PLANE COUETTE FLOW WITH SUCTION OR INJECTION AND HEAT TRANSFER FOR RIVLUNERICKSEN FLUID

SY V. G. TIKEKAR
(Department of Applled Marhematics, Indian Insilitite of Sclence, Bangolore-12, India)
[Received; May $1,1968!$

ABSTMACT

Following the method due to Bhatnagar (P. L.) [Jour. Tod. Trst. Sei., sol, 1, 1, 1063], we have discused the problem of suction and injection and that of head transfer in a plane Concte flow for Rivlin-Ericksen fluid. By perturbathon technique, regarding ine elastic parameter as small, we have built the solutions enthose obrained by Bhatnagar for Newtonian fluids, the latter forming the zeroth order solutions for the former. We bave used certain properties of fundamenta: solutions, of differential equations and sone transformations that enable us to solve the two-point boundary walue and eigen-value problems without using the trial and error method. In fact, each integration provides us with a solution for z suction parameter and the corresponding Reynolds mamber without imbosing the condition of smallness on them. Yovestigations on other non-Newtoniamituids and other boumding geometries will be published elsewhere.

I. INTRODUCTION

Bharnagar has given a method for solving the problem of suction and injection and of heat transfer for Newtonian fluid in a plane Couette flow whithout imposiag the conditions of smallness on the suction parameter or such similar conditions on the Reynotds number to allow the series solution. In this paper we have exterded these techniques to non-Newtonian fuid denned by the following constitative equation given by Rivlin. Ericksen:

$$
\begin{equation*}
T_{i f}=-p \delta_{i j}+\phi_{1} E_{i j}+\phi_{2} D_{1 j}+\phi_{3} E_{3 m i} E_{m j}, \tag{1.1}
\end{equation*}
$$

where $T_{1 f}$ is the stress tewior, $B_{\text {if }}$ are the kronecker deltas.

$$
\begin{equation*}
E_{i j}=\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial w_{j}}{\partial x_{i}} \tag{1.2}
\end{equation*}
$$

is the rate of strain teosor,

$$
\begin{equation*}
D_{i j}=\frac{\partial a_{i}}{\partial x_{j}}+\frac{\partial a_{i}}{\partial x_{i}}+2 \frac{\partial u_{m}}{\partial x_{i}}=\frac{\partial u_{m}}{\partial x_{j}} \tag{1.3}
\end{equation*}
$$

is the acceleration gradient tensor and $\phi_{1}, \phi_{2}, \phi_{3}$ are respectively the coneficients of viscosity, visco-elasticity and cross-viscosity.

The solutions obtained by Rhatnagar form the zeroth order solutions for the present case. We have obtained the solutions for the Rivin-Ericksen fuid using the perturbation echnique regarding the elastic parameter as small. Wo have used certain properies of fundamental solutions of differential equations and some transformations that enable us to solve the two-point boundary value and eigen-value problems without using the trial and error method. In fact, each integration provides us with a selation for suction parameter and the corresponding Reynolds number without imposing the condition of smallness on them We have applied the suction or injection only on the fixed plate so that the usual boundary condition on the cross fow, namely the injection at one plate is equal to the suction at the other, has not been employed.

2. Basic Equations of the Problem

Let the infinite plate $y=0$ be stationary, while the plate $y=a$ be moving with uniform velocity U_{0} in the direction of the x-axis. We maintain these plates at constant tenmperatures T_{0} and T_{1} respectively. Moreover, uniform injection or suction with velocity $v= \pm v_{0}\left(v_{0}>0\right)$ is a pplied on the plans $y=0$, while the upper plane is non-porous. Here the pius sign refers to injection and the minus sign to suction.

Since we have taken the suction or injection to be whform, we assume that the crossvelocity o is a function of y alone. We shall use the dimensionless variables u, v, x, y, p, θ for

$$
\frac{u}{U_{0}}, \frac{v}{v_{0}}, \frac{x}{a R}, \frac{v}{a}, \frac{p}{\rho U_{0}^{2}}, \frac{T-T_{0}}{T_{1}-T_{0}}
$$

respectively and denote the suction parameter v_{0} of $/ \phi_{1}$, Reynolds number $a U_{0} \rho / \phi_{1}$, Prandtl number $\phi_{1} C_{p} / k$, Eckert number $U_{0}^{2} / C_{p}\left(T_{1}-T_{0}\right)$ and nonNewtontan parameters $\phi_{2} / \rho a^{2}$ and $\phi_{3} / \rho a^{2}$ by λ, R, P, E, K and S respectively.

In terms of the dimensionless parameters and variables, the equations of the problem and the boundary conditions reduce to the following;

$$
\begin{align*}
& \frac{\partial u}{\partial x}+\lambda v^{\prime}=0 \tag{2,1}\\
& u \frac{\partial u}{\partial x}+\lambda v \frac{\partial u}{\partial y}--\frac{\partial P}{\partial x}+\frac{\partial^{2} u}{\partial y^{2}} \\
&-K \lambda\left[v^{\prime} \frac{\partial^{2} u}{\partial y^{2}}+u v^{\prime \prime \prime}-v \frac{\partial^{3} u}{\partial y^{3}}+3 v^{\prime \prime} \frac{\partial u}{\partial y}\right]-2 S \lambda \frac{\partial u}{\partial y^{\prime}} v^{\prime \prime}[2.2]
\end{align*}
$$

$$
\begin{align*}
& v v^{\prime}=-\frac{R^{2}}{\lambda^{2}} \frac{\partial D}{\partial y}+\frac{1}{\lambda} v^{\prime \prime} \\
&+K\left[13 v^{\prime} v^{\prime \prime}+v v^{\prime \prime \prime}+4 \frac{R^{2}}{\lambda^{2}} \frac{\partial u}{\partial y} \frac{\partial^{2} u}{\partial y^{2}}\right] \tag{2,3}\\
&+S\left[8 v^{\prime} v^{\prime \prime}+2 \frac{R^{2}}{\lambda^{2}} \frac{\partial u}{\partial y} \cdot \frac{\partial^{2} u}{\partial y^{2}}\right] \\
& P\left[u \frac{\partial \theta}{\partial x}+\lambda v \frac{\partial \theta}{\partial y}\right]=\frac{1}{R^{2}} \frac{\partial^{2} \theta}{\partial x^{2}}+\frac{\partial^{2} \theta}{\partial y^{2}}+E P\left[4 \frac{\lambda^{2}}{R^{2}}\left(u^{\prime}\right)^{2}:\left(\frac{\partial u}{\partial y}\right)^{2}\right] \\
&+K E P\left[\frac{2}{R^{2}} \frac{\partial u}{\partial x}\left\{2\left(\frac{\partial u}{\partial x}\right)^{2}+\lambda v \frac{\partial^{2} u}{\partial x \partial y}\right\}+2 \lambda v^{\prime}\left\{\frac{\lambda^{2}}{R^{2}}\left(v v^{\prime \prime}+2\left(v^{\prime}\right)^{2}\right)\right.\right. \tag{2.4}\\
&\left.\left.+\left(\frac{\partial u}{\partial y}\right)^{2}\right\}+\frac{\partial u}{\partial y}\left\{u \frac{\partial^{2} u}{\partial x \partial y}+3 \frac{\partial u}{\partial x} \frac{\partial u}{\partial y}+\lambda\left(v \frac{\partial^{2} u}{\partial y^{2}}+v^{\prime} \frac{\partial u}{\partial y}\right)\right\}\right][2 .
\end{align*}
$$

with

$$
\left.\begin{array}{ll}
y=0: & u=0, \tag{2.5}\\
y=1: & u= \pm b, \\
y=1, v=0, & \theta=1
\end{array}\right\}
$$

Where a dash denotes differentiation with respect to y.
We note that the cross-viscosity coes not contribute to the energy equation in the present case of two-dimensional plane metion.

3. Solution of the Flow Problem

From [2.1], we have

$$
\begin{equation*}
{ }^{u}(x, y)=-\lambda v^{\prime} x+z_{0}(y), \tag{31}
\end{equation*}
$$

where $w_{0}(y)$ is an arbitrary function to be determined later. Equation [3.1] determines $u(x, y)$ in terms of $u_{0}(y)$ and $v(y)$.

Using [3.1] in [2.3] and integrating it, we get

$$
\begin{align*}
p(x, y) & =\frac{\lambda^{3}}{R^{2}}\left[-\frac{1}{2} v^{2}+\frac{1}{\lambda} v^{\prime}\right]+K \frac{\lambda^{2}}{R^{2}}\left[6\left(v^{\prime}\right)^{2}+v v^{\prime \prime}\right]+4 S \frac{\lambda^{2}}{R^{2}}\left(v^{\prime}\right)^{2} \\
+2(2 K+S) & {\left[\frac{\lambda^{2}}{2}\left(v^{\prime \prime}\right)^{3} x^{2}-\lambda x u_{0}^{\prime} v^{\prime \prime}+\frac{1}{2}\left(u_{0}^{\prime}\right)^{2}\right]+p_{0}(x) } \tag{3.2}
\end{align*}
$$

where $p_{0}(x)$ is another arbitrary function to be determined later. Equation [3.2] determines $p(x, y)$ in terms of $v(y), u_{0}(y)$ and $p_{0}(x)$. We note that the cross-viscosity contributes to the pressure.

Using [3.1] and [3.2] in [2.2] and concentrating on the powers of x that occur in the resulting equation, we find that we should take the following expression for $d p_{0}(x) / d x$:

$$
\begin{equation*}
-d p_{0}(x) / d x=c_{2}+2 c_{1} x \tag{3,3}
\end{equation*}
$$

whie c_{1} and c_{2} are constants and then this equation breats into the following tho equations which are independent of x :

$$
\begin{align*}
& \lambda v u_{0}^{\prime}-\lambda u_{0} v^{\prime}+K \lambda\left[w_{0}^{\prime \prime} v^{\prime}+w_{0}^{\prime \prime} v^{\prime \prime \prime}-v u_{0}^{\prime \prime \prime}-u_{0}^{\prime} v^{\prime \prime}\right]=u_{0}^{\prime \prime}+c_{2} \tag{3.4}\\
& \lambda^{2}\left[v v^{\prime \prime}-\left(v^{\prime}\right)^{2}\right]-\lambda v^{\prime \prime \prime}=-2 c_{1}+K \lambda^{2}\left[\left(v^{\prime \prime}\right)^{2}-2 v^{\prime \prime} v^{\prime \prime \prime}+v^{\prime \prime}\right] \tag{3.5}
\end{align*}
$$

Equation [3.5] determines p for prescribed values of λ, K and c_{1}, while equation [3.4] then determines the value u_{0} for prescribed values of c_{2}.

Since $u=0$ at $y=0$ and $u=1$ at $y=1$ for all values of x_{2} we have from [3.1] the following boundary conditions to be satisfied by u_{0} and z^{\prime} :

$$
\left.\begin{array}{ll}
v_{0}(0)=0, & v^{\prime}(0)=0 \tag{3.5}\\
v_{0}(1)=1, & v^{\prime}(1)=0
\end{array}\right\}
$$

Therefore the boundary conditions for [3.5] are

$$
\left.\begin{array}{l}
y=0: v= \pm 1, \tag{3.7}\\
y=0 \\
y=1: 0=0, \\
v^{\prime}=0
\end{array}\right\}
$$

while those for [3.4] are

$$
\begin{equation*}
w_{0}(0) w 0, \quad w_{0}(1)=1 \tag{3.8}
\end{equation*}
$$

Wie shall hrst concentrate on the equation [3.5] and take

$$
\begin{equation*}
v=v^{(0)}+K v^{(1)} \tag{3.9}
\end{equation*}
$$

atd regard K as small. Letting

$$
\begin{equation*}
c_{1}-\vec{c}_{0}-\overrightarrow{K c_{1}} \tag{3.10}
\end{equation*}
$$

where $\overline{c_{0}}$ and $\overline{c_{1}}$ are constants, from [3.5] we get the following equations determining $v^{(0)}$ and $v^{(1)}$:

$$
\begin{equation*}
\lambda^{2}\left[\left(v^{(0)}\right)^{\prime}\right]^{2}-\lambda^{2} v^{(0)}\left(v^{(0)}\right)^{\prime \prime}+\lambda\left(v^{(0)}\right)^{\prime \prime}=2 \bar{c}_{0} \tag{3.11}
\end{equation*}
$$

ar $\lambda^{2}\left[v^{(0)}\left(v^{(1)}\right)^{\prime \prime}+v^{(1)}\left(v^{(0)}\right)^{p}-2\left(v^{(0)}\right)^{\prime}\left(v^{(1)}\right)^{\prime \prime}\right]=2 \bar{c}_{1}+\lambda^{2}\left[\left\{\left(v^{(0)}\right)^{*}\right\}^{2}\right.$
tak

$$
\begin{equation*}
\left.-2\left(v^{(0)}\right)^{\prime}\left(w^{(0)}\right)^{n g}+v^{(0)}\left(w^{(0)}\right)^{i v}\right]+\lambda\left(p^{(1)}\right)^{\prime \prime \prime} \tag{3.12}
\end{equation*}
$$

to be solved under the boundary conditions:

$$
\left.\begin{array}{ll}
y=0: v^{(r)}=+1, & \left(v^{(0)}\right)^{\prime}=0 \\
y=1: v^{(0)}=0, & \left(v^{(1)}\right)^{\prime}=0 \\
y=0: v^{(1)}=0, & \left(v^{(1)}\right)^{\prime}=0 \\
y=1: v^{(1)}=0, & \left(v^{(1)}\right)^{\prime}=0
\end{array}\right\}
$$

Equation [3.21] with boundary conditions [3.13] is exactly the problem that Bhatnagar ${ }^{3}$ has solved with $A_{1}=2 \bar{c}_{0}$ and as such we know $y^{(0)}$ for patti scalar λ. This forms the zeroth order solution for our case.

Equation [3.12] with boundary conditions [3.14] is a two-point boundary value problem with eigenvalue \bar{c}_{1}. This equation is of order three and we have four boundary conditions and hence the problem is fully determines. With the transformation

$$
\begin{array}{ll}
v^{(3)}=\left(2 \vec{c}_{0}\right)^{1 / 4} V^{(0)} / \lambda, & v^{(1)}=\left(2 \bar{c}_{0}\right)^{1 / 4} V^{(1)} / \lambda \\
1-y=Y=\xi /\left(2 \bar{c}_{0}\right)^{1 / 4}, & V^{(1)}=\bar{c}_{1} Z^{1 /} \bar{c}_{0}
\end{array}
$$

the equation [3.12] reduces to

$$
\begin{align*}
Z^{\prime \prime \prime} & +y^{(0)} Z^{\prime \prime}-2 V^{(0)} Z^{p}+V^{(0 ;)} Z \\
& \left.-1+p^{*}\left[1\left(V^{(0)}\right)^{B}\right)^{2}-2 V^{(0)} y^{(0) m}+F^{(0)} F^{(0) / 2}\right] \tag{0}\\
& =1+p^{*} f(\xi)
\end{align*}
$$

With the boundary conditions

$$
\left.\begin{array}{l}
\xi-0: Z=0, Z^{\prime}=0 \\
\xi-\xi_{0}=\left(2 c_{0}\right)^{1 / 4}: Z=0, Z^{\prime}=0
\end{array}\right\}
$$

where

$$
\begin{equation*}
p^{*}=\left(2 \bar{c}_{0}\right)^{3 / 2} / 2 \bar{c}_{1} \tag{A,B}
\end{equation*}
$$

and fence the sight hand member of [316] is known from the solution of the zeroth order problem and where a dash now denotes differntition what respect to ξ.

Solution of the equation [3.16] under the boundary conditions [3 17] is givens by

$$
Z_{x=} C_{0} Z_{3}+\sum_{i=1}^{3} f_{i}(\xi) Z_{i}+p^{*} \sum_{i=1}^{3} g_{i}(\xi) Z_{i}
$$

Where $Z=Z_{i}$, $(i=1,2,3)$ are the fundamental solutions of the homogeneous equation corresponding to [3.16] satisfying the usual boundrary conditions at $\xi=0$,

$$
\left.\begin{array}{c}
f_{1}(\xi)=\int_{0}^{\xi} \frac{Z_{2} Z_{3}^{\prime}-Z_{3} Z_{2}^{\prime}}{D(\xi)} d \xi, \quad g_{1}(\xi)-\int_{0}^{\xi} \frac{f(\xi)\left(Z_{2} Z_{3}^{\prime}-Z_{3} Z_{2}^{\prime}\right)}{D(\xi)} d \xi, \\
f_{\xi}(\xi)=\int_{0}^{\int_{0}} \frac{Z_{3} Z_{1}^{\prime}-Z_{1} Z_{3}^{\prime}}{D(\xi)} d \xi, \quad g_{2}(\xi)=\int_{0}^{\xi} \frac{f(\xi)\left(Z_{3} Z_{1}^{\prime}-Z_{1} Z_{3}^{\prime}\right)}{D(\xi)} d \xi, \tag{3.20}\\
f_{3}(\xi)=\int_{0}^{\xi} \frac{Z_{1} Z_{2}^{\prime}-Z_{2} Z_{1}^{\prime}}{D(\xi)} d \xi, \quad g_{3}(\xi)=\int_{0}^{\xi} \frac{f(\xi)\left(Z_{1} Z_{2}^{\prime}-Z_{2} Z_{1}^{\prime}\right)}{D(\xi)} d \xi,
\end{array}\right\}
$$

and C_{0} and p^{*} are the roots of the equations

$$
\left.\begin{array}{c}
c_{0} Z_{3}\left(\xi_{0}\right)+p^{*} \sum_{i=1}^{3} g_{i}\left(\xi_{0}\right) Z_{i}\left(\xi_{0}\right)+\sum_{i=1}^{3} f_{i}\left(\xi_{0}\right) Z_{i}\left(\xi_{0}\right)=0, \tag{3.21}\\
c_{0} Z_{3}^{\prime}\left(\xi_{0}\right)+p^{*}\left[\sum_{i=1}^{3} g_{i}\left(\xi_{0}\right) Z_{i}^{\prime}\left(\xi_{0}\right)+\sum_{i=1}^{3} g_{i}^{\prime}\left(\xi_{0}\right) Z_{i}\left(\xi_{0}\right)\right] \\
+\sum_{i=1}^{3} f_{i}\left(\xi_{0}\right) Z_{i}^{i}\left(\xi_{0}\right)+\sum_{i=1}^{3} f_{i}^{\prime}\left(\xi_{0}\right) Z_{i}\left(\xi_{0}\right)-0
\end{array}\right\}
$$

The solution of the equation [3.12] under boundary conditions [3.14] and the eigen value $\overline{c_{1}}$, for the suction parameter λ for which 0^{00} (ξ) are snown, are given by

$$
\begin{equation*}
v^{(1)}(\xi)=2 \vec{c}_{1} Z(\xi) / \lambda \xi_{0}^{3} \tag{3.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{c}_{\mathrm{i}}=\xi_{0}^{6} / 2 p^{*} \tag{3.23}
\end{equation*}
$$

Equation [3.9] will give u in terms of $w^{(0)}$ and $v^{(1)}$ for small non-Newtonian parameter K.

We shall now discuss the equation [3,4]. In order to avoid the specific assumption about the numerical value of the constant c_{2} aceurring in it, we take

$$
\begin{equation*}
u_{0}=U+\lambda^{2} y^{\prime}(y) \tag{3.24}
\end{equation*}
$$

If furthor we lise

$$
c_{2}=-2 \lambda c_{\lambda}
$$

and write

$$
\begin{equation*}
U=U^{(0)}+K V^{(1)} \tag{3.26}
\end{equation*}
$$

for small K, we get the following equations determing $Z^{(0)}$ and $Z^{(1)}$:

$$
\begin{align*}
& (1 / \lambda) U^{\left.(0)^{\prime}\right)}-v^{(0)} U^{(0)}+v^{(0)} U^{(0)}=0 \\
& U^{(0)}(0)-0, \quad U^{(0)}(1)=1 \tag{3.38}
\end{align*}
$$

with
and

$$
\begin{align*}
& (1 / \lambda) U^{(1)^{\prime \prime}}-v^{(0)} U^{(1)^{\prime}}-v^{(1)} U^{(0)^{\prime}}+0^{(0) \prime} U^{(1)}+v^{(1)^{\prime}} U^{(0)}-v^{(0)} U^{(0)^{\prime \prime}} \\
& +v^{(0)^{\prime \prime}} U^{(0) \prime}+p^{\left.(0)^{\prime \prime}\right)} U^{(0)}+v^{(0)} U^{\left.(0)^{\prime \prime}\right)}=0 \tag{3.29}
\end{align*}
$$

wist

$$
\begin{equation*}
V^{(1)}(0)=V^{(1)}(1)=0 \tag{3.30}
\end{equation*}
$$

where a dash denotes diferentiation with respect to y.
solution of the equation [3.27] under boundary conditions [3.28] is kaown in terms of the solutions obtained in reference [1]. Equation [3.29] under bonndary conditions [3.30] is a two-point boundary value problem and its solution is given by

$$
\begin{equation*}
U^{(1)}(y)=\frac{U_{\beta}^{(1)(1)}}{U_{\beta}^{(1)}(1)-U_{c}^{(1)}(1)} U_{a}^{(1)}(y)-\frac{U_{a}^{(1)}(1)}{U_{R}^{(1)}(1)-U_{\varepsilon}^{(1)}(1)} U_{\beta}^{(t)}(y) \tag{3.37}
\end{equation*}
$$

Whate $U_{a}^{(5)}(y)$ and $U_{\beta}^{(1)}(y)$ are the solutions of equation [3 29] under the bonndary conditions.

$$
\begin{array}{ll}
U^{(1)}(0)=0, & U^{(1)}(0)=a \\
U^{(1)}(0)=0, & U^{(1)}(0)=a \tag{533}
\end{array}
$$

snc
respectively.
Ther we obtain

$$
\begin{equation*}
x_{0}^{(1)}=U^{0}+\lambda^{2} v^{(1)} \tag{3.34}
\end{equation*}
$$

and tu as given by

$$
\begin{equation*}
u_{0}=u_{0}^{(0)}+\mathbb{K} u_{0}^{(1)} \tag{3.3}
\end{equation*}
$$

Tor small nom-Newconan parameter K.

4. Solution of Heat Thangfer Promlem

If we substitute the value of $u(x, y)$ from equation $[3.1]$ in equation $[2.4]$ and concentrate on the powers of x that occur in the resulting equation, we find that we must take

$$
\begin{equation*}
\theta(x, y)=\theta_{0}(y)+\theta_{1}(y) x+\theta_{2}(y) x^{2} \tag{4.1}
\end{equation*}
$$

If now, we equate the conficients of various powers of x on the the two sides of the resulting equation, we get the following three aquations in $\theta_{0}, \theta_{3}, \theta_{2}$:

$$
\begin{align*}
P\left[w_{0} \theta_{1}+\lambda v \epsilon_{0}^{\prime}\right]=(& \left(R^{2}\right) \theta_{2}+\epsilon_{0}^{\prime r}+E N\left[\left(q \lambda^{2} / R^{2}\right)\left(v^{\prime}\right)^{2}+\left(w_{0}^{\prime}\right)^{2}\right] \\
& +K E P\left[\left(\Lambda \lambda^{3} / R^{2}\right) v v^{\prime} v^{\prime \prime}+\lambda v u_{0}^{\prime} u_{0}^{\prime \prime}-\lambda v^{\prime \prime} u_{0}\left(u_{0}^{\prime}\right)\right] \tag{4.2}
\end{align*}
$$

$P\left[2 v_{0} \theta_{2}-\lambda v^{\prime} \theta_{1}+\lambda v \theta_{1}^{\prime}\right]=\theta_{1}^{\prime \prime}+E P\left[-2 \lambda v^{\prime \prime} u_{0}^{\prime}\right]$

$$
\begin{equation*}
+\lambda^{2} K E P\left[\left(v^{\prime \prime}\right)^{2} v_{0}+u_{0}^{\prime} v_{0}^{\prime} v^{\prime \prime}-v v^{\prime \prime} n_{0}^{\prime \prime}-v v^{\prime \prime} w_{0}^{\prime}\right] \tag{4.3}
\end{equation*}
$$

$P\left[-2 \lambda v^{\prime} \theta_{2}+\lambda v \theta_{2}^{\prime}\right]=\theta_{2}^{\prime \prime}+E P \lambda^{2}\left(v^{\prime \prime}\right)^{2}+\lambda^{3} K E P\left[v v^{\prime \prime} v^{\prime \prime \prime}-v^{\prime}\left(v^{\prime \prime}\right)^{\prime 2}\right]$
with

$$
\left.\begin{array}{l}
\theta_{0}(0)=\theta_{1}(0)=\theta_{2}(0)=0 \tag{4.4}\\
\theta_{0}(1)=1, \theta_{1}(1)=\theta_{2}(1)=0
\end{array}\right\}
$$

and
For small K, we set

$$
\begin{equation*}
\theta_{i}=\theta_{\mathrm{i}}^{(0)}+K^{\prime} \theta_{1}^{(1)}, \quad(i=0,1,2) \tag{4.6}
\end{equation*}
$$

afong with [39] anc [3.35] in the above equations to get the following equations determining $f_{s}^{(0)}$ and $\theta^{(1)},(i=0,1,2)$:

$$
\begin{align*}
& P\left[u_{0}^{(0)} \theta_{1}^{(0)}+\lambda v^{(0)} \theta_{0}^{(0)^{\prime}}\right] \\
& \quad=\left(2 / R^{2}\right) \theta_{2}^{(0)}+\theta_{0}^{(0)^{\prime \prime}}+E P\left[\left(4 \lambda^{2} / R^{2}\right)\left(v^{(0)^{\prime}}\right)^{2}+\left(w_{0}^{(0)^{\prime}}\right)^{2}\right] \tag{4.7}\\
& P\left[2 t_{0}^{(0)} \theta_{2}^{(0)}-\lambda v^{(0)^{\prime}} \theta_{1}^{(0)}+\lambda \theta^{(0)} \theta_{1}^{(0)^{\prime}}\right] \\
& \quad=\theta_{1}^{\left(0^{\prime \prime}\right.}+E P\left[-2 \lambda v^{(0)^{\prime \prime}} u_{0}^{(0)}\right] \\
& P\left[-2 \lambda v^{(0)^{\prime}} \theta_{2}^{(0)}+\lambda v^{(0)} \theta_{2}^{\left.(0)^{\prime}\right]}\right. \\
& \quad-\theta_{2}^{(0)^{\prime \prime}}+E P \lambda^{2}\left(v^{(0)^{\prime \prime}}\right)^{2} \tag{4.9}
\end{align*}
$$

wih

$$
\begin{align*}
& \theta_{0}^{(0)}(0)=\theta_{1}^{(0)}(0)=\theta_{2}^{(0)}(0)-0 \\
& \theta_{0}^{(0)}(1)=1, \quad y_{1}^{(0)}(1)=\theta_{2}^{(0)}(1)=0 \tag{4.10}
\end{align*}
$$

F1G.1($k=000$)

$$
\begin{align*}
& P\left[\theta_{0}^{(n)} u_{0}^{(0)}+\theta_{1}^{(0)} u_{0}^{(1)}+\lambda\left\{0^{(0)} \theta_{0}^{(1)^{0}}+v^{(1)} \theta_{0}^{(0)}\right\}\right] \\
& =\left(2 / R^{2}\right) \theta_{2}^{(1)}+\theta_{0}^{(1)}+E P\left[8\left(\lambda^{2} / R^{2}\right) v^{(0)^{\prime}} v^{(1)^{\prime}}+2 w_{0}^{(0)^{\prime}} u^{(1)^{\prime}}\right. \\
& -\lambda v^{(0)^{\prime \prime}} z_{0}^{(0)} z_{0}^{(0)} \tag{4.11}
\end{align*}
$$

F1G.2. $(k=-0.01)$)
$P\left[2 u_{0}^{(0)} \theta_{2}^{(1)}+2 u_{0}^{(0)} \theta_{2}^{(0)}-\lambda\left\{v^{(0)} \theta_{1}^{(1)}+v^{(1)^{\prime}} \theta_{1}^{(0)}-v^{(0)} \theta_{1}^{(1)}-v^{(B)} \theta_{1}^{(9)}\right]\right]$

$\left.+u_{0}^{(0)} v^{(0)^{\prime}} v^{(0)^{\prime \prime}}-v^{(0)} v^{(0)^{\prime \prime}} u_{0}^{(0)^{\prime \prime}}-v^{(0)} v^{(0)^{\prime \prime \prime}} u_{0}^{\left.(0)^{\prime}\right)}\right\}$
$P \lambda\left[v^{(0)} \theta_{2}^{(1) \gamma}+v^{(1)} \theta_{2}^{(0)^{\prime}}-2\left\{v^{(0)^{\prime}} \theta_{2}^{(1)}+v^{(1)^{\gamma}} \theta_{2}^{(0)}\right\}\right]$
$=\theta_{2}^{(1)^{\prime \prime}}+E P \lambda^{2}\left[2 v^{(0)^{\prime \prime}} v^{(1)^{\prime \prime}}+\lambda\left\{0^{(0)} v^{(0)^{\prime \prime}} v^{(0)^{\prime \prime \prime}}-v^{(0)}\left(v^{(0)^{\prime \prime}}\right\}^{2}\right\}\right]$

書行。 3
$(\mathrm{R}=-\mathrm{m}, 07, \mathrm{E}=5, \mathrm{P}=0.8)$
min

$$
\begin{equation*}
\theta^{(4)}(0)=\theta_{i}^{(1)}(1)=0,(i=0,1,2) \tag{4.54}
\end{equation*}
$$

Wach of the zeroth order equations，namely［4．7］，［4．8］，［49］under apecified boundary conditions［4．10］has been solved in reference［r］and we use them to solve the firs order equations，mamely［4．1．］［4．12］［4．13］under the boundary conditions given by［4 14］．Each one of these is also a two－point boundary value problem．We have the following solution for $\theta_{1}^{(1)}$ ，（i＝0，1，2） Erom the equationt［4．13］，［4．12］and［4．11］respectively oblaned by solving the equations in this order：

Where $\theta_{2 a}^{(1)}$ and $\theta_{2}^{(1)}$ are the solutions of the equation [4.13] under the boundary conditions.

$$
\begin{align*}
& \theta_{2}^{(1)}(0)=0, \theta_{2}^{(1)}(0)-a \tag{4.16}\\
& \theta_{2}^{(1)}(0)=0, \theta_{2}^{(1)}(0)-\theta
\end{align*}
$$

and
respritively.

Fig. 5

$$
(\mathrm{K}=-0.01, E=5, P=0.3, R=100)
$$

Similarly

$$
\begin{equation*}
\theta_{j}^{(1)}(y)=\left\{\frac{\theta_{i}^{(1)}(1) \theta_{\alpha}^{(1)}(y)-\theta_{i a}^{(1)}(1)}{\theta_{j}^{(1)}(1)-\theta_{i a}^{(1)}(1)} \theta_{\dot{(1)}(y)}\right\} \tag{4.18}
\end{equation*}
$$

where $\theta_{2}^{(i)}$ and $\theta_{3}^{(1)}$ are the solutions of [4.12] uader the boundary conditions

$$
\begin{align*}
& \theta_{1}^{(1)}(0)=0, \quad \theta_{1}^{(1)}(0)=\alpha \tag{4.10}\\
& \theta_{1}^{(1)}(0)=0, \quad \theta_{1}^{(1)^{\prime}}(0)-\beta
\end{align*}
$$

and
respectively and

$$
\begin{equation*}
\theta_{0}^{(0)}(y)=\left\{\frac{\theta_{0 \rho}^{(1)}(1) \theta_{0 a}^{(1)}(y)-\theta_{0 a}^{(1)}(1) \theta_{0 S}^{(1)}(y)}{\theta_{0 \beta}^{(1)}(1)-\theta_{0 \alpha}^{(1)}(1)}\right\} \tag{4.21}
\end{equation*}
$$

Where $\theta_{\rho / \in}^{(1)}$ and $\theta_{0 \beta}^{(1)}$ are the solutions of [4.11] under the boundary conditions.

$$
\begin{equation*}
\theta_{0}^{(1)}(0)=0, \theta_{0}^{(1) /}(0)=a \tag{4.22}
\end{equation*}
$$

$$
\begin{equation*}
\theta_{0}^{(1)}(0)=0, \theta_{0}^{(1)}(0)-\beta \tag{4.23}
\end{equation*}
$$

respectively.
We note that the specific choice of tha Prandil number and Eekert number is required during the discussion of θ_{2} and θ_{1} equations, but that of seynolds number does not come up till we discuss the fo-equaticns.

5. Numerical Results

We have performed the numerical calculations of $\theta^{(1)}, u_{0}^{(1)}, \theta_{2}^{(1)}, \theta_{1}^{(1)}, \theta_{0}^{(1)}$ for those values of $\lambda, R P, E$, which have been used in [1] as our solutions are based on the solutions obtained thercin. Figures 1 and 2 give the plots of $\varepsilon^{(1)}$ and $\varepsilon_{0}^{(1)}$ respectively. Figures 3 and 4 give the plots of $\theta_{2}^{(1)}$ and $\theta_{1}^{(1)}$ rispectively. for $E=5, P=08$, whale the Figure 5 gives the plot of $\theta_{0}^{(1)}$ for $E=5, P=0.8$ and $R=100$. We have then calculated $v, v_{0}, \theta_{2}, \theta_{1}, \theta_{0}$ by taking $K--0.01$ and their plots are sketched on those graphs which give the plots of the corresponding first order solution Figure 1 shows $v^{(1)}$ with dotzed plots, while v with continuous plots and same convention is fohowed in other figures also. The following table gives the values of λ and the corresponding vigen-values \bar{c}_{1} :

λ	1.4889	0.0825	1.2291	0.0842
c_{1}	100.0	0.1612	-53.35	-0.2545

For convenience of plotting, we have multiplied the values of the dependent variables by suitable quantities before plotting.

As a fieal remark we add that the cross-viscosity contributes only to the pressure but does not affect the other flow variables and the temperature distribution. This is in keeping with the remark which Bhatnagar ${ }^{2}$ has made in connection with the boundary layer equation on a gat plate.

Acknowledgements

I gratefully acknowledge my indebtedness to Professor P. L. Bhatagar for suggesting this problem and for his valuable guidance throughout the preparation of this paper. I am grateful to Miss S Swarnalatha Prabhu for programming this problem on Elliott 803 computer at A.A.L. Bangalore and for ber help in drawing the graphs of this paper.

References

1. Bhatnagar P. L. . . I. Indian lust Sery $1968,50,1$.
$2, \ldots \ldots$ Froc. Ind Acol. Sex, 196t. 53, 95.
