
Following the method due t o  Bhatnanar (P. L.) 11ou.r. InJ. Inst. Sci.. 50, 1, I ,  
19631, we h a w  discus-ed the  problem o f  suction and injection and that o f  heal 
transfer in n plans Coliette flow for Rivlin-Erickaen fluid. By pe;turbat~on technique, 
rcearding tbe elastic parameter as small, we have huilt rhe solutions cn tliosa 
obiaiiied by Bhatnagar for  Newtonian fluids, the latter forming the zeroth order 
solutions for the former. We h;tv2 used certain properties o f  fundamental 
solutions. o f  differential ?quat ion~ and some transformations that enable ur to  
solve rhc two-point boundary vatu6 and aigen-value probierns without using the 
trial and error method. In  fact, each integration grovidos us with a soiutlun for 
a yucrion parameter and the corresponding Reynolds number without imaosing the 
c o n d i t ~ m  o f  rmallness o n  them. lovcstigstions o n  oibsr  noi?~Ncwtoolan fiwids 
and othzr bolrnding geometries will be published elsewhere, 

~ h a i n a ~ a ~ '  has given n method %I s o l v i n g  :be p r o b l e m  of sue!ion and 
inject ion and of bel t  t r s n s f e r  For N e w t o n i a n  fluid i n  a p l a n e  Coue t t e  tloa 
without imposing t h e  o o n d i c l o i ~ s  of smallness on t h e  s u c i i o n  pa ramete r  or w c h  
s imilar  cond i t ions  on t h e  R e y n o l d s  n u m b e r  t o  ailow the  ser ies  soiution. 
In this paper w e  have e x t e n d e d  t h e s e  t e c h n i q u e s  to non-Newton ian  fluid 
dcSoed by tlie foilowing cons t i tu t ive  e q u a t i o n  given by Riv l in .Er icksen :  

ii hsie 2",) is !he stress tensor ,  Sij arc the K r o o c c k e r  deltas. 

ir  he rate o f  strain r m s o r ,  

in ~ l ? e  a c c e l c ~ i i t i o n  g r a d i e n t  t e n s o r  a n d  p,, +?, yi3 are respect ively the 
co-e%lcienrs of viscosity, virco-elasticity and cross-viscosity. 
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The solntions obtained by Bhatnagarl form Ihe zero:h order soliilions 
for t!le present case. We have obtained the solutions for the Rlvlin-EricLsen 
aujd using the perturbation technique regarding the elastic parameter as  small. 
WO have used certain properties of fundamental solutions, o f  d i f i renr ia l  
quations and some transformations that  enable us to solve the two-point 
boundary value a n d  eigen-vaiue problcms without using the trial a;;d error 
method. In fact, each integration provides us with a solution for a suction 
pame te r  aud the corresponding Reynolds number without. imposing the 
cmdition of smallness on them We have applied the suction o r  injectioia 
only on the fixed plate so  tha t  the  usual boundary condition on the cross 
Bow, namely the injection a t  one plate is equal to the suction a t  the other. 
h a  not been employed. 

2.  BASIC EQUATIONS Ok THE PKOBLFM 

Let the infinite plate y - 0 be stationary, while the plate p -- n be  moving 
wirh uniform velocity U,, in the  direction of the x-axis. We maintain these 
plates at  constant temperatures To and T, respectively. Moreover, uniform 
injxrion o r  suctlon wilh velocity u - 3- uo ( a o  > 0)  is applied on the plan* JJ  = G, 
while the  upper plane is non-porous. Hsre  the plus sign refers t o  injectiori 
and  he minus sign t o  suct im.  

Sincc we have taken the suction or injection to be ~ t ~ i f o r m .  W e  dSSUnl t  

:h&t the cross-velocity is a function of y alone. We shall use the dilaension- 
less varixbics u, u, x, y ,  p, 8 for 

respectiseiy and denote the suction parameter ua o ~ / @ ~ ,  Reynolds number 
5 ~ c p / p , ,  Prandtl n u n ~ b e r  + , ~ , / k ,  Eckert number u:/c,(T~- TO) and  ncn- 
Newtonian parameters @,lpn2 and by A.  R, P, E, K and S respectively. 

i n  terms of the  dimensionless parameters and variables, t h e  equations of 
the problem and the boundary conditions reduce to  the following: 



with 

y - 0 :  2-0, 0 -  + I ,  0 - 0  t. 
y - 1 :  u - 1 .  u - 0 ,  8 - 1  j 

nfhere a dash denotes differentiation with respect t o y .  

We note that the cross-viscosity does not coiltribute to the energy 
equation in the present case of  two-dimensional plnne motion. 

3. SOLUTION of: THE FLOW PRGBLEM 

From i2.11, we have 

" ( x ,  Y ) =  - A  o 1 x + u 0 ( 9 ) ,  [3 11 

wiiere is an arbitrary function to be determined later. Equation i3.11 
determines u  (x, y )  in terms of  ua ( y )  and 0 ( y ) .  

Using [3.1] in [2.3] and integrating it, we get 

where po ( x )  is another arbitrary function to  be determined later. Equation 
[3.2] determines p (x, Y) in terms of v (y),  uo ( y )  and po (x). We note that the 
cross-viscosity contributes to the pressure. 



Using L3.11 and 13.21 i n  e2.23 and concentrating on the powers of x that 
occur in the resulring equation, we find that  we should take the following 
expression for dpn (x)/n* : 

- dpo fx)ldx E cz + 2 CI X, ~3.31 

v.i.re c, and c, are constants and then this equarion breaks into the following 
i tw eqoationr which are independent of x: 

Equation [3.5] determines v for prescribed values of  A. K a n d  c,. while 
equation 13.41 then determines the value uo for prescribed values of c2. 

Since u - 0  a t  y - 0 and u - 1 at y - 1 for all values of x, wc have from 
I!.!] the following houudary conditions t o  be satisfied by y and u' : 

Therefore the boundary conditions for [3.5] are 

tV2 s h d l  first concentrate on the cquatior. [3.5] and taka 

- p + K ~ [ ' !  f 3 4  

and regard K as small. Letting - - 
~1 - q - Kcl, 



oo be solved under the boundary conditions: 

y c O :  v ! * ) -  * I ,  (JO)y, 0 
y - 4  (o"')' - 0 

Equation [3.11] with boundary conditions 13.131 is exactly the - 
that F3h,;tnagar1 has solved with A, - 2  co and as such we know o!') for 
eular A .  This forms the zeroth order solution for  our  case. 

Equation [3.12] with boundary conditions E3.141 is a two-point houndc.?? - 
value problem with eigeu-value c,. This equation is of order three ncC u: 
have four boundary conditions and  hence the problem is fully detetminec. 
With the rrarsforrnation 

p: - (2 - c , ) ~ : ~  Y ( @ ) ] x ~  dl) = ( 2 ; ~ ~ ~ ~  vfl)/~, j 

and hence the right hand member of 13 161 is known from the soluiion of the 
zeroth order problem and where a dash now denotes JiRertnritlion *ir> 
respect ro 5 .  

%hlion of the equation [3.16] under the boundary conditions [? 171 is 
giver: by 



q-bcre 2- 4, ( i -  1, 2, 3) are the fundamental sol l i t io~s  o f  the homogeneous 
cquzrion corresponding to  [3.16] satisfying the usual boundary conditions 
a i f - 0 9  

- 
and c1 = & / z ~ * .  

w e  shall now discuss the equation I3.41. In order to avoid the W e c j f i ~  
essunIption about t h e  numerical value of the constant c* oceurriiig in it ,  xe 
rake - U +  A%' (y). I3.241 



If further we use 

c, - - 2he: 3 .  ?.. 
[ A d j  

for smell K, me get t h e  following equntioris 3c?zrming 7it0) a s d  u'" t 
( ] / A )  u!OIP' _ p! [ j  (0:: + "(W L, (91 _ 0 
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sphere a dajil denoies dide~ent ia t ioo with respect to y. 

Solution of theequaiio-I 13.271 under boundary e n n d i t i < i t :  f3.281 is lizc-vr 
in tzrms of the smlutlons obilrined in reference [ , I .  Eouriion f3.291 nndx 
boundary conditions [3.301 is a two-point boundary va lue  piablrrn and i la  

solution is given by 

for siuaii nun-Newtonhn parameter K .  



If we substitute t h e  value of u (I, y )  from equation [ X f ]  in equation 12.41 
2nd concentrstc on the powers of x that  occur in the resul:ing equa%ion, 
we find !bat we must t ~ k e  

!:now, we e q u a t e  the crreiiizierts of wrious  powcrs of x on the  the two sides 
of ti:: resui t ins c i j u a i i ~ i i ,  wz get t h e  following rllree equations in  Bo, el, & :  

P;n 9, i 2 o t-'@ = (:/A') .Q2 + EC i EP [ j 4 h 2 ! ~ ' )  (of)' + 11:;)*1 

i- KEP [(~x'/R') oo' up' + hv r d ,  uy - Xu" uo ( I . ; ) ]  [4.2] 

P [ - 2  X O ' , J ~  + h 0411 - 8;' + EPA' (o"j2 .+ hJ KEP [our'ofb - nr (v"j2] 14-41 









and 



where OI'L %I),' are the sdutions of l4.121 undar the boundary condiiior.~ 

ei" (0) - 0, 8j"' (0) = [4.i9] 

where 0% and &$ are the solutions of 14.111 under the boundary conditions- 

&' ( 0 )  = 0, 01;"' (0) - a 14.221 



We note that  the specific choice of  tho Prandtl number and Eckert 
cumber is required during she discussion of Q2 and 8, equatioos, but that  of  
Reynolds number does c o t  come u p  till we discuss the PO - equatkns.  

We have performed the  numerical calculs&x~s of uol, US'), &", PI'), e!)  
f ~ i  those values of  h, 1: P.E, which have been used in [ I ]  as  our solutions are 
h i e d  on the solutions obtain& therein. Figures I and 2 give the  plots of 
oi"and u t l  respectively. Figrres 3 and 4 give the plots of el" and @" 
respectively. for E -  5, P =  0 8, wh;le the  Figure 5 gives ihe  p l o ~  of @:I' for 
E=J, PF@.S and R- 100. Wc have then calculated u, uo, 82, el, @D by asking 
R- -0.01 and their plots are sketched o n  those grapbs which give the plots 
of the corresponding first order solution Figure 1 shous u ('I with dotted 
plots, while u with continuous plots and same convention is followed in other 
figures also. T h e  following table gives tha values of h and the corresponding 
cigcn-values >, : - - _- 

h I 1.4889 : 0.0825 1 1.1291 I 0.0943 

For convenience of  plotting, we have niultiplied the values of  the 
d2oandent variablas by suitable quantities before plotting. 

As a final remark we add  that  the cross-viscosity contributes only to t t e  
pressure but does not affect the other Bow variables and the temperature 
distribution. This is in keeping with the ramark which Shatnagarz has made 
in connection with the boundary layer equation on a Eat plate, 
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