has the same locations as 4, and to find E,;‘ Ay By we wilt

refer to the elements of Ay, since 4, = Ay E,.  Due to the pre multiplication
by Ej!the transformed elements of 4, {i.e. 4, E3) will be

n
ay=_ = . @py {upl i) + a0y, sk i
p=kt
< ! r
= 2 ay (akpr'al\k) s J=k {iv]
Pkl

J=1,2,3,- ¢, n-1,n

The rest of the elements of 4, {ie. A, F) will remain unchanged fora
particular k. The elements a,\p/akk were the elements of the original matrix
4y ie before the formation of 4, E,. The other elements on the right hand
side of [iii] and [iv] were the elements of 4, (i.e. Ay, E;) and not in any case
the elements of E;' 4;. For a single iteration k=1,2,3, -+, n—2, n-1

{b) Checks. Trace check is performed

(c) Memory requirements. About n'+ n+65 words are necessary of

which # locations are required for the storage of matrix o of order a,

locations for the storage of one row (or column) of 4, and 65 locations for
the program.

{d) Computing time per iteration. ({refersing to formulae i, i}, ifi, i)

+<Lg‘ (=) (5 —k - 1)_] +(n—l)> va+ 71 (m)

¢ "= will always mean ‘ is replaced by’ in discussions under ¢ Programming Aspects’

n-1 n-1 -1
It is about ;:21 —kyvi 422 (a~kPnm+2 (n -k
= k=l k=1
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where the first 4 terms with v’s deleted indicate nomber of divisions,
maltiplications, subtractions and additions respectively, and =, (n) is the time
needed by input and outpnt vuits inclusive of that due to logical operations.
vy e Vs and »y are the division, multiplication, subtraction and addilion time
respectively.

Method 2. (@) Formulae of L —~ R transformation: We determine the
R and [ matrices as follows

R matrix: ry = a;— 2 I, rp;, assuming Iy = 1 (v}
=4 =1
i-1
I, matrix ].]’f'.m (a; “p}dx b 7 Y s (vi}
>j =

For actua} computation we assume a fixed value for j (which has to be taken
s} first) and then proceed varying f41,2.3, -« ,n—1, n and as a result
we find rop, then By, By Ly, o 0 oy faoi, 1, Ta, ¢ vespectively,  We then take
j=2and proceed varying i=1,2,3,++ - ,n~1, n and as a result we find
ri rs then Dy I, lsa, o o o, fyoy, 2, 1y, 2 Tespectively; pext j=3, i=1, 2,
Lvron—1, n; we find riz, 7oy, 73, then g, big, Jean oy Taoy, s, B 1ESpEC-

~'v

tively and so on.  In case 7;; = 0, the procedure will, however, collapse.

The general formula for the product matrix § « FL, the resulis of which
will constitute the first iteration step, is given as follons

fvii]

5
Syp o 2y By 22 e by
s=f p=it1

n
Spe=ry A Z g ly {visi)
fl P+l

g
In the computer the elements [a;) are replaced by the elements [s,] or in
other words, no s, — storage is necessary, Therefore s, in (vii) and (viii}
¢2n be substituted by 4;;  This makes the program more automatic and more
efficient and reduces the computing time. Moreover n* locations are preserved.
it is important to nole in this connection that storage often plays a very
important part in this type of problems.

Io the second iteration the transformed matrix [g;] wili be treated in the
fame way as it has been done for the first iteration with the original matrix
fa]. This process will cantinue till the continuously tracsformed matrix {4,
bscomes almost an upper triangular matrix or L matrix becomes nearly o
identity matrix.

{(8) Check. Trace check is performed.
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{¢) Memory requirements.  About #*+n(n+1}/24n (n+ 1110
locations are necessary of which n? locations are required for the matriy 4,
a{n+1)/2for L, n{n+1}/2 for R and about 80 words for the program.

{d) Computing time per iteration. {referzing to formulae v, v, vii, yiii)
It is about

vin{n—-1)/2 +w <L§2p {p- 1}/2} +{(n-1) (n-2)/2

+”§ [n (n+1)f2 -—p} —71> +vsln(n=1)/24 (21} (n-2)/1)

#=0

¥ <:§: 2 =02+ ;ZS; [r(n-1)/2 —P}> va + 72 ()

where the first 4 terms with »’s deleted indicate nomber of divisions, multipli
cations, subtractions and additions respectively and 7, {n) is the time needed
by input and output units inclusive of that due to logical operations,

The difference between 7, (n) and =, () is small, so that in the course

of comparison these quantities can be neglected without aficcting the process
much,

*When n= 5, i e for a matrix of order 5, computing time per iteration
for method 1 is 70v} + 54v} + 7, {n) and for method 2 it is 96v, » 60v; + 7 (n).
When # =7, computing time per iteration for method 1 is 203v; + 161v; + = (n)
and for wethod 2, it is 60 + 182v3 + mp(n). When n =35, total storage
required fer method 1 is about 95 words while for method 2 it is 140 words.
Therefore method 1 obviously saves on operational time and storage.

RESULTS

Calculations in all the examples are carried out in § dit floating point
aritbmetic and the results are retained correct up to 4 decimal places, unless
otherwise stated. Zeros on the least significant side are avoided.

Example. 1 Matrix with double latent roots

4’;&441; 15000( A->[15551|

14614 _ | 5500{12 passes, 650 3|12 passes,
14164 l 50 5 0]method 1, | 003 3 mehod?2
L1446_‘ L133-1]al=-375 ,000-1]

“ilia-average time for one multiplication or one division
V3 =average time for one addition or one subtraction,
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Frample, 2. Matrix with disorder of latent roots

d=5at1l [ 0 0 o'[
4511 . 1 3 5109 H — 16,0218 giis passes, method i,
;1142) 1 0 5 OIAI 100
1124 N ¢ Ls 214

The {2, 3)th element varies with the number of iterations. It becomes,
§173, 346, .1837, .0947, .0481, .0242, ".0121, .0059, .00.0, - .0036,
0248, —~.1278, —~ .6407, - 3.2043, - 16.0218, -~ 80.1091, .-400.545

inthe Ist, 2nd, 3rd,, . . .., i6th and 17th iterations respectively and does not
copverge.
(10 - 6.7513 2 i
Y i 0 015 .
T 0001 —225028 5 1.5 | 15 passes, method 2
0 0 0 2|

The latent roots are 10, 1, 5, 2. The differences between 4,’s in method 1
and methed 2 are doe to rounding errors only, Round-off errors are, however,
more in method 2.

xample 3 Real matrix with one pair of complex roots

,4=iz 31 +6 0 0
2 3| _1 3373 25582 3.2722 3; Py metkod 1,
{ 31z -2 —2ss32] 1417

The exact roots are 6, 4.14/3

[6.0002 —41108.1277 1
0001 — 82222.5661 2
{57987 —.338 % 10'0  82222.5665 |

i 11 passses, method 2

The 10th iteration step is | 6.0001 3.5
—.0001 —.0002

.0004 7.8946 .0002 |

It can be seen that the last two diagonal terms in the I1th iteration are very
large. This is evidently due to the fact that the last two diagonal elements
of the 10th iteration step are very small and that they occur in demominators
of {iv}).
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In beth the methods the last two diagonal terms go on oscillating wighis
the ropuding error due to division as follows:

TABLE
?{;’;Zf Method 1 Method 2
tlons
1 —~17, 18 —~17, 18
2 9391, 2609 — G301, — -260%
3 137-9167, —~138-0001 137-9168, — 1380001
4 6143107 2076 x 107" 6143 % 107!, -2076 x 107t
5 - 1732-5731, 1732-5800 — 17346:0023, 17346-0718%
6 —-5211x107% - 1740 x 1072 — 5234 % 1072, 1724 % 1572
7 2i463-6185, - 21463:6192 18328-7695, — 18318-77
8 -3662x107%, -122x 1073 ©4883 x 1073, 2441 x 107°
9 467367895, — 46736-7895 — 64673-3895, 64673-3895
0 0 0 — 2441 x 1073, 2441 x 1072
11 2-5582, —2-5582 — 81222-5661, 82222-5663
12 2739 % 167%,  —~-3074 x 10~* 0, 2441 x 1072

The above tables also shows the effect of rounding errors due to divisions
in both the methods. The rounding errors appear to play more important
part in method 2.

If a real matrix possesses a pair of complex roots in its i-th and (F+1)}th
rows, the elements in the i-th row and those in the i-th column below the
diagonal'® will not converge in the normal way; the diagonal clements in the
itk and [7 + 1] th row may go on oscillating as has been shown above.

Example 4. Matrix of order 4 with a pair of complex roots
Aw T 1

T
!
i

Exact roots; 12, 1 + i4/5, 2

Por reel roots the first and last diagonal elements of 4, converge to 12 and 2
afier 15¢h interation  For complex roots the [2,2]th, [2,3]th, [3, 2}tk and
{3, 3]eh clemeats do not appear to converge in the normal way, In the Tl

iteration they becoms
B | <0072 — 51705
15-042 1-9336 |
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Now the 100ts w2, us of B can be given by

{20072 —u —5.1709 | -0

15-042 1-9336 - u| =
Therefore uz, s = 9704 £ i5-G145
The divergence of ua, us from the exact roots are due to rounding errors.
In the case of single or multiple pairs of complex roots rounding errors play
a very jmportant part. These errors can be reduced by increasing the number
of digits of the Boating point aritkmetict’.
Evample 5: A symmetric matrix with distinet latent roots {convergence is

slow for this particular matrix) :

7 -1 2] 7.4683  © 0 o

| | . 15 passes,
L1 3 2 3] o125 32153 o ¢ (
A=_1 2 1 -7 1-41801 - 44262 ~1.6905 o f;’f"h"d;é
1_ 2 -3 —t 4] | 2 2.357 otas 898 | =~
‘ 7.4683 —1.2335 - 41801 2
_, |—0.0003 3.2753 ~4.4261  2.3569 i5 passes,
| © 0 — 1.6405 9147, method 2
| o 0 0 897
Example 61 A defective matrix:
I 6 -3 4 1] [ 55713 ~0.024 0 o |
. 4 2 4 0,__); 4.68313 4 5008 0 [4] 514 passes,
J 4 -2 3 1 [ 2.5678 —0.4179 0.825 0.0024 | method 1
4 2 3 1_! | a 57137 ~1.5374  0.7029]
T 55713 1141 54818 1 _}
| 00985 49008 —7.257 —20478 14 passcs,
) 0 0 0.825  0.4358 | method 2
0 o ~0.0086  0.7029 ]
Example 7:  Wilson’s matrix :
10 9 7 51 302887 © o 0 :
Aol 9 10 8 6| |4227 33581 0 0 L pasees,
[ 7 8 10 7 10.0199  1.0071  .8431 J PR
Ls 6 7 3] 5 7022 — .3168 oxoz

0.2887 42.27 10.0199 ;
0 3.8581 1.0071 .7022 11 passes,
] 9 8431 ~ .3 168 method 2
0 0 ] .oxoz_ i
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Example 8 © A stochastic matrix of order 4

A square matrix 4 = {#;}) with wvon-megative elements is called
stochascic®® if

S g1 Pe1,2.3,....0-1,5

Such matrices are of great Importance in the theory of probability.

de 31323304 1 1 0 o o |
F41.12.07.4 | 9335 -~ 1555 ~.0368 O ’ 14 passes,
1.21.24.25.3 |77 | -4.885 1351  —.00Tt o method i,

[.57.15 .18 . . - 2061 o1L: 3 l
(3745080 | L 57 2 9 03261 {41 oo

I 5009 2608 .04 |
! -.1555 - 8832 .36 | 14 passes,

5

! 0 0812 ~.097  0835| method 2,

P9 0 0 0326

Example. $.  Hilbert's matrix

These matrices are typical examples of pear singular matrices, Their
singularity becomes more pronounced as their order is increased In the
following Hilbert’s matrices of order 3, 4 and 5 have been considered, retuin-
ing every elemant correct up to 8 decimal places.

Hilbert's matrix of order 3 {determinant value = -453 x ;07%)

[Laggs o 0 q
-1 84535 .1223 O 4 passes, method I
| 3333 0647 2687 x 107

Method 2 gives the same results {correct up to 4 decimal places) in the sume
number of passes as method 1,

Hilbert’s matrix of order 4 {determivant vaine = .1653 x 107°)

L5002 o 0 0 ]
L, L3 1ot 0 ) } ‘
[.7178  .1483 6738 x 1072 0

.25 5746 < 1071 3918 x 1077 967 x 10°F

" 6 passes, method 1
|
|

Method 2 gives the same result as method 1.
Hilbert’s matrix of order § (determinant value «.3743 x 1074}

According to both the methods the roots are 1.5671, .2085, .1141 x 1
L3059 x 1073, 3182 1 107% in 7 passes.
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Eeariple 10,

A=

Roots found by method I and method 2 are 2, 2, 2. 2,

2009_;
1oz D8
0120;1A!=16
o012,

219a

Roots obtained by

31 code (real code} of Eberlein®® are shown underscored in the mainx.

v

=

4

17,
1%,
1%,

2008 0 008 ©
&7 1982 0
—.008 0 2008 ©
o 008 O

-~ 008

Lot

, 10 passes.
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