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ABSTRACT

This paper describes the study of a mechanical system idealised by a single degree
of freedom system, when subjected to combinsd random and deterministic excitation,
The results reveal the similar features existing betwcen the case under consideration
and the case of a similar system subjected to pure sirusoidal excitation, which fact is
explained by the assumption that the random part of the combined excitation is a
narrow band process with a central frequency equal to the frequency of the deterministic
part of the excitation. The analysis has been extended to the case of a two degree of
freedom system,

INTRODUCTION

It is well known that mechanical systems are not always subjected to
deterministic forces such as a harmonic force of fixed frequency and amplitude.
Quite frequently one comes across systems with inputs which are random in
vature. Under such circumstances, the instantaneous values of the amplitude
and phase of the response have little meaning and so recourse is taken to
statistical analysis. Systems with random inputs have been extensively
studied among others by Thomson and Burton’, Crandall’, Robsen®,
Caughey and Stompf® It is possible that in some cases, the forces acting
on the systems, may, instead of being purely deterministic or purely random
in nature, be of a combined pature, j.e. partly deterministic and partly
stochastic in character,

The object of this paper is to study the response of linear mechanical
systems subjected to combined deterministic (sinusoidal or periodic type) and
rapdom (narrow band, Gaussian) excitation. Use has been made of the
siudies made by Rice’, Middleton®, Davenport and Root’ and others,
cencerning narrow band processes etc., in arriving at the response of the
system and its statistical properties. The mechanical system, for purposes of
analysis, is idealised by a linear single degree of freedom system with viscous
damping. The analysis has then been extended to systems with two degrees
of freedom.
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ANALYSIS

Consider a linear damped single degree of freedom system subjected 1o
combined deterministic and random excitation. A typical example for tais,
would be a system with random base motion, subjected to deterministic forces,
When the base motion is a direct consequence of regarding the base as a
lightly damyed system subjected to broad band random excitation, the randem
part of the combined excitation on the main system can be construed to bea
narrow band process,

The governing equation of motion for such a system can be written as

A+28%+pix=5(t) + F Cos (p.1—8) = F (1) ]

with Pi=K/M; B~C/2M; 2

where M, C and K are the systern parameters,
x is the displacement or response of the system
f{£) is a stationary narrow band Gaussian random variable
Fy is the constant amplitude of the deterministic part of the

excitation.
P is the frequency of the deterministic part of the excitation
8 is an arbitrary phase angle in the interval: (0—2n)

1t is possible 7 to separate 7(¢) into cosine and sine functious in the form

F()=£.(t) Cos p.t + £(2) Sin p. ¢ K]

Here the random coefficients f, {¢) and f, (¢) are normal variables with mean
zero. These variables will be statistically independent provided f(7) has a

narrow band specirum symmetrical about p,, the frequency of the deterministic
excitation. Writing,

) F{t)= F.(2) Cos p. 1 + F, (1) Sin p.r {4

gives

F (1) =F, Cos 8+ £.(£) {31
and F.(#) = F Sin 8 +£.(s) 6]
Hence the sum process F{r) can be put as

F(t) = Fz(2) Cos [p.t — ()] ]
whers

Fo(ty = Fe (1) Cos ¢ (1) {8

F. (1) = Fz(2) Sin ¢ () {4
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With these relations, it is possible to arrive at the probability demsity function
for the envelope of the sum process, Fg{z), and this is shown to be approxi-
mately Gaussian under certain conditions. {Refer appendix.)

Bxpanding f{¢) as an infinite series in Cosine and Sine functions,

S{t) = z (8, Cosp, ¢+ b, Sinp,1) [to]
with a<t<b; p,=nn/T)+p; T=b-a

where a, and b, are normally distributed random coefficients with mean zero,
Setting p, = pr + Pe in equation [10] and using the refation 3]

[ ()= = (a,cospyt + b, sin p} 1) {t1]
n=0

S (D)= = (—aysinp, ¢+ by cospri) {i2]
n=0

asti<h; ph -sZT\-;z/"T; T=b-a

Here  {0n0n> = (5 bnp s {ambn) = {anbu)=0; {a,p = {1 pp =0 {13]

Hener, LDy =0=<A00D f14]
Now, A TAI EXCACACD

=X g, a,c08 (phty — D 11) {15]
and A N EACYER G A EA LY )

= Zana,sin (prta—2nty) {16]

Allowing “a” and ‘b’ to tend to — oo and + oo respectively and noting
the fact, £, (¢) and 7, (¢) are stationary

Lt @y 0,) = 811,n S pm) dp[2 = [l
as T-¥®
Hence {filo) £ (1) =2t 2YT. Sp(pa) cos pp, {12 — 11}

r>w

~f2m). ] $:(p) cos(p-p sdp =P pe (1) L16]
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[

Simitarty (/. (8 £1 (2} D = = (1/2) J (B} Sin{p = p) 1 dp = ol (1)

27

, : 9]
as dpl =p=p,; te=tp=2; }/T=Ap —dp in the limit
Therefoze, iy =Lriy=0/2n) fo\ p)dp = o} [2q]
Also, Pcio}zl; ;UC(G)=0§ Pc{;'}"—‘Pa("?\s #c(z)—‘",‘«c —f);
Hengce, Rp(t) =Ry, (1) = 03/ (1) [21]
and i ()= —Rpp {2y = 0Fuc (1) [22]

[21] and [22] give the correlation properties of 7, and f,. When f(1) is »

narrowband process with its spectrum symmetrical about the central frequency
P f.{2) and f.(¢) become statistically independent normal processes and
sxpression [22] will vanish.

Now, considering the excitation as the sum of a series of impulses and
assuming the initial conditions to be x(0) =0 %{C); the response of the
system to this combined excitation is obtained in the form of a convolution
integral

§
x ()= [B—1) F{t,) dny 2]

Changing the variable 1y =2 —r

(D =[biz) Flt- 1) dr [24]
o

where A{r) = the impulse response of the given system

={7#7[p) Sin p1 # (25
with pi=pi—
Assuming siationary type of excitation with zero mean,
Expectation or mean of x{r}: (x{s) > =0 {26}
Therefore oi= 2 (0) > =R, (0) {7
Now,
R (v} =

(e x>
f (ry) fln(ra) F{twn) Flo+r—m) dr drs [2¢]
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=g terms in the anguiar brackets = Rp{r « 7 — 73)

Now, frum the relations previously sstablished,
Rp(e) =K F{1) F(s+7) > =L (F2 . 2¢%) Cos p, + {25]

[291 in [28] and integrating,
R () =L (F§+26%) Cos p.=/[( 03 — p2) + 4% 7]

Uising

[30]

“lesn Square Response and Variance :
oi= {2 {1) ) = A/[(1- PN +4 07 4] [3d
where p = ratio of the forcing frequency p. to the undamped patural frequency
Py of the system — p./pg
q= ﬁ/ﬂo
A=L{FI12al)/0d
Stztistical properties of the velocity x (1) and aceeleration x (#): wsing {26},

(x()p=0=3({)> {321

Rilz)= —(d*/d="} R, (v) = p}. R.(7) {33]

Also,
There"ore, mean square velocity « ( 28 > = 4y PZ/[(l __pz)x +4p ‘-72] [34}
where Ay =% (Fi+ze7)/rd
Similarly mean square acceleration = { ¥? (1} >

= 42 7[(1 =P 4457 4] 3]
where A =L (Fi+263).

Extending the analysis to the case of a two degree of freedom system, the
tquativns of motion can be written as

my %y + Ry Xy 4 Fey (3: — X)) = F{£) [36]

{571

my %a 4Ky (g = 21} = 0

where my, my, ki and k, are the system parameters and F(z} is, as in the
previous case, the combination of periodic and random excitation.

Using the method of orthogonal normal modes,

with Xy =Xy + X125 X =C Xn
Xg ==Xy + X223 X2 =€2 X2 {38]

gives the rssponses in the form,
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ko)

x,(z)cjg' {g{f—;—)& sinp!(t-f)‘}-fgp:;) sinpzfz—v)} dv {12

xz(t)—,ai‘ [c—‘ﬂi} sio p; (I—r)+£;—£—£:—) Sinpz(f—-ﬂ’)]d‘r (t=4)

My p

Here, en=kof(my X5+ kg); A= —pk (n=1,2)

k. ky+ k.
Bidl= -—r-n-“’--%-—!—;r—z; N A3 = ky bepfmymy
2 '

and My=my+eimy (n=1,2)
By transformation of variables [39] and [40] can be rewritten as,
£
2 O=f )+ b W Fle- )
£
%, () ==£ [evtmlrl +eab G Fle—)dr

whers By (2) = sin g, 7[M, p, (n=1,2)

B

ol

4]

[

143]

144}

As before, assuming a combined deterministic and random excitation on the

system, the statistical properties are determined.

Mean or Expectation of x; and x,:

As in the previous case, X == <X

Using [29], the autocorrelation functions are determined as
Rey(m) =t {4d4+B1C) (Fi+ 205} cosp.r
R (r) =2 (G A+ G B+ 200, C) (FE4+20%F) cosper

Here d=flmn), m=pn=1;
B~j{mn), m=nw2;

Ceflmn), nie=l;n=2;
where S (m, n)

w { 93 5I0 Pt 810 pat — (2,0 10 Py 4 P, SID P £)° e SiN P2
4 PrsDe [1 4 €OS Py t ©OS Py t =GOS p, 1+ (€05 pt + €08 B, 1)]}

- {Mm My P P (an "’pi) {Pg —Pﬁ)}

{4s)

f46]
[47}

48]
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Aean square Values of xy and x5
o5 (V=< () =3 (44 B+ CY (Fi+203) [+9]

oE (=300 =4 (443 B 420,60, C) (Fis20)) [50]

The mean square values of the wvelocities and accelerations bear the
sume ratios to the mean square responses as in the previous case,

ConCLUSIONS

Comparing the results obtained above for the case of a linear damped
single degree of freedom system subjected to combined deterministic and
random excitation, with the wellknown results for a similar system subjected
to pure sinusoidal excitation, it is seen that the mean square vajues of the three
quantities, viz , displacement, velocily and acceleration, bear the same ratio
[#3] in both the cases. This is because of the fact, that in the case of
combined excitation, the stocbastic part of the excitation iIs a narrow band
process symmetrical about the central frequency p, which happens to be the
frequency of the deterministic part of the excitation.

In view of the fact a lightly damped oscillator acts as a parrow band
filter when subjected to bread band random excitation, the results obtained
here correspond to the case of systems which are excited through an auxiliary
lightly"damped system subjected to ordinary broad band excitation.

Figures 1, 2 and 2 give the plot of the mean square values of the response,
its velocity and acceleration, respectively ¥s. the frequency ratio p, which is
defined as the ratio of the forcing frequency p, to the undamped natural
frequency p, of the system. These have been plotted for different damping
ratios and as is to be expected, the increase in damping ratios corresponds
to decrease in the mean square values. From Fig. 1. it is seen that 1be
effect of the frequency ratioc is very similar to the case of system subjected
to sinusoidal excitation the maximum value of the mean square response being
in the neighbourhood of the resonace (i e. p = unity) depending on the extent
of damping. The mean square velocity plot is similar to the mean square
response plot, but for the difference in the value at zero frequency. While
the mean square acceleration plot shows that as the frequency ratio imcreases
ihe value tends to unity. in case of mean square response and velogity, their
value tends to zero as frequency ratio increases beyond the peak values.

APPENDIX
The probability density function of the envelope Fg (1) can be arrived at
by first evaluating the joint probability density function £ (r),‘ £ A :mdvf),
which gives the joint p.d.f. of F,(f), ¢ and 8, which is then integrated with
respect to ¢ and 8.
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2 (Fe) ={Fgla}) exp. [~ (F} + Fi}j20%] I (Fy Exfo}) for F-0

= 0 otherwise,

For large values of Fy Fpfo? =2
3 1332

eZ 1_
B(Z) =y (1 Tz amzr ')

for values of Fy Fr> >0F

p(Fe)m l f_f;‘]” exp — [_(.“f&:f‘"gf}

oy ETT Fy

hen Fp is large compared to o s and Fp is vearly equal to ¥, the p.df. of the
evelope Fr of the sum process is approximately Gaussian.
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