
The manner in whicbglycinc is transported by the Pat body of t h e  rllkwopm 
i~ d r o  is showx I t  is observed that glycine is transported agamst a concentrafion 
gradient a n d  that a Michaeiis Menten-typc re!ationshi? exists brtwrcn amino acid 
concentration and tmncport. The t ranspor t  is inbiblied by metabolic poisons (1). 
Cornple:e inhibition of glycinc uptake (ImM) is observed when equimolai concen- 
tration of L-meihionine a:id L-proline are used and the transporr mechanism seems 
to be srereoipccific since D-me:hioninc inhib~tcd plycine absorption only .partially. 
Furihcr t h e  epect of pH, aolibiotics and heavy metal Ions o n  giycine uplake suppor t  
the v i ew  that glycine is transported by an active proccss. 

The fa t  b o d y  o f  t h e  si lkworm is physiologically an important organ and 
porscsses in addit ion t o  o ther  functions an  eficienr mechanism f o r  accnmulatin:: 
&sine and  chromatographic evidence indicates tha t  glycine tends to  remain 
f e e  in the i .  C h r i s t e n s ~ n  postulated tha t  a c c u m u l a ~ i o n  roay occur either 
t:lrough cl:emical b i n d h g ,  involving n o  specific traneport  as such,  o r  by an 
a-iivc Frocessz. Neinz poin ted  o u t  t h a t  if amino acids were to  remain free 
in the cell, their conscntration must b e  t h e  result of an  active t r a ? ~ s ~ o r t ~ .  
The present investigations were designed to elucidate na ture  arid c$.mctciistics 
of the giykine transporting n x c h a n i s m  i n  the  fa t  body. 

Twenty l o  thirty silkworm Iarva t  ( ~ o m h ~ x  mori L.) in the Ialer stages o f  
V icstar were snaesthetized with e ther  a n d  dissected In water a n d  their far body 

~ U C  was pooled together a n d  t h e  final homogeneous ~arnple wns used for l h c  
cspcrirnsnr, care  being taken t o  remave all other tissues a s  co:Wlrts!y 
Possible. T h e  fa t  body was gre-incubated in Ringer's sciulion fo5 30mb'' 
and then allowed to take giycine-2-C" dissolved in Ringer's §0!u!ion 
(soecrk cciivity - 5.; r n c , f m ~ ,  1.44 mgs-  g~ycine-2-~'4--disso1~ed i n  2 5 mi 
cf f#j"? . I  

to col?ol). The absorption of  glycine was f'ol!owcd by rhe r roccd~ l r t  
dttaiisd e~rlier ' .  
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To ascertain ahether absorption is a n  active uptake  process or 
exchange ditiusion the following experin-!rnt was conducted. 'The f;,t bcdY 
was pre-loaded with unlabelled giycine (200 nlM ; rxtrace;lular) for ha i f  an 
hour and subsequently transferred to Ringer's solulion contaiuine radlo-nc!ibe 
glycioe. Controls were run simuitanzously using Ringer's solution only for 
pre-incubaticn. Fo r  studying the uprake o f  glycine a t  O"C, both the  tissuc 
material as well as the  incubation mixture were kept in the  cold for 3-4 hours 
prior to carrying out  the  experinlent in tha cold room itself 

I n  all cases, the  radioactivity in t he  supernatan; was counted usinga 
thin-window Geiger-Muller tube. The dccreaw in rad~oaclivity of 
suspeusion ruediurn was found to be an adequate measure of glycine ahsorp~loi, 
for the following reasons: ( I )  No significant water transport cccwred dar n g  
incubation as  evidenced from the unnhsorbcd dye, Evans Biue a n d  from tbc 
dry weight of f a t  body before a n d  after incubation ; 12) N o  significant loaa 
in rndioactivity a s  "CO, occurred during manometric experiments under 
identical corlditions ; (3 )  I1Iost of <.lie radioacr iv i~y in the  tissue as veil as 
supernatant was recovered in the glycine afier 30 mts incubation. 

I .  Cnrsceniroiive upfuke ofgiycirre.-The rate of glycine en:ry into the 
fat body was measured a t  varying external conceotraiions ( 0  01 mM - 3.0 hi!) 
and it was found to he very rapid. When substrate concentration was plo!ied 
against reaction velocity a hyperbolic saturation curve was obtained u h x h  
can be explained by Michaelis-Menten formulation. The apparent Km value 
was found to be 0.03 mhf, by the Lineweaver-Burk plot (Fig. 1). The distribution 

FIG. 1 
Lie Weaver-Burk plot for substrate concentration 



:,:io of intraceliular to extracelIuiar conceorr8:ien exceedcd unity (Table I), 
i e ~ ~ ! t  that confirms the conclusion rhat factvrs other rhao passive diffusion 

ranrri'autc to the concentrative uptake of gtycine by the fat bodys. 

TABLE 1 
Effect of Substrate concentre.tion on ~ l v c i n c  uotakc 

, - 
~ , , ~ i ~ e  concentralion U,b uptake Moisture content Distribution t = _ _ f = l h l X  -- 

of the fat body ratlo G1vin1i cxtra- 
ccllillar 

---. - ... - -- - . 
(a) and (5)-On two different days  tberz cxperimsnts were performed usin:: V instar larrae 

Tim,-; 4 minutes for (a: 
10 minures for (b)  

2. E.zchnnge phenomenon.-The intrncellula~ accumuIation of free awioo 
ccids against 3 concent~al ion gradient may Occur by dn active transport or 
exchange diffusion with previously accumulated aaizto acid 6.7. Evenrhough 
the reaction rate observed in this instance was fast, from Fig. 2 i t  is clcar that 

0 FAT BODY ALONE 
@ PRE -LOADED FAT DGDY 



3. EffecP o f p H  nxd low temperature on &cine uptake.-The rt!arlon c( 
concentrarive uptake of glyiine lo pH is illustrated in Fig 3 and the maximcn 
activity was recorded berwten pH 7 to 8. Above pH 8, ihe percenlage upt;be 
of glycinc in bicarbonate buffer was  lower than in the phosphate buffer elid 

glycine transport was oplimum in the p H  range 7-  9. 

TIME FOR UPTAKE 2 MINUTES 

FIG. 3 
Viliiiiion of Glycine uptake w ~ i i L , , ? i  

Christensen and RiggsS and others have s1:oa.n in many tissues 
the concentrati-$e uptake o r  amino acids was neglipibie a t  low temperaturc 
(0°C). Present ses.alts (Table 2 )  show that glycine uptake was i ~ b i b i t e d  in 
coid by about 50% when compared to control uptrke a t  2 7 O ~ .  

1. Effect ofantibiotics, heavy rnetols on glyeine transport.-The effects of 
antibiotics on glycine uptake are shown in 'TabIg 3. Both cblorcrnyce~i~ 
and aureomycin inhibited strongly the absorption of glycine. This is in 
agreement with the results obtained by Gele, Gale sod Paine in bacterial 
~@nts$'" acd Iry Chsiscensen in Ehrlich mouse aacites oells (8). 



( n )  8 54 4 153 

- -- 
(oi a n t  (N-larvae from different batches of V instar silkworm. 

Tine:  1 minute. 

The result of  the ac t ion  o f  different concentrations of copper ions 
(CuFi) and rnsrruric ions jHgt ' i  on  glycine transport is shown in Table 3 
aod it may be seen therefrom tha t  the glycine uptake decreases in comparison 
srirh the control  experiments Riggs el all' showed tba t  a number of 
. ,Lacents o 11bc alanine, glutamate, C d c ,  Cu*+ or  Zn decrease tile glycine uptake 
with:.~it causing correspondiug loss of potassium. Here, the c~ncent ra t ion  of 
pot;: sium was not  measured a n d  get the  inhibitory elfect of heavy nlztal ions 
~ 2 s  evidenced in t h e  exiernai medium. Preliminary exper imrn?~ indicate the 
depei denre c f  the tr>>nsport on sodium and  potassium in the medicm. 

5. Comperi~ion wi th  oi,'rirr amEno acids.--When plycine was uscd 1 mM 
corcentmt io~ ,  equimolar concentrat ion o f  L-methionine and  L-prolice 
complettly inhibited the  giycine uptake (Tables 4 a n d  5) whereas higher 
concentraiions of these amino acids up to  a level of I0  m M  did no: reveal any 
etyect on the t ranspor tof  glycine. At loner concentrations (0.1 mM l o  I.OnlM) 
only L-proline st imulated the  @lycinc absorption a n d  the effecls cf other  
amino lcidv were found to  b e  negligible. Addition o f  L-leucine ?ind 
5-his:idine over a wide range of concentration did not show any e l k t  on  
$ysine uptake a t  1 nM level, D-methiooine, however, partially inhihiled ihc 
concenrratlve uptake of glycinz (Table 6). 
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T A ~ L E  4 
Efect of L-leucine and L-mrthionine on slycine uptzke (I mM)-(Time 1 minute) - 

Gly 1 m M  Gly lmM Gly lmhl G'ylmM Giy mM 
Gly 1 + + + 
m M   met I =.leu 5 L.,& 1 0  L-met ImM L-mct ! mM 

m M  m M  + i- 
mM L-leu SmM L-leu lOmM 

-- 

$ uptake 18.80 0.0 21.86 25.1 22.95 23.44 

TABLE 5 
Effect of L-nistidine and L-psoline on glycine uptake (1 mM)-[Time 2 minute) 

- - .- -- ---- 
Gly lmM Gly lrnM Gly lrnM Gly lmM Gly !mM Gly !mM 

Gly + + + t -- + 
ImM L-his L-his L-his L.pro L-bra L.pr5 

0.5 mM 1.0 m M  10mM 0.5 m h l  1.0mM 10.0mM -- -- - - ~ - 

a6 uptake 5.87 6.2 6.2 6.4 17.7 0.0 5.96 

TABLE 6 
Effect of D and L-methionine of glycine uotake (I mM)-(Time 2 minutes) 

-. . . - -. --- -. .- - 
G l y  1 mM Gly 1 m M  Gly 1 mM Gly 1 mM Gly 1 mM 

Substrata + + + + t 
Met 1 m M  Met 2 m M  Met 4 mM Met 8 mM Met 10 m M  

:o uptake Glycine 14.00 
a l o n e  

G l y c i n e  0.00 14.07 15 0 16.7 12.1 
+ L-met 
Glycine 6.7 10.00 7.7 -.... 6.5 
+ D-met 

DISCUSSION 

In vitro studies of g lyc ine  t r anspor t  by t h e  f a t  body of tbe s i lkworm show 
that the re  is a n  act ive,  i n  f a c t  a concen t ra t ive  u p t a k e  of the a m i n o  ac id  by 
the cel ls  s i n c e  it ge t s  t r a n s p o r t e d  aga ins t  a concen t ra t ion  gradient". 



Furthermore, the system fulfils some of t he  other criieria for the (:ansport of 
a solute, viz., inhibition of the transport by metabolic inhibirors a s  well as bi 
two of the wellknown competitive amino acids L-mcthionine and E-proline'3-& 
~t shows saturation kinetics. The transport appears to be stereospecific since 
D-methionine did not  inhibit glycine uptake completely. Christensen 
have shown that D-methionine is a much less effective inhibitor of glycine 
uptake than i s  L m e t h i ~ n i n e ' ~ .  Though the  reaction rate is very rayid, it is 
shown that it cannot be accounted for by exchange diffusion. Hence. an active 
transport mechanism can be postulated for t he  transport of piycine hy the fat 
body o f  the silkworm. 

Tho effects of other amino acids on  glycine transport not only indicate 
the different a5niries the system has for different ammo acids but also sugperr 
the presence of a t  least two mechanisms operating a t  different Km values and 
differing in their amino acid affinities. This  aspect will be considezed in 
greater details in a subsequent paper. 

The amino acid accumu:ating mechanismS presumably has a role in the 
maintenance of extracellular and  intracellular compartments for amino acids. 
Brictrux-Grcgoire and   lork kin'^, for example, showed definite differences in the 
muscle-haemolymph distribution ofaminoacids  in the silkworm, BonrbyxmoriL. 
 evenb book^^, on the other hand, presented evidence in favour of equal distri- 
burion of free amino N in fat body with tha t  in haemolqmph i n  Ptndcnia 
eridenfcr. But he does not rule out changes i n  individual amino acids 
Rzcently,  hen" revealed considerable differences observed In disrributiori of 
arniro acids between salivary gland and haemolymph in Drosophila larwe. 
The metabolrc dependence of absorption a s  well a s  release' argue strong:y for 
their role in amino acid distribution. The  exact mechanisms and their 
qunnritiltive con:ribution in vivo, however, remain l o  be  worked out. Such 
mscchnisrns, e.g., might be responsible for osmotic regulation encountcifd 
as in the  release of histidine and methionine t o  counteract the hypoamind 
acidaemia in the silkworm consequent on  silk synthesis22. 
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