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ABSIRACT

Following the method due to Bhatnagar (P. L.} [Jour. fod. fost. Sci., 80, 1, 1,
1968], we have discusied the problem of suction and injection and that of heat
wansfer in a plane Couette flow for Rivlin-Ericksen fluid. By perturbation technique,
regarding the elastic parameter as small, we have built the solutions on thoss
obtained by Bhatnagar for Newtonian fluids, the latter forming the zeroth order
solutions for the former. We have used certain properties of fendamental
solutions, of differential eguations and some transformations that enable us to
solve the two-point boundary value and eigen-value problems without using the
trial and error method. In fact, each integration provides us with a sotution for
a suction parameter and the corresponding Reynoids namber without imposing the
conditisn of smaliness on them. Investigations on other non-Mewtonian fuids
and other bouading geometries will be published elsewhere,

1. INTRODUCTION

Bhainagar' has given a method for solving the preblem of suction and
injection and of heut transfer for Newtonian fluid in a plane Couette flow
without imposiog the conditions of smallness on the suction parameter or such
simnilar conditions on the Reynolds nvmber to aljow the series solution.
in this paper we have extended these technigues to non-Newtcnian fluid
defined by the following constitutive equation given by Rivlin-Ericksen:

. i 1
Tyw —pBiyt+ s £+ P2 Dy + ¢3 Eioy Ly AR
where T Is the stress tensor, y arc the Kropecker deltas,
Sdw; ou
Ey =2 8 {121
o Xj
is the rate of sirain tensor,
&g, sa Su du -
Dy =% (2O, g 2y D [i]
IX; Ay X ax

is the acceleration gradient temsor and ¢, ¢, 3 are respectively the
co-efficients of viscosity, visco-clasticity and cross-viscosity.
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The solitions obtained by Bhatnagar! form the zeroth order solutions
for the present case. We have obtained the solutions for the Riviin-Ericksen
fluid using the periurbation technique regarding the elastic parameter as small.
Wwa have used certain properties of fundamental solutions, of differential
squations and some transformations that enable us to solve the two-point
poundary valve and eigen-value problems without using the trial and error
method. In fact, each integration provides us with a solution for a suction
parameter and the corresponding Reynolds number without imposing the
condition of smallness on them  We have applied the suction or injection
oply on the fixed plate so that the usual boundary condition on the cross
flow, namely the injection at one plate is equal to the suction at the other,
has not been employed.

2. Basic EQUATIONS OF THE PROBLEM

Let the infinite plate y = O be stationary, while the plate y =2 be moving
with uniform velocity U, in the directios of the x-axis. We maintain these
plates at constant temperatures Ty and 7y respectively. Moreover, uniform
injection or suction with velocity o = + 2y (vg > 0) is applied on the plane y =0,
while the upper plane is non-porous. Here the plus sign refers to injection
and the minus sign to sucticn.

Since we have taken the suction or injection to be uvniform, we assume
that the cross-velocity o is a function of y alone, We shall use the dimension-
less variables v, v, x, v, p, 0 for

respectively and denote the suction parameter 2 ﬂp/¢x, Reynoids number
aUsp/$y, Prandtl number ¢,C,/k, Bckert number U3/C,{Ti— 7o) and non-
Newtonian parameters ¢2/p92 and ¢3/pa2 by A, R, P, E, K and § respectively.

In terms of the dimensionless parameters and varjables, the equations of
the problem and the boundary conditions reduce to the following:

Eid =0 {2.1)
3
3 2
u:—!i TIPS L. 4 _a.l;,
ox ay 3X  JY
.2 .3 5 [
¢ o £y STH b CU 2 iy
- e g S 2 sa e [2.2]
A [U o 8y By} ay
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with
y=0: #=0, s= 1, A=0 ]
y=1! u=i, v=0, H=1 !

[25]

where a dash denotes differentiation with respect to ».
We note that the cross-viscosity doess not contribuie to the energy
equation in the present case of two-dimensional plune motion.
3. SoLuTtionN oF THE Frow PROBLEM
From [2.1], we have

ulx, )= ~20 x+u(p), [31]

where ug () is an arbitrary function to be determised lates. Equation [3.1]
determines v (x, ¥} in terms of ug (y) and o (y).

Using [3.1] in [2.3] and integrating it, we get
A* 1 1 2 A
2ix, - [-—-2— 02+T v’} + Koz 6 ()% +v0"'} + 45 Ei—(u’)z
T 32
+2(2K+ 8) i% GRS - Axup ' —;— (u{,)l} +po (x}, 3.9

where pg (x) is another arbitrary function to be determined later. Equation
[3.2] determines p (x, y) in terms of v (y), uy {3} and pe (x). We note that the
cross-viscosity contributes to the pressure,
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Using [3.1] and [3.2] in [2.2] and concentrating on the powers of x that

oceur in the resulting equation, we find that we should take the following
sxpression for dpg {x)/dx:

—dpp (XY dn=c;+ 201 %, [3.3]

whire ¢; and ¢; are constants and then this equation breaks inte the following

wwo equations which are independent of x:
’

Avug-Auod + KA [ o' 40" —owd’ —up o =ud 42, [3.4]

oo = (Y = A0 = ~2¢; + EA WY - 20 0"+ 00 [3.5}

Equation [3.5] determines » for prescribed values of A, X and ¢, while
equation [3.4] then determines the value w, for prescribed values of ez
Since =0 at y=0and u=1 at y~1 for al] values of x, we have from
[3.1] the following boundary conditions to be satisfied by u, and o' :
u (0) =0, o {0)=0 } [3.6]
to(e=l, o (I)m0 '

Therefore the boundary conditions for [3.5] are

02 g - d, o w0

¥ vl 0 ! f3.9

Yel: pg=0, o -0 )
while those for [3.4] are

# (0) =B, (1) = 1. [3.8]

We shall first concentrate on the equation [3.5] and take

2w o9 L R0 f3.9]

and regard X ag small. Letting
[5.10}

= :0 - Kzl,
where ¢ and ¢, are constants, from [3.5] we get the following equations
determining ' and o:
AL - N oD (@ 4 A (o) =2 ;{) (3.14}
B2 (50 40 (5O - 2 (xP) (1)) =22 4 RL{(V)}
tah '

~ 269 () 4 0@ (T 4 2 G 121
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1o be solved under the boundary conditions:

pe=0:0"7 = 21, (Y =0 i
y=1:9%=9, &Y =0 : 3.3
p=0:s% =0, Y =0

b Ty gt
y=1:e"=0, (WY <u )

Equation [3.11] with boundary conditions [3.13] is exactly the probien
that Bhatnagar' has solved with A; =2 co and as such we know o for pary
cular A. This forms the zeroth order solution for our case.

Equation [3.12] with boundary conditions {3.14] is 2 two-point boundary

value problem with eigen-value ¢;. This equation is of order three and we
have four boundary conditions and hence the problem is fully determines,
With the transformation

2 (2;0)1:4 1 407N o0 = (2;0)114 ¥/, } b
1-p=Y=2/20)" VO aT 2/ j

ihe squation {3.12] reduces to

RS S AR T 4 AR S A

wl4p? [{(V{N}"}z Y gl g V“‘”"] [3 M}
=1+t 1(8)

with the boundary conditions
£=0:2<0, 2" =0 y -
fmbo=(2e)V 1220, Z'=D i R

where
o= (el ¥ 2e [3.18]

and hence the right hand member of {3 16) is known from the solution of the
zeroth erder problem and where a dush now denotes differcntintion »ih
respect to £

Solution of the equation [3.16] under the boundary conditions [317} is
given by

=N 3 q
Z=Cz+Z L@z Za () 2, [3.19]
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where Z=2;, (i=1, 2, 3) are the fundamental solutions of the homogeneous
equetion corresponding to [3.16] satisfying the usual boundary conditions
atf=0,

¢ 5T~ 27, n NI Z2i-2:2)
f 5% i, =z j'-mb(f) g,

£~ fz’ S LG f(c’(ﬁ’(‘g 220 ag, Y 1500

f(E) = JZ'ZI;(“JZZ‘ dg, gs($)=—fﬂg}(zfé) ZZi) d¢,

(&) mexp [~ [V ()]

and (p and p* are the roots of the squations

G845 2 2 (6) Zi(60) + 2/(6) Z:(6) =0, )
Q7 (6 +p* | 2 5080 2i e + 3 gl 180 2 0] } [21]

3 3
+i5f}(§o)22(§a)+ :3 {(80) Z, (£} =0

The solution of the equation [3.12] under boundary conditions [3.14]

and the eigen value ;;, for the suction parameter A for which o (£) are
known, are given by
o (&) =26 Z (D28 (3224
and o =gY2p [3.23]
Equation [3.9] will give v in terms of o and »¥ for small nen-Newtonian
parameter K,
We shall now discuss the equation {3.4].
2ssumption about the numerical value of the constant ¢, oceurring ip it, we

take
= U+ 3% (5} [3.241

Ia order to avoid the specific
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If further we Usa
¢y — 2Aey 53\23}
and write
e U@ g™ [3.26]
for smali K, we get the following equations determing &' and 770
() g7 S0 g 0 o g l327]
with T®{g) =0, TO (1) =1 f3ne}
and
(1/A) O = @ OV g @ O ) g0 0 e
ks SOV gytey 4 {0 gy O + PO S OLLLIY {}429}
with TE(0) - TI) - , [3.30]
where a dash denotes differentintion with respect to p,
Bolution of theeguation [3.27} under boundary eonditions [3.28] is koown
in terms of the solutions obtained in reference [(]. Eaguation [3.28] woder

boundary conditions [3.30] is a two-point boundary valve problem and is
solution is given by

Uy = v

U\X) ) U“)(l)

“)(I)

7Y 3,31
(»)(1) U('J(l) DF’ ( ) U'*]

U8y~

where U (3) and UF(y) are the soluticns of equation [329] under the
boundary conditions.

U050, UV(D)ma f5.321
and CP{0)=0, UY{0)=g8 I3.37]
reapectively.

Ther we obtain

20 e D g 22 [3.34]
and wg i3 given by

o = 1 Kkl {338}

for small son-Newtosiun parameter X,
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4. Soruriov oF HeEaT TRANSFER PROBLEM
If we substitute the value of u{x, ) from equation [3.1]in equation [2.4]
znd comcentrate on the powers of x that ocour in the resulling equation,
we find that we must fake
E () =)+ 0, (3 x+6:(0)< fa.1]

If now, we equate the cneilizierts of various powers of x on the the two sides
resuiting equation, we get the following three equations in g, 8y, 62

of the
Pluby+ 2 06e] = (/R 8, + €8 + Er (/R () + ()7

+ EEPI(X R oo’ & + Aot — A" g ()] [4.71
Pl2ughy ~ 20’0, +2087] = 0} + EP[ ~ 220" u§

+ NREP[(0" P ug + upv'n” — oo™ uy — 0" 4] [4.3]
PL-200"2 4 M08 = 85 + EPA (0" 4+ W KEP {000 = o (+"' /1] fe.4]
with {0} =0, {0y =6,(0)=0 ) f4.5]
a0d (1) =1, & (1) =es(1) =0

For small &, we set
Gm 00 £ KOW, (i=6,1,2) [4.6]

zlong with [390] ang {3.35] in the above equations to get the following
equations determining 6™ and 68", (i=0, 1, 2}:
PIY 699 4 200 0507]

=2/ R} 8407 4 640 4+ EP[(4 2/ 82 (7Y + (5] 4.7}

PR 990 — ) 510 5000 4 ) p(®) 9007
w69 4 EP[ =2 A o0V 10V fe.8]
Pl pto? 8(20) 4 ote! 8(20)’}
=@ L EPAT (0
with 6407 (0) = 67 (0) ~ 857 (0} = 0
P (=1 £ (1) =0 (1) =0

[4.9]

fs.10]
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+u(o°’ U(u) 0(0) —-1;(0)0(0)

Palel® 67 5 g8 2650 9L + oY a5}
(1" s pers ' g 3 eV
= g9 + EP A2 ECEAMER h{o(u) 07 507 = V(Y 3 3 [4_131
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Each of the zeroth order equations, namely [4.7], [4.8], T49] under
specified boundary conditions [4.10] has been solved in refevence [1] and we use
them 1o solve the first order equations, namely [4.1:] [4.17] [4.13] wnder the
poundary conditions given by [4 14], Each oue of these is also & I‘.\‘o~p0iﬂ"&
boundary value problem. We have the following solation for g (i=0,1,2}
from the equations {4.13}, [4.12] and [4.11] respectively obtained by solving
the equations in this order:

A1 g () 1 8ha (1) o :
¥ ()= m:‘mﬁ” fh{y) ~ ﬁgiﬁ}mg 853 (»)  [415]
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160, (133

————

=

i

e,x W Awl 223052

Pid
wa"‘,

T <15
Log, 10! Aw0 OB4249

9, x10™ Au0.082462
F16.4.(Ke-0.01,E 25,P=08).

where 8 and 84 ¢4 are the solutions of the equation [4.13] under the boundary

conditions.
£ {0y =0, 687 () ~a fa.16]
[£17]

and (0 =0, 6§V (0) =2

tEapswiively.
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Similarly
41y gy AW w
60 () - | 9B ) 81209 — 0% (1) 043 (5) ) [4.18]
l (1)(1) 9(()(1}
where 6 and 9(” are the solutions of [4.12] under the boundary conditions
017 {0) ~0, 8 (0) =« G39]
and 659 (0 =0, % (0) - 8 {420
respectively and
(1‘ [43] g
0 () - | 268 (0 962 () — a2 (1) 03 (5) {421]

(1) U) 9(1) (1)
where 0§ and 6(” are the solutions of [4.11] under the beundary conditions.
957 (0) = 0, 86” (0) =« [423]
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657 (0) =0, 8§V (0} =8 I1.23]

respectively.

We uote that the specific choice of the Prandil number and Eckert
rumber is required during the discussion of 8, and 8, equations, but that of
Reynolds number does not come up till we discuss the € — equaticns.

5. NuMEgRicAL RESULTS

We have performed the numerical calculations of o, u{, g, e, g
for those values of A, R P.E, which have been used in [1] as our solutions are
based on the solutions obtained therein. Figures | and 2 give the plots of
#and uf? respectively. Figures 3 and 4 give the plots of 85 and &Y
sespectively.  for E=5, P08, while the Figure § gives the plot of 6§" for
E=5 P=0.8 and R =100, We have then calculated v, wo, 85, 8y, 6 by taking
K= —0.01 and their plots are sketched on those grapbs which give the plots
of the corresponding first order sclution Figure 1 shows vV with dotted
plots, while y with continuous plots and same convention is followed in other

figures also.  The following table gives the vulues of X and the cerresponding

sigen-values ¢, :

A ’ 1.4889

0.0825 ; 1.2291 ’ 0.0842

1000 | 01612 L osass | —0.2545

3

For convenience of plotting, we have multiplied the values of the
dependent variables by suitable quantities before plotting.

As 2 final remark we add that the cross-viscosity contributes only to the
pressure but does not affect the other flow variables and the temperaturs
distribution, This is in keeping with the remark which Bhatnagar® has made
in connection with the boundary layer equation on a fat plate.
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