SOME INTEGRALS
 INVOLVING THE EULER AND BERNOULLI'S NUMBERS

Ry Miss Swarinalata Prabiut
(Department of Applied Mathematics, Indian Inssitute of Science, Bangalore-12)

[Received: Decamber 5, 1967]

ABSTRACTE
This paper gives analytical expressions for the integrats of the type

$$
\int_{0}^{a} \frac{\operatorname{cinhh}^{\cosh }(\alpha t)}{\cosh (t)} e^{\beta t} t^{\gamma} d t
$$

Values of some other important integrals have been deduced from these.

1. The aim of the present note is to obtain adalyical expressions for the following integrals
(i) $\int_{0}^{a} \frac{\sinh (\alpha r)}{\cosh (\delta)} e^{\rho t} d t$.
(ii) $\int_{0}^{a} \frac{\sin h(\alpha t)}{\operatorname{son} h(a t h(t)} e^{\beta t} t^{\gamma} d t$

Where α, β, γ, a are constants.
In essence we first obtain expressions for

$$
\begin{aligned}
& \frac{\sinh }{\frac{\sin }{}(\alpha t)} \text { in terms of Euler's Numbers and } \\
& \cosh t
\end{aligned}
$$

starting from their generating functions
We then multiply these expressions by appropriate functions and integrate between given limits provided the integrals are convergent.

We can by simple operations deduce analytical expressions for integrals of the following type:

$$
\text { (iii) } \int_{0}^{\pi} \frac{\sin (\alpha z)}{\operatorname{sos} t} e^{\beta t} r^{\gamma} d t, \quad \text { (iv) } \int_{0}^{a} \frac{\sin (\alpha t)}{\operatorname{sos}(\alpha n} t e^{\beta t} t^{\gamma} d t
$$

and (v) $\int_{0}^{a} \frac{e^{\beta t} t^{\gamma}}{f(t)} d t_{s}$ where $f(t)=\cosh t, \sinh t, \cos t$ or $\sin t \cdot[1.2]$
It is also clear that we can deduce a chain of simpler integrals from the above integrals. In passing we mention that such integrals occur in many physieal problems such as gravitational instability of polytropic sheets in unform rotation ${ }^{1}$ and oscillatory problems associated with spherical grometries ${ }^{2}$.
2. Substituting $\geq 2 \varepsilon$ for t in the following relation

$$
\begin{equation*}
\frac{2 e^{x t}}{e^{z}+1}-\sum_{n=0}^{\infty} E_{n}(x) \frac{p^{n}}{n!}, \quad|t|<\pi_{s} \tag{2.1}
\end{equation*}
$$

and performing elementary algebraic operations, we get

$$
\begin{equation*}
\frac{\cosh (\alpha t)}{\cosh \xi}=\sum_{n=0}^{\infty} \frac{2^{2 n}}{(2 n)!} E_{2 n}\left(\frac{1+\alpha}{2}\right) t^{2 n}, \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\sinh (\alpha t)}{\cosh t}-\sum_{n=0}^{\infty} \frac{2^{2 n+1}}{(2 n+1)!} E_{3 n+1}\left(\frac{1+\alpha}{2}\right) t^{2 n+1} \tag{2.3}
\end{equation*}
$$

provided $|t|<\pi / 2$, where the following gives the expression for the Euler's polynomials $E_{n}[(1+\varepsilon) / 2]$ in terms of Euler's numbers E_{n} :

$$
\begin{equation*}
E_{n}\left(\frac{1+\alpha}{2}\right)=\sum_{k=0}^{n}\binom{n}{k} \frac{E_{z}}{2^{n} \alpha^{n-k}} . \tag{2.4}
\end{equation*}
$$

Similarly, starting from the generating function

$$
\begin{equation*}
\frac{t t^{x t}}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{a t}}{n!}, \quad|t|<2 \pi \tag{2,5}
\end{equation*}
$$

We can easily show that

$$
\begin{equation*}
\frac{\cosh }{\sinh t} \frac{(\alpha t)}{\sum_{n=0}^{\infty}} \frac{2^{3 n t}}{(2 n)!} B_{3 n}\left(\frac{1+\alpha}{2}\right) t^{2 n-1} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\sinh (\alpha t)}{\sinh t}=\sum_{n=0}^{\infty} \frac{2^{2 n+1}}{(2 n+1)!} B_{2 n+1}\left(\frac{1+\alpha}{2}\right) t^{2 n} \tag{2.7}
\end{equation*}
$$

provided $|\mathrm{s}|<\pi$, where Bernonili's polynomials $B_{n}[(1+\alpha) / 2]$ in terms of Bernouli's numbers B_{n} ate given by

$$
\begin{equation*}
B_{s s}\left(\frac{1+\alpha}{2}\right)=-\sum_{k=0}^{\pi}\binom{n}{k} B_{k} \alpha^{n-k}\left\{\frac{1}{2^{n-k}}-\frac{1}{2^{n-1}}\right\} \tag{1.8}
\end{equation*}
$$

3. Multiplying [2.2], [23], [2.6] and [2.7] by $e^{\text {Bi } t \gamma}$ and iotegrating with respect to from 0 to a we get

$$
\begin{align*}
& \int_{0}^{a} \frac{\cosh (\alpha t)}{\cosh t} e^{\beta t} t^{\gamma} d t=\sum_{n=0}^{\infty} \frac{2^{2 n}}{(2 n)!} E_{2 n}\left(\frac{1+\alpha}{2}\right) A(a ; \beta ; 2 n+\gamma), \tag{3.1}\\
& \int_{0}^{a} \frac{\sinh (\alpha t)}{\cosh t} e^{\beta y} t^{\gamma} d t=\sum_{n=0}^{\infty} \frac{2^{2 n+1}}{(2 n+1)!} E_{n+1}\left(\frac{1+\alpha}{2}\right) r(a ; \beta ; 2 n+1+\gamma)[3.2] \tag{3.2}\\
& \int_{0}^{a} \frac{\cosh (\alpha t)}{\sinh t} e^{F s} t^{\gamma} d t-\sum_{n=0}^{\infty} \frac{2^{2 n}}{(2 n)!} B_{2 n}\left(\frac{1+\alpha}{2}\right) I(a ; \beta ; 2 n-1+\gamma), y>0 \tag{3.3}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{\infty}^{a} \frac{\sinh (\alpha,)}{\sin h} \mathbb{e}^{\beta t} t^{\gamma} d t=\sum_{n=0}^{\infty} \frac{2^{2 n+t}}{(2 n+1)!} B_{2 n+1}\left(\frac{1+\alpha}{2}\right) I(a ; \beta ; 2 m+y) \tag{3.4}
\end{equation*}
$$

Where

$$
\begin{equation*}
I\left(a ; \beta ;{ }^{m}\right)=\int_{0}^{a} a^{f^{n}} x^{n} d t . \tag{3.5}
\end{equation*}
$$

when $\boldsymbol{H}_{6}>-1$ for convergence.
We can evaluate this integral when β is negative and equal to $-\beta_{1}\left(\beta_{1}>0\right)$ in terms of incomplete Gamma functions:

$$
\begin{equation*}
I(a ; \beta ; n)=\frac{1}{\beta_{1}^{n+1}} \gamma\left(n+1 ; a_{n}\right), \tag{3.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma(a ; x)=\int_{0}^{x} e^{-w} u^{a-1} d u_{p} \tag{3.7}
\end{equation*}
$$

When β is prositive, we have

$$
\eta(a ; \beta ; n)=\frac{1}{\beta^{n+1}} \int_{0}^{a \beta} e^{z} u^{n} d u
$$

wher the integral on the right hand side is of the form

$$
\begin{equation*}
\int_{0}^{a \beta_{u}} \frac{e^{f}}{z^{f}} d u, \quad \text { where } 0<f<1 \tag{3.9}
\end{equation*}
$$

or of the form

$$
\begin{equation*}
\int_{0}^{a \beta} e^{u \hbar} u^{f} d u, \quad \text { where } 0<f<1 \tag{3.10}
\end{equation*}
$$

or when $n>1$, can be reduced to the form [3.10] by using the reduction formula

$$
\begin{equation*}
\int_{0}^{a,} e^{u} u^{n} d u=e^{a \beta}\left(\alpha_{1}\right)^{n}-n \int_{0}^{a \beta} e^{u} u^{n-1} d u \tag{3.11}
\end{equation*}
$$

in the special case where n is a positive integer, the integrad [3.5] can be evaluated completely:

$$
\begin{equation*}
C(a ; \beta ; n)=\frac{(-1)^{n}}{\beta^{n+1}} n!\left[e^{\beta \alpha} \sum_{r=0}^{n} \frac{(-1)^{r}(a \theta)^{r}}{r!}-1\right] . \tag{3.12}
\end{equation*}
$$

4. On putting it for t in [22], [2.3], [2.6] and [2.7] and integrating with respect to s from 0 to a after multiplying by $e^{\beta r} t^{\gamma}$, we get

$$
\begin{align*}
& \int_{0}^{a} \frac{\cos (\alpha t)}{\cos t} e^{\beta t} t^{\gamma} d t=\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{2 n}}{(2 n)!} E_{2 n}\left(\frac{1+\alpha}{2}\right) I(a ; \beta ; 2 n+\gamma), \quad[4.1] \tag{4.1}\\
& \int_{0}^{a} \frac{\sin (\alpha t)}{\cos t} e^{\beta t} t^{\gamma} d t=\frac{\infty}{n=0} \frac{(-1)^{n} 2^{2 n+1}}{(2 n+1)!} E_{2 n+1}\left(\frac{1+\alpha}{2}\right) Y(a ; \beta ; 2 n+1+\gamma), \tag{4.2}\\
& \int_{0}^{0} \frac{\cos (\alpha t)}{\sin t} e^{\beta \cdot} t^{\gamma} d t-\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{2 n}}{(2 n)!} B_{2 n}\left(\frac{1+\alpha}{2}\right)[(a ; \beta ; 2 n-1+\gamma), \gamma>0 \tag{4,3}\\
& {[4.3]}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{0}^{\alpha} \frac{\sin (a n)}{\sin t} e^{\beta t} g^{\gamma} d t=\sum_{n=0}^{=} \frac{(-1)^{n} 2^{2 n+1}}{(2 n+1)!} B_{2 n+1}\left(\frac{1+\alpha}{2}\right) I(a ; \beta ; 2 n+\gamma) \tag{4.4}
\end{equation*}
$$

5. Dividing $[3.2],[3.4],[4.2]$ and $[4.4]$ by a and proceeding to the himit as $a \rightarrow 0$, we get

$$
\int_{0}^{2} \frac{e^{\beta t} 1^{\gamma+1}}{\cos \cos (t)} d t=\sum_{n=0}^{\infty} \frac{2^{2 n+1}}{(2 n+1)!}\left\{(a ; \beta ; 2 n+1+\gamma) X_{2 n+1}\left[\begin{array}{c}
1 \tag{5.1}\\
\left(-1 b^{n}\right.
\end{array}\right]\right.
$$

aตd

$$
\int_{0}^{2} \frac{e^{n t} \varepsilon^{\gamma+1}}{\sinh ^{2 n}(t)} d t=\sum_{a=0}^{\infty} \frac{2^{2 n+1}}{(2 n+1)!} I(a ; \beta ; 2 \beta+\gamma) \mathbb{Y}_{2 \pi+1}\left[\begin{array}{c}
1 \tag{5,2}\\
(-1)^{n}
\end{array}\right]
$$

where

$$
\begin{equation*}
X_{2 n+1}-\frac{(-1)^{n} \cdot 2 \cdot(2 n+1)}{\pi^{2 n+1}} \beta(2 n+1), \tag{5.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta(n)=\sum_{k=0}^{\infty} \frac{(-1)^{2}}{(2 k+1)^{2}} \tag{5.4}
\end{equation*}
$$

and

$$
\begin{equation*}
Y_{3 n+1}=\frac{(-1)^{n}(2 n+1)!}{(2 \pi)^{2 n}}\left\{1-\frac{1}{2^{2 m-1}}\right\} \zeta(2 n) \tag{5.5}
\end{equation*}
$$

Whese

$$
\begin{equation*}
\zeta(s)=\sum_{n=1}^{\infty} \frac{\|}{k^{n}} \tag{5.6}
\end{equation*}
$$

Similarly taking the limit when $a \rightarrow 0$, the reiations [3.1]: [3.3], [4.1] and [4.3] raduce to

$$
\int_{0}^{a} \frac{e^{\beta s} t^{\gamma}}{\cos (1)} d t=\sum_{n=0}^{\infty} \frac{E_{2 n}}{(2 n)!} I(a ; \beta ; 2 n+\gamma)\left[\begin{array}{c}
1 \tag{5.7}\\
(-1)^{\beta /}
\end{array}\right]^{*}
$$

and

Some particutar cases of the integrals like [3.1], [3.2], [4 1] and [d.2] have bean evaluated in reference 1 . Similarly, some integrals of the type [3.5] have been numerically evaluated in reference 2 .

[^0]
ACKNOWLEDGEMENT

The author is bighly indebted to Prof. P. L. Bhatnagar for suggesting the problem and for his very valuable help and encouragement during the preparation of this note and also to Mr. V. G. Tikekar for checking the calculations.

References

1. Bhamagar, P L.g . . Seventy-Fifth Birth Ariversary commemoration Volume of Prof. A. C. Banerji (under print).
2. Bhatnagar, P. Z., Renuka Rajagopalan .. J. Phys. Soc, Iapan, 1967, 22, 1077. and Bhatnasar, R. K.,
3. Bhatnagar, R. K. and Renuka . . /vael J. Tachnot (under print),

Rajagopalan.,

[^0]:

