CIRCULAR CYLINDRICAL DIELECTRIC ROD WAVEGUIDE

BY *V. SUBRAHMANIAM AND S. K. CHATTERIEE

(Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore, India

[Received : March 4, 1968]

Abstract

The propagation characteristics, such as, propagation constant, guide wavelength, radial field spread, division of power as a function of the diameter and dielectric constant of a circular cylindrical rod dielectric guide excited in $H_{a_1} E_{a_1}$ and HE_{a_1} modes are studied. The study of scattering coefficients of the $H_{a_1}^{\Box} - H_{a_1}^{\circ}$ mode transducer which is used to excite the guide in HE_{a_1} mode, leads to its representation as an equivalent Tee- network. The insertion loss and launching efficiency of the mode transducer has been evaluated. The scattering coefficients, impedance and attention characteristics of the dielectric guide excited in HE_{a_1} mode realso studied.

i. Introduction

A straight infinitely long loss-free dielectric rod behaves like a waveguide in the sense that electromagnetic waves can travel along it without radiation loss. The problem of the propagation of transverse magnetic mode in a lossless dielectric guide was investigated theoretically by Hondros and Debye¹ and their theory was experimentally confirmed by Zahn² and by Schriever³. Important contributions on the theoretical aspects of dielectric rod waveguides have been made recently by Clarricoats⁴ and Waldron^{5, 5a}, The work by Gillespie⁶ on the negtive wave impedance and power flow in a dielectric rod guide is of significant importance. Theoretical study of the propagation of backward waves in a bounded dielectric rod guide by Clarricoats and Waldron⁷, Clarricoats⁸ and Brown⁹, has opened a new field of research. The study on the attenuation characteristics of a dielectric rod wave guide by Chandler¹⁰ and Elasser¹¹ has also created an interest in the possible practical utility of a dielectric rod being used as a guide for electromagnetic waves at microwave frequencies. Several authors (Du Hamel and Duncan¹²; Angulo and Chang¹³¹⁴; Duncan¹⁶; Duncan and Du Hamel¹⁵), have made significant contributions on the excitation problem of a dielectric rod waveguide. The problem of radiation from the feed end of the dielectric rod guide to the discontinuity invariably present at the junction of the mode transducer and the dielectric rod has been treated by Kay¹⁷, Brown and

^{*} Dr. V. Subrahmaniam is an Assistant Professor at the Birla Institute of Technology and Science, Pilani, Rajasthan and was on deputation during the period of work.

Spector¹⁸, and Weil¹⁹. The object of the paper is to present the results of investigations on the propagation characteristics of electromagnetic waves on unbounded circular cylindrical dielectric rod waveguide excited in H_{01} , E_{01} and HE_{11} modes at 3.2 cms. wavelength. The main emphasis is on the guide excited in HE_{11} mode. It is believed that the contributions specially on the impedance characteristics, scattering coefficients, division of power of the dielectric guide, scattering coefficients of the $H_{01}^{\Box} - H_{11}^{\circ}$ mode transducer and its equivalent circuit representation, the study of the insertion loss and the launching efficiency on the basis of the scattering parameters will add significantly to our existing knowledge in the field of dielectric rod waveguides

2. FIELD COMPONENTS

Assuming that the circular cylindrical dielectric rod guide is infinitely extended in the direction of propagation and that there is no radiation from the rod and $\mu_1 = \mu_2 = \mu_0$, $\sigma_1 - \sigma_2 = 0$, the field components for the three modes H_{01} , E_{01} and HE_{11} inside and outside the dielectric guide (Fig. 1) are as follows

FIG. 1 The circular cylindrical coordinate system employed

Hoi mode :

nside the guide. [Region 1,
$$(\rho \leq a)$$
]

$$E_{\pm 1} = -Bk_1 J'_0(k_1 \rho) \exp(-\gamma_1 z)$$

$$H_{\rho 1} = B(\gamma_1 k_1 / i \omega \mu_0) J'_0(k_1 \rho) \exp(-\gamma_1 z)$$

$$H_{z1} = -B(k_1^2 / i \omega \mu_0) J_0(k_1 \rho) \exp(-\gamma_1 z)$$
[1]

Outside the guide, [Region 2,
$$(\rho \ge a)$$
]
 $E_{\psi 2} = -C k_2 H_0^{(1)'} (k_2 \rho) \exp(-\gamma_2 z)$
 $H_{\rho 2} = -C (\gamma_2 k_2 / i \omega \mu_0) H_0^{(1)'} (k_2 \rho) \exp(-\gamma_2 z)$
 $H_{z2} = -C (k_2^2 / i \omega \mu_0) H_0^{(1)} (k_2 \rho) \exp(-\gamma_2 z)$ [2]

 E_{0i} mode ;

Inside the guide [Region 1,
$$(\rho \le a)$$
]

$$E_{\rho 1} = -b (k_1 \gamma_1 / i \omega \epsilon_1) J'_0 (k_1 \rho) \exp((-\gamma_1 z))$$

$$E_{z 1} = b (k_1^2 / i \omega \epsilon_1) J_0 (k_1 \rho) \exp((-\gamma_1 z))$$

$$H_{\phi 1} = -b k_1 J'_0 (\exp((-\gamma_1 z)))$$
[3]

Outside the guide, [Region 2,
$$\rho \ge a$$
]

$$E_{\rho 2} = -c \left(k_2 \gamma_2 / i \omega \epsilon_2\right) H_0^{(1)} \left(k_2 \rho\right) \exp\left(-\gamma_2 z\right)$$

$$E_{z 2} = c \left(k_2^2 / i \omega \epsilon_2\right) H_0^{(1)} \left(k_2 \rho\right) \exp\left(-\gamma_2 z\right)$$

$$H_{\phi 2} = -c k_2 H_0^{(1)'} \left(k_2 \rho\right) \exp\left(-\gamma_2 z\right)$$

where $k^2 = \gamma^3 + \omega^2 \mu \epsilon$. The time variation is exp $(j\omega^t)$

HE11 mode :

As the mode is formed by a linear combination of H and E modes, the following relations hold good

$$\gamma_1^E = \gamma_1^H - \gamma_1, \quad \gamma_2^E = \gamma_2^H - \gamma_2, \quad k_1^E = k_1^H = k_1, \quad k_{12}^E = k_2^H = k_2$$
 [5]

[4]

Inside the guide, [Region 1, $(\rho \leq a)$]

$$\begin{split} E_{\rho 1} &= -B\left[(1/\rho)J_{1}(k_{1}\rho) + (b/B)(\gamma_{1}k_{1}/i\omega\epsilon_{1})J_{1}'(k_{1}\rho)\right]\sin\phi\exp\left(-\gamma_{1}z\right)\\ E_{\phi 1} &= -B\left[k_{1}J_{1}'(k_{1}\rho) + (b/B)(1/\rho)(\gamma_{1}/i\omega\epsilon_{1})J_{1}(k_{1}\rho)\right]\cos\phi\exp\left(-\gamma_{1}z\right)\\ E_{z 1} &= B\left[(b/B)(k_{1}^{2}/i\omega\epsilon_{1})J_{1}(k_{1}\rho)\right]\sin\phi\exp\left(-\gamma_{1}z\right)\\ H_{\rho 1} &= B\left[(\gamma_{1}k_{1}/i\omega\mu_{0})J_{1}'(k_{1}\rho) + (b/B)(1/\rho)J_{1}(k_{1}\rho)\right]\cos\phi\exp\left(-\gamma_{1}z\right)\\ H_{\phi 1} &= -B\left[(\gamma_{1}k_{1}/i\omega\mu_{0})J_{1}'(k_{1}\rho) + (b/B)(k_{1}J_{1}'(k_{1}\rho)\right]\sin\phi\exp\left(-\gamma_{1}z\right)\\ H_{\phi 1} &= -B\left[(k_{1}^{2}/i\omega\mu_{0})J_{1}(k_{1}\rho)\right]\cos\phi\exp\left(-\gamma_{1}z\right) \end{split}$$

Outside the guide, [Region 2, $(\rho \ge a)$] $E_{\rho_2} = -C[(1/\rho) H_1^{(1)}(k_2 \rho) + (c/C) (\gamma_2 k_2/i\omega \epsilon_2) \times H_1^{(1)}(k_2 \rho)] \sin \phi \exp(-\gamma_2 z)$

$$E_{k2} = -C \left[k_2 H_1^{(1)'}(k_2 \rho) + (c/C) (1/\rho) (\gamma_2/i\omega\epsilon_2) \times H_1^{(1)'}(k_2 \rho) \right] \cos\phi \exp(-\gamma_2 z)$$

$$E_{22} = -C \left[(c/C) (k_2^2/i\omega\epsilon_2) H_1^{(1)}(k_2 \rho) \right] \sin\phi \exp(-\gamma_2 z)$$

$$H_{\rho_2} = C \left[(\gamma_2 k_2/i\omega\mu_0) H_1^{(1)'}(k_2 \rho) + (c/C) (1/\rho) \times H_1^{(1)'}(k_2 \rho) \right] \cos\phi \exp(-\gamma_2 z)$$

$$H_{\phi_2} = -C \left[(1/\rho) (\gamma_2/i\omega\mu_0) H_1^{(1)'}(k_2 \rho) + (c/C) k_2 H_1^{(1)'}(k_2 \rho) \right] \sin\phi \exp(-\gamma_2 z)$$

$$H_{22} = -C\left[\left(k_2^2/i\omega\mu_0\right) H_1^{(1)}\left(k_2\rho\right)\right]\cos\phi \exp\left(-\gamma_2 z\right)$$
[7]

3. CHARACTERISTIC EQUATIONS

By applying proper boundary conditions at the interfaces between the two media and using appropriate field components, a set of equations for the H_{01} , E_{01} and HE_{11} modes is obtained. By allowing the determinants of the coefficient b, B, c, and C to vanish, the following determinantal equations for the respective modes are obtained.

$$H_{01}$$
 mode:

$$\frac{k_1 J_0'(k_1 a) - k_2 H_0^{(1)'}(k_2 a)}{(k_1^2/\mu_0) J_0(k_1 a) - (k_2^2/\mu_0) H_0^{(1)}(k_2 a)} = 0$$
[8]

 E_{01} mode:

$$\begin{vmatrix} k_1 J'_0(k_1 a) & -k_2 H_0^{(1)'}(k_2 a) \\ (k_1^2/\epsilon_1) J_0(k_1 a) & -(k_2^2/\epsilon_2) H_0^{(1)}(k_2 a) \end{vmatrix} = 0$$
[9]

 HE_{11} mode :

$$\frac{k_{1}J_{1}'(k_{1}a)}{i\omega \epsilon_{1}} = \frac{1}{a} \frac{\gamma}{i\omega \epsilon_{1}} J_{1}(k_{1}a) - k_{2}H_{1}^{(1)'}(k_{2}a) - \frac{1}{a} \frac{\gamma}{i\omega \epsilon_{2}}H_{1}^{(1)}(k_{2}a)$$

$$= 0 \qquad \frac{k_{1}^{2}}{i\omega \epsilon_{1}} J_{1}(k_{1}a) \qquad 0 \qquad -\frac{k_{2}^{2}}{i\omega \epsilon_{2}}H_{1}^{(1)}(k_{2}a)$$

$$= \frac{1}{a} \frac{r}{i\omega \mu_{0}} J_{1}(k_{1}a) k_{1}J_{1}'(k_{1}a) - \frac{1}{a} \frac{\gamma}{i\omega \mu_{0}}H_{1}^{(1)}(k_{2}a) - k_{2}H_{1}^{(1)'}(k_{2}a)$$

$$= 0 [10]$$

$$= \frac{k_{1}^{2}}{i\omega \mu_{0}} J_{1}(k_{1}a) \qquad 0 \qquad -\frac{k_{2}^{2}}{i\omega \mu_{0}}H_{1}^{(1)}(k_{2}a) = 0$$

The above equations lead to the following characteristic equations for the respective modes.

 H_{01} mode :

$$x_1 \frac{J_0(x_1)}{J_0'(x_1)} = x_2 \frac{H_0^{(1)}(x_2)}{H_0^{(1)'}(x_2)}$$
[11]

 E_{01} mode:

$$x_1 \frac{J_0(x_1)}{J_0'(x_1)} = x_2 \left(c_1 / c_2 \right) \frac{H_0^{(1)}(x_2)}{H_0^{(1)'}(x_2)}$$
[12]

HE₁₁ mode :

$$\frac{\left[\frac{1}{x_{1}}\frac{J_{1}'(x_{1})}{J_{1}(x_{1})} - \frac{1}{x_{2}}\frac{H_{1}^{(1)'}(x_{2})}{H_{1}^{(1)}(x_{2})}\right]\left[\frac{\tilde{\epsilon}_{1}}{x_{1}}\frac{J_{1}'(x_{1})}{J_{1}(x_{1})} - \frac{1}{x_{2}}\frac{H_{1}^{(1)'}(v_{2})}{H_{1}^{(1)}(x_{2})}\right] \\ -\frac{\left(x_{1}^{2} - x_{2}^{2}\right)\left(x_{1}^{3} - \tilde{\epsilon}_{1}x_{2}^{2}\right)}{x_{1}^{4}x_{2}^{4}}$$
[13]

where
$$x_1 = k_1 a$$
, $x_2 = k_2 a$ [14]
 $\overline{\epsilon}_1 = \epsilon_1/\epsilon_2$, the dielectric constant of the rod

$$x_1^2 + (x_2/i)^2 = (\pi d/\lambda_0)^2 (\overline{e}_1 - 1)$$
[5]

d = 2 a, diameter of the rod

 $\lambda_0 =$ Free space wavelength.

4. SOLUTION OF THE CHARACTERISTIC EQUATIONS

The characteristic equations [11, 12 and 13] have been solved for $d/\lambda_0 = 0.8$, $\epsilon_1 = 2.6$ (see figures 2 and 3) Y_1 and Y_2 represent the left hand and right hand sides of [13] respectively. The point of intersection of the two curves gives the root x_1 which with [15] yields x_2 .

5. PROPAGATION CONSTANTS

The radial propagation constants k_1 and k_2 calculated from [14] are functions of d and $\overline{e_1}$ of the rod (see figures 4 and 5). The axial propagation constant γ is related to the radial propagation constant k as follows:—

$$\gamma^2 = k^2 - \omega^2 \mu_0 \in [16]$$

Graphical solutions of the characteristic equations (1.45 & 146) for the symmetric modes

and is a function of the diameter and dielectric constant of the rod. The variations of γ with d/λ_0 for the three modes for $\epsilon_1 = 2.6$ and for different values of ϵ_1 in the case of HE_{11} mode are represented graphically (see figures 6 and 7). As $\gamma = i\beta$ is purely imaginary, the axial phase constants represented in figures6, and 7 as ordinates are the same as the axial propagation constants in the respective cases.

6. GUIDE WAVELENGTH

The guide wavelength,
$$\lambda_s$$
 are calculated from $x_1^2 = k_1^2 a^2$ which yields
 $\lambda_s / \lambda_0 = [\overline{\epsilon}_1 - x_1^2 (\lambda_0 / \pi d)^2]^{-1}$
[17]

Graphical solution of the characteristic equation (1.47) for the HE₁₁ mode

FIG. 4

Variation of radial propagation constant k_1 and k_5 with the diameter of the rod for the H_{01} , E_{01} and HB_{11} modes

The variations of λ_g/λ_0 with d/λ_0 for the three modes for $\overline{\epsilon_1} = 2.6$ and for different values of $\overline{\epsilon_1}$ in the case of HE_{11} mode are represented graphically (see figures 8 and 9)

FIG. 5

Variation of radial propagation constant k_1 and k_2 with the diameter of the rod

7. RELATIVE POWER FLOW

The power launched in the dielectric rod will be transmitted entirely in the longitudinal direction (z), when there is no radiation and the dielectric rod acts entirely as a waveguide. But if some power is lost by radiation, the power will not only be transmitted in the z-direction but also in the radial (ρ)

F16. 6

Variation of the axial phase constant with the diameter of the rod

and azimuthal (ϕ) directions. The following calculations will show the nature of power flow P_p , P_{ϕ} and P_z in the ρ , ϕ and z directions respectively.

$$P_{p} = \frac{1}{2} \operatorname{Re} \iint \left[E_{\phi} H_{Z}^{*} - E_{Z} H_{\phi}^{*} \right] \rho d\phi dz \qquad [18]$$

$$P_{4} = \frac{1}{2} Re \int_{S} \int \left[E_{Z} H_{\rho}^{*} - E_{\rho} H_{Z}^{*} \right] d\rho dz \qquad [19]$$

RADIAL PROPAGATION CONSTANT (CM")

FIG. 7 Variation of the 4-ball characterization with the diameter of the rod for the H_{22} is and HE_{11} modes

$$P_{2} = \frac{1}{2} Re \iint_{S} \left[E_{p} H_{\phi}^{*} - E_{\phi} H_{\rho}^{*} \right] \rho d\rho d\phi \qquad [20]$$

where, S represents the surface normal to the direction of propagation. The total power flow P_x is divided mainly into two parts of which a fraction P'_z flows inside the guide ($\rho = 0$ to $\rho = a$) and the test P_z^0 flows outside ($\rho = a$ to $\rho = \infty$) the guide. The limits of ϕ is from $\phi = 0$ to $\phi = 2\pi$. Similarly P_{ϕ} and P_{ϕ} are divided into two parts P_{ϕ}^{i} , P_{ϕ}^{0} and P_{ϕ}^{i} , P_{ϕ}^{0} respectively. As we are interested in the dielectric rod acting only as a guide, we may replace $\rho = a$ to $\rho = \infty$ by $\rho = a$ to $\rho = r$ in the integrals involved in the expression for P_{z}^{0} and P_{ϕ}^{0} , where r represents radial distance from the axis of the rod such that the value of P_{π}^0 and P_{ϕ}^0 become inappreciably small In calculating P_{ϕ}^{i} and P_{ϕ}^{0} , the limit of z is from z=0 to z=l, the length of the dielectric P_{ϕ}^{i} and P_{ϕ}^{0} have been evaluated for $\phi = (\pi/4)$ as $P_{\phi} = 0$ for $\phi = 0$, rod, $\pi/2$, π , $3\pi/2$ and 2π . In calculating P_{ϕ}^{i} and P_{ϕ}^{0} , the limit of ϕ is from $\phi = 0$ to $\phi = 2\pi$ and that of z is from z = 0 to z = l and $\rho = a$.

FIG. 8 Variation of the guide wavelength with the diameter of the rod for the $H_{0,3}$, $E_{0,1}$ and H_{11} modes.

$$P_{z}^{i} = BB^{*} \left[\frac{b}{B} \pi k_{1} \left(1 - \frac{\gamma_{1}^{2}}{\omega^{2} \mu_{0} \epsilon_{1}} \right) \int_{\rho=0}^{a} J_{0} \left(k_{1} \rho^{\gamma} J_{1} \left(k_{1} \rho\right) d\rho \right) \right]$$
$$- \frac{\pi \gamma_{1} k_{1}}{i \omega} \left(\frac{1}{\mu_{0}} + \frac{b^{2}}{B^{2}} \frac{1}{\epsilon_{1}} \right) \int_{\rho=0}^{a} J_{0} \left(k_{1} \rho\right) J_{1} \left(k_{1} \rho\right) d\rho$$
$$+ \frac{\pi \gamma_{1}}{i \omega} \left(\frac{1}{\mu_{0}} + \frac{b^{2}}{B^{2}} \frac{1}{\epsilon_{1}} \right) \int_{\rho=0}^{a} (1/\rho) \left\{ J_{1} \left(k_{1} \rho\right) \right\}^{2} d\rho$$

F1G. 9 Variation of the guide wavelength with the diameter of the rod for the HE_{11} mode

$$-\frac{b}{B}\pi\left(1-\frac{\gamma_{1}^{2}}{\omega^{2}\mu_{0}\epsilon_{1}}\right)\int_{\mu=0}^{a}(1/\rho)\left\{J_{1}\left(k_{1}\rho\right)\right\}^{2}d\rho$$

$$+\frac{\pi\gamma_{1}k_{1}^{2}}{2i\omega}\left(\frac{1}{\mu_{0}}+\frac{b^{2}}{B^{4}}\frac{1}{\epsilon_{1}}\right)\int_{\rho=0}^{d}\left\{J_{0}k_{1}\rho\right\}^{2}d\rho\left[$$

$$=BB^{*}[X] \qquad [21]$$

$$P_{z}^{0} = CC^{*} \left[\frac{c}{C} \pi k_{2} \left(1 - \frac{\gamma_{2}^{2}}{\omega^{2} \mu_{0} \epsilon_{2}} \right) \int_{\rho=\alpha}^{\infty} H_{0}^{(1)} (k_{2} \rho) H_{1}^{(2)} (k_{2} \rho) d\rho - \frac{\pi \gamma_{2} k_{2}}{i \omega} \left(\frac{1}{\mu_{0}} + \frac{c^{2}}{C^{2}} \frac{1}{\epsilon_{2}} \right) \int_{\rho=\alpha}^{\infty} H_{0}^{(1)} (k_{2} \rho) H_{1}^{(1)} (k_{2} \rho) d\rho + \frac{\pi \gamma_{2}}{i \omega} \left(\frac{1}{\mu_{0}} + \frac{c^{2}}{C^{2}} \frac{1}{\epsilon_{2}} \right) \int_{\rho=\alpha}^{\infty} (1/\rho) \left\{ H_{1}^{(1)} (k_{2} \rho) \right\}^{2} d\rho - \frac{c}{C} \pi \left(1 - \frac{\gamma_{2}^{2}}{\omega^{2} \mu_{0} \epsilon_{2}} \right) \int_{\rho=\alpha}^{\infty} (1/\rho) \left\{ H_{1}^{(1)} (k_{2} \rho) \right\}^{2} d\rho + \frac{\pi \gamma_{2} k_{2}^{2}}{2 i \omega} \left(\frac{1}{\mu_{0}} + \frac{c^{2}}{C^{2}} \frac{1}{\epsilon_{2}} \right) \int_{\rho=\alpha}^{\infty} \rho \left\{ H_{0}^{(1)} (k_{2} \rho) \right\}^{2} d\rho \right] - CC^{*} \left[Y \right]$$
[22]

$$P_{\theta}^{i} = i \frac{BB^{*}}{4} \left[\frac{b}{B} \frac{2l \beta_{1} k_{1}^{2}}{\omega^{2} \mu_{0} \epsilon_{1}} \int_{\rho=0}^{a} (1/\rho) \{J_{1}(k_{1}\rho)\}^{2} d\rho - \frac{b}{B} \frac{2l \beta_{1} k_{1}^{2}}{\omega^{2} \mu_{0} \epsilon_{1}} \int_{\rho=0}^{a} J_{0}(k_{1}\rho) J_{1}(k_{1}\rho) d\rho - \frac{lk_{1}^{2}}{\omega} \left(\frac{1}{\mu_{0}} + \frac{b^{2}}{B^{2}} \frac{1}{\epsilon_{0}} \right) \int_{\rho=0}^{a} (1/\rho) \{J_{1}(k_{1}\rho)\}^{2} d\rho \right]$$
[23]

$$\int_{\rho}^{0} = i \frac{CC^{*}}{4} \left[\frac{c}{C} \frac{2I \circ_{2} k_{2}^{2}}{\omega \cdot \mu_{0} \epsilon_{2}} \int_{\rho \sim a}^{\sigma} (1/\rho) \left\{ H_{1}^{(1)} k_{2} \rho \right\}^{2} d\rho$$

$$- \frac{c}{C} \frac{2I \circ_{2} k_{2}^{3}}{\omega^{2} \mu_{0} \epsilon_{2}} \int_{\rho \sim a}^{\sigma} H_{0}^{(1)} (k_{2} \rho) H_{1}^{(1)} (k_{2} \rho) d\rho$$

$$- \frac{Ik_{2}^{2}}{\omega} \left(\frac{1}{\mu_{0}} + \frac{c^{2}}{C^{2}} \frac{1}{\epsilon_{2}} \right) \int_{\rho \sim a}^{\sigma} (1/\rho) \left\{ H_{1}^{(1)} (k_{2} \rho) \right\}^{2} d\rho$$
[24]

$$P_{\rho}^{i} = i BB^{*} \left[\frac{\pi}{2} \frac{lk_{1}^{3}}{\omega} \rho \left(\frac{1}{\mu_{0}} - \frac{b^{2}}{B^{2}} \frac{1}{\epsilon_{1}} \right) J_{0} \left(k_{1} \rho \right) J_{1} \left(k_{1} \rho \right) - \frac{\pi}{2} \frac{lk_{1}^{2}}{\omega} \left(\frac{1}{\mu_{0}} - \frac{b^{2}}{B^{2}} \frac{1}{\epsilon_{1}} \right) J_{1} \left(k_{1} \rho \right) \right]^{2} \right]$$
[25]

$$P_{\rho}^{0} = i C C^{*} \left[\frac{\pi}{2} \frac{l k_{2}^{2}}{\omega} \rho \left(\frac{l}{\mu_{0}} - \frac{c^{2}}{C^{2}} \frac{1}{\epsilon_{2}} \right) H_{0}^{(1)} k_{2} \rho \right) H_{1}^{(1)}(k_{2} \rho) - \frac{\pi}{2} \frac{l k_{2}^{2}}{\omega} \left(\frac{1}{\mu_{0}} - \frac{c^{2}}{C^{2}} \frac{1}{\epsilon_{2}} \right) \left\{ H_{1}^{(1)}(k_{2} \rho) \right\}^{2} \right]$$
[26]

The values of P' and P^0 in the ρ , ϕ , z directions have been calculated as a function of d/λ_0 for perspex rod ($\epsilon_1 = 2.6$). It is found that the power flow in the radial and circumferential direction is reactive. So in calculating the total power flow we will consider only P_z . The relative percentage power flowing inside the guide is

$$\frac{P_z^1}{P_z} = \frac{P_z^1/P_z^0}{(1+P_z^1/P_z^0)} \times 100$$
[2i]

which is function of d/λ_0 and ϵ_1 (See figures 10 and 11)

8. CONSTANT PERCENTAGE POWER CONTOUR

The amount of the relative power flow outside the guide can be represented more clearly from the constant percentage power contours round the guide which are determined as follows. If $p_1 = r_1, r_2, r_3 \cdots r_n$ represent the radii of the circles representing the contours inside which constant powers $P_{e1}, P_{e2}, P_{e3} \cdots P_{en}$ flowing along the rod are located, then the ratio of the total power P_{en} is

$$P_{z1} \mid P_{zn} = W_1 \text{ at } \rho = r_1$$

$$P_{z2} \mid P_{zn} = W_2 \text{ at } \rho = r_2$$

$$\vdots$$

$$P_{zn} \mid P_{zn} = W_n \text{ at } \rho = r_n$$
[28]

where,

$$P_{s1} = P_{s1}^{i} + P_{s1}^{0} \text{ contained within a radius } \rho = r_{1}$$

$$P_{s2} = P_{s2}^{i} + P_{s2}^{0} \text{ contained within a radius } \rho = r_{2}$$

$$\vdots$$

$$P_{sn} = P_{sn}^{i} + P_{sn}^{0} \text{ contained within a radius } \rho = r_{n}$$
[29]

 P_{2n} represents the total power contained within a contour of radius r_n and $r_1 < r_2 < r_3 \cdots < r_n$. The values of $P_{21}, P_{22}, \cdots P_{2n}$ are determined from [21, 22] by replacing the integrals

$$\int_{p=a}^{\infty} by \int_{p=a}^{e=r_1} \int_{p=a}^{e=r_2} \int_{p=a}^{e=r_2} \int_{p=a}^{e=r_3} \cdots \int_{p=a}^{e=r_3}$$

respectively. The constant percentage power contours and its respective radius for perspex rods ($\overline{c_1} = 2.6$) of different diameters excited in HE_{11} mode have been evaluated (See figures 12 and 13)

9. EVALUATION OF THE FIELD COMPONENTS

By using appropriate field components of the HE_{11} mode and applying proper boundary conditions, the following relation between the constants *B*, *b*, *c* and *C* are obtained.

$$\frac{C}{B} = \frac{x_1^2}{x_2^2} \frac{J_1(x_1)}{H_1^{(1)}(x_2)} = \delta$$
[30]

$$\frac{c}{b} = \frac{x_1^2}{x_2^2} \frac{\epsilon_2}{\epsilon_1} \frac{J_1(x_1)}{H_1^{(1)}(x_2)}$$
[31]

$$\frac{b}{B} = \frac{\gamma \epsilon_1}{i \omega \mu_0} \frac{x_1^2 - x_2^2}{x_1^2 x_2^2} \left[\frac{x_1}{\epsilon_1} \frac{J_1'(x_1)}{J_1(x_1)} - \frac{\epsilon_2}{x_2} \frac{H_1^{(1)'}(x_2)}{H_1^{(1)}(x_2)} \right]^{-1}$$
[32]

$$\frac{c}{C} = \frac{\gamma \epsilon_2}{i \omega \mu_0} \frac{\chi_1^2 - \chi_2^2}{x_1^2 x_2^2} \left[\frac{\epsilon_1}{x_1} \frac{J_1'(x_1)}{J_1(x_1)} - \frac{\epsilon_2}{x_2} \frac{H_1^{(1)'}(x_2)}{H_1^{(1)}(x_2)} \right]^{-1}$$
[33]

The constants B and C are expressed in terms of the total power flow P_{ε} along the guide as follows:

$$|B| = \left[\frac{P_z}{X^2 + \delta'Y^2}\right]^{1/2}$$
[34]

$$\left| C \right| = \delta \left[\frac{P_z}{X^2 + \delta^2 Y^2} \right]^{1/2}$$
[35]

since

$$P_{z} = |B|^{2} (X^{2} + \delta^{2} Y^{2})$$
[36]

Substituting |B| and |C| in [6 and 7], the field components of HE_{11} mode inside and outside the guide are

Radius of the area around the dielectric rod vs. W%. W% is the per cent of power surrounding the rod.

Radius of the area around the dielectric rod within which 30%, 50%, 70%, 80 and 90% of the power is propagated as a function of the diameter of the rod.

Inside the guide (Region 1), $\rho \leq a$ $E_{s1} = -\left(\frac{P_z}{X^2 + \delta^2 Y^2}\right)^{1/2} \left(\frac{1}{\rho} J_1(k_1 \rho) + \frac{b}{B} \frac{\gamma_1 k_1}{i \omega \epsilon_1} J_1'(k_1 \rho)\right) \sin \phi \exp(-\gamma_1 z)$ $E_{\phi 1} = -\left(\frac{P_z}{X^2 + \delta^2 Y^2}\right)^{1/2} \left(k_1 J_1'(k_1 \rho) + \frac{b}{B} \frac{1}{\rho} \frac{\gamma_1}{i \omega \epsilon_1} J_1'(k_1 \rho)\right) \cos \phi \exp(-\gamma_1 z)$ $E_{z1} = \left(\frac{P_z}{X^2 + \delta^2 Y^2}\right)^{1/2} \left(\frac{b}{B} \frac{k_1^2}{i \omega \epsilon_1} J_1(k_1 \rho)\right) \sin \phi \exp(-\gamma_1 z)$ [37] $H_{\rho 1} = \left(\frac{P_z}{X^2 + \delta^2 Y^2}\right)^{1/2} \left(\frac{\gamma_1 k_1}{i \omega \mu_0} J_1'(k_1 \rho) + \frac{b}{B} \frac{1}{\rho} J_1(k_1 \rho)\right) \cos \phi \exp(-\gamma_1 z)$

$$H_{\phi 1} = -\left(\frac{P_z}{X^2 + \delta^* Y^2}\right)^{1/2} \left(\frac{1}{\rho} \frac{\gamma_1}{i \,\omega \,\mu_0} J_1\left(k_1 \,\rho\right) + \frac{b}{B} \,k_1 J_1'\left(k_1 \,\rho\right)\right) \sin \phi \exp\left(-\gamma_1 \,z\right)$$
$$H_{z1} = -\left(\frac{P_z}{X^2 + \delta^* Y^2}\right)^{1/2} \left(\frac{k_1^2}{i \,\omega \,\mu_0} J_1\left(k_1 \,\rho\right)\right) \cos \phi \exp\left(-\gamma_1 \,z\right)$$

Outside the guide, (Region 2), $\rho \ge a$

$$E_{\rho_2} = -\delta \left(\frac{P_z}{X^2 + \delta^2 Y^2} \right)^{1/2} \left(\frac{1}{\rho} H_1^{(1)}(k_2 \rho) + \frac{c}{C} \frac{\gamma_2 k_2}{i \omega \epsilon_2} H_1^{(1)'}(k_2 \rho) \right) \times \\ \sin \phi \exp(-\gamma_2 z)$$

$$E_{\phi 2} = -\delta \left(\frac{P_{z}}{X^{2} + \delta^{2} Y^{2}} \right)^{1/2} \left(k_{2} H_{1}^{(1)'}(k_{2} \rho) + \frac{c}{C} \frac{1}{\rho} \frac{\gamma_{2}}{i \omega \epsilon_{2}} H_{1}^{(1)}(k_{2} \rho) \right) \times \cos \phi \exp(-\gamma_{2} z)$$

$$E_{z2} = \delta \left(\frac{P_z}{X^2 + \delta^2 Y^2} \right)^{1/2} \left(\frac{k_z^2}{i\omega \epsilon_2} H_1^{(1)}(k_2 \rho) \right) \sin \phi \exp(-\gamma_2 z)$$

$$H_{\rho 2} = \delta \left(\frac{P_z}{X^2 + \delta^2 Y^2} \right)^{1/2} \left(\frac{\gamma_2 k_2}{i\omega \mu_0} H_1^{(1)'}(k_2 \rho) + \frac{c}{C} \frac{1}{\rho} H_1^{(1)}(k_2 \rho) \right) \times \cos \phi \exp(-\gamma_2 z)$$

$$H_{\phi 2} = -\delta \left(\frac{P_z}{X^2 + \delta^2 Y^2}\right)^{1/2} \left(\frac{1}{\rho} \frac{\gamma_2}{i \omega \mu_0} H_1^{(1)}(k_2 \rho) + \frac{\epsilon}{C} k_2 H_1^{(1)'}(k_2 \rho)\right) \times \\ \sin \phi \exp((-\gamma_2 z) \\ H_{z2} = -\delta \left(\frac{P_z}{X^2 + \delta^2 Y^2}\right)^{1/2} \left(\frac{k_2^2}{i \omega \mu_0} H_1^{(1)} k_2 \rho\right) \cos \phi \exp((-\gamma_2 z)$$
[38]

The electric field components E_{ρ} , E_{ϕ} and E_{z} are functions of d/λ_{0} and e_{i} (see figures 14, 15 and 16). The components E_{ρ} , E_{ϕ} and E_{z} have been normalised, with respect to their values at $\rho = a$. Since E_{ρ} is discontinuous at $\rho = a$, it has been seperately normalised inside and outside with respect to the surface values E'_{ρ} so that E_{ρ}/E'_{ρ} vs ρ curves (See fig. 14) are shown as continuous.

FIG. 14

Variation of the radial component E_{ρ} , of the electric field with the radial distance. E_{ρ}^{ℓ} is the value of E_{ρ} on the surface of the rod.

10. EXPERIMENTAL VERIFICATION OF FIELD DISTRIBUTION

Experimental determination (See fligure 17) of the variation of E_p , E_{ϕ} and E_s for the HE_{11} mode in the radial direction shows fair agreement with the theory. The variation of only E_p is represented graphically (see fig. 18). A monopole probe was used to measure E_{ϕ} and E_{ρ} and a half wave dipole for E_s components. The precision attenuator is adjusted for each value of ρ to keep the output of the probe constant, so that the crystal in the tuner works

Variation of the azimuthal component E_{ϕ} , of the electric field with the radial distance. E'_{ϕ} is the value of E_{ϕ} on the surface of the rod.

FIG. 16

Variation of the axial component E_z of the electric field with the radial distance. E'_z is the value of E_z on the surface of the rod.

Block schematic of experimental setup for the measurement of field components.

at constant input. This method eliminates the crystal law in field measurements. The experimental and theoretical values of λ_s as a function of d/λ_0 for HE_{11} mode and $\epsilon_1 \approx 2.6$ derived from the standing wave pattern measurement along the guide show fair agreement (see fig 19). All measurements have been made at the X- band.

11. IMPEDANCE CHARACTERISTICS

The impedance characteristic of the dielectric guide is studied by considering it as a microwave network and determining the scattering matrix of the system consisting of the mode-transducer, and the dielectric rod. In order to determine the input impedance of the dielectric guide, it is necessary to transfer the impedance from the input to the output, of the mode transducer. The impedance parameters which are determined from the elements of the matrix enable the representation of the mode transducer as an equivalent T-network. The insertion loss and the transmission efficiency of the mode transducer are then determined. The launching efficiency of the transducer is then calculated from the elements of the scattering matrix.

11.1. CHARACTERISTICS OF THE MODE TRANSDUCER $H_{01}^{\Box} - H_{11}^{\circ}$

By using Deschamp's²⁰ method (see figure 20), the scattering coefficients of the mode transducer were obtained and are as follows

$$S_{11} = 0.140 \text{ exp. } (i\ 203.7)$$

 $S_{12} = 0.969 \text{ exp. } (i\ 67.9)$
 $S_{22} = 0.143 \text{ exp. } (i\ 471.2)$
[39]

Fra 18

FIG. 19 Variation of the guide wavelength with the diameter of the rod.

The impedance parameters Z_{11} , Z_{12} and $_{22}$ are obtained from the scattering coefficients by the following transformations.

$$Z_{11} = Z_{1} \left(\frac{1 + S_{11} - S_{22} - [S]}{1 - S_{11} - S_{22} + [S]} \right)$$

$$Z_{12} = \sqrt{(Z_{1} Z_{2})} \left(\frac{2 S_{12}}{1 - S_{11} - S_{22} + [S]} \right)$$

$$Z_{22} = Z_{2} \left(\frac{1 - S_{11} + S_{22} - [S]}{1 - S_{11} - S_{22} + [S]} \right)$$

$$[S] = S_{11} S_{22} - S_{12}^{2}$$

where.

- Z_1 = Characteristic impedance of the mode transducer at the input termirals - Characteristic impedance of the rectangular guide excited in Ho1 mode = 4.0 Ω
- Z_2 Characteristic impedance of the mode transducer at the output terminals. - Characteristic impedance of the circular metallic guide excited in H₁₁ mode.
 - 436.5 Q

Substituting [39] in [40], the impedance parameters reduce to

$$Z_{11} = 9.385 + j \ 119 \ 2$$

$$Z_{12} = 2.994 + j \ 427.7 \qquad [41]$$

$$Z_{22} = 9.(45 + j \ 204.6$$

La Martine .

Circle diagram showing the construction leading to the determination of the scattering coefficients of mode transducer V. SUBRAHMANIAM, et al

FIG 24

Circle diagram showing the construction leading to the determination of the scattoring coefficients of the dielectric rod waveguide

- There -

which yields

$$Z_{11} - Z_{12} = 6.391 - j \ 308.5$$

$$Z_{22} - Z_{12} = 6.651 - j \ 223.1$$
[42]

The impedance parameters [41 and 42] lead to the representation of the equivalent T-network of the $H_{01}^{\Box} - H_{11}^{0}$ mode transducer (see fig. 21)

FIG. 21

Equivalent TEE network of the mode transducer.

The insertion loss L of the mode transducer is given by the relation (Ginzton, 1957)

$$L(db) = -10 \log_{10} (1 - |S_{11}|^2) - 10 \log_{10} |S_{12}|^2 / (1 - |S_{11}|^2) = 0.274 \ db[43]$$

where, the reflection loss L_R at the input terminals of the transducer is

$$L_R(db) = -10 \log_{10} \left(1 - |S_{11}|^2\right) = 0 \ 036 \ db$$
[44]

and the dissipation loss in the network is

$$L_D(db) = -10 \log_{10} |S_{12}|^2 / 1 - |S_{12}|^2 = 0.188 \ db$$
 [45]

The transmission efficiency η_i of the mode transducer defined in terms of the scattering coefficients is

$$\eta_{I} = |S_{12}|^{2} / (1 - |S_{11}|^{2}) = 95.76\%$$
^[45]

11.2 INPUT IMPEDANCE OF THE DIELECTRIC ROD

By using the nodal shift method, the impedance as seen by the slotted section for different lengths of the dielectric rod is determined. The impedance seen by the slotted section is then transferred to the input end of the dielectric guide with the help of A, B, C, D parameters which are as follows.

$$A = (Z_{11}/Z_{21}) = \sqrt{(Z_1/Z_2)} \times 0.2754 \ \angle -4 \ 1^{\circ} B = (|Z|/Z_{21}) = \sqrt{Z_1} Z_2 \times 0.9634 \ \angle -82.7^{\circ} C = (1/Z_{21}) = 1/\sqrt{(Z_1Z_2)} \times 1.0360 \ \angle -89.6^{\circ} D = (Z_{22}/Z_{21}) = \sqrt{(Z_2/Z_1)} \times 0.4862 \ \angle -2.3^{\circ}$$

$$[47]$$

 $|Z| = Z_{11} Z_{22} - Z_{12}^2$ where. [48]

The transformation of impedance from the input to the output end of the mode transducer is effected with the aid of the usual relation (see fig. 26a) Z'' = (DZ' - B)/(CZ' - A)

$$T' = (DZ' - B)/(CZ' - A)$$
 [49]

The input impedance of the dielectric rod guide as a function of the normalised length $I \mid \lambda_0$ has been evaluated (See fig. 22).

FIG. 22 Variation of input impedance with the length of the guide.

11.3 CHARACTERISTIC IMPEDANCE

The conventional open circuit and short circuit method has been used to determine the open circuit inpedance Z'_{cc} when the dielectric rod is shorted at the free end and is of length $(l + \lambda_g \mid 4)$ from the feed end, and the short circuit impedance Z'_{sc} when under the same condition, the length of the dielectric rod is changed to l where, l is an integral multiple of λ_g . The impedances Z'_{sc} and Z'_{sc} seen by the slotted section is then transferred to the input end of the dielectric rod. The characteristic impedance Z_0 of the dielectric guide is then evaluated as a function of the length of the dielectric rod (see fig. 23) in terms of the transformed impedances Z_{oc} and Z_{sc} from the relation.

$$Z_0 = \sqrt{(Z_{oc} \ Z_{sc})}$$
^[50]

FIG. 23 Variation of the characteristic impedance with the length of the guide.

V. SULRAHMANIAM AND S. K. CHATTERJEE

11.4 SCATIERING MATRIX OF THE DIELECTRIC GUIDE

The scattering matrix Σ of the system composed of the mode transducer and the dielectric rod guide is determined by Deschamp's (1953) method, The complex reflection coefficients for different lengths of the dielectric guide is plotted (see fig. 24) as a circle diagram from which the scattering coefficients Σ_{11} , Σ_{12} and Σ_{22} are determined.

$$\Sigma_{11} = 0.048 \exp(j \ 28)$$

$$\Sigma_{12} = 0.675 \exp(j \ 35)$$

$$\Sigma_{22} = 0.093 \exp(j \ 316)$$
[51]

The scattering coefficients σ_{11} , σ_{12} and σ_{22} of the the dielectric rod guide is obtained in terms of the S-matrix and Σ -matrix (See Appendix A).

$$\Sigma_{11} = S_{11} + \left(\frac{S_{12}^2}{1 - \sigma_{11}} S_{22}\right) \sigma_{11}$$

$$\Sigma_{12} = S_{12} \left(\frac{\sigma_{12}}{1 - \sigma_{11}} S_{22}\right)$$

$$\Sigma_{22} = \sigma_{22} + \left(\frac{\sigma_{12}^2}{1 - \sigma_{11}} S_{22}\right) S_{22}$$
[51]

which with [39 and 51] yield

£.

$$\sigma_{11} = 0.1945 \exp(j \ 69.1)$$

$$\sigma_{12} = 0.7161 \exp(-j \ 32.9)$$

$$\sigma_{22} = 0.1191 \exp(-j \ 81.8)$$
[53]

11.5 LAUNCHING EFFICIENCY

The launching efficiency is expressed in terms of the S-matrix and $\sigma = matrix$ (see Appendix B)

$$\eta_L = \frac{1 - |\sigma_{11}|^2}{|1 - \sigma_{11}|S_{22}|^2} |S_{12}|^2$$

= 85.5% [54]

12. ATTENUATION CONSTANT

Assuming that there is no loss in the free space surrounding the dielectric rod, the power transmitted along the guide is

$$P_z = P_z^i + P_z^0$$

The power loss, P_{tL} per unit length of the guide excited in HE_{11} mode is

$$P_{L} = \frac{1}{2} \int_{\rho=0}^{2\pi} \int_{\rho=0}^{a} \sigma_{1} |E|^{2} \rho \, d\rho \, d\phi$$

$$= \frac{B^{2}}{2} \omega \epsilon_{1} \tan \beta \left\{ 2\pi \left(1 + \frac{b^{2}}{B^{2}} - \frac{\beta_{1}^{2}}{\omega^{2} \epsilon_{1}^{2}} \right) \int_{0}^{a} \frac{1}{\rho} \left\{ J_{1} \left(k_{1} \rho \right) \right\}^{2} d\rho$$

$$- 4\pi \frac{b}{B} \frac{\beta_{1}}{\omega \epsilon_{1}} \int_{\rho=0}^{a} \frac{1}{\rho} \left\{ J_{1} \left(k_{1} \rho \right) \right\}^{2} d\rho$$

$$+ \frac{b^{2}}{B^{2}} \frac{\pi k_{1}^{4}}{\omega^{2} \epsilon_{1}^{2}} \int_{\rho=0}^{a} \rho \left\{ J_{1} \left(k_{1} \rho \right) \right\}^{2} d\rho$$

$$+ \pi k_{1}^{2} \left(1 + \frac{b^{2}}{B^{2}} - \frac{\beta_{1}^{2}}{\omega^{2} \epsilon_{1}^{2}} \right) \int_{\rho=0}^{a} \rho \left\{ J_{0} \left(k_{1} \rho \right) \right\}^{2} d\rho$$

$$- 2\pi k_{1} \left(1 + \frac{b^{2}}{B^{2}} - \frac{\beta_{1}^{2}}{\omega^{2} \epsilon_{1}^{2}} \right) \int_{\rho=0}^{a} J_{0} \left(k_{1} \rho \right) J_{1} \left(k_{1} \rho \right) d\rho$$

$$+ 4\pi \frac{b}{B} \frac{\beta_{1} k_{1}}{\omega \epsilon_{1}} \int_{\rho=0}^{a} J_{0} \left(k_{1} \rho \right) J_{1} \left(k_{1} \rho \right) d\rho$$
[55]

where,

 $\sigma_1 = \omega \epsilon_1 \tan \delta$

tan $\delta = 10$ s tangent of the dielectric rod = 0.005

and

 $|E|^{2} = |E_{p1}|^{2} + |E_{\phi 1}|^{2} + |E_{c1}|^{2}$

The attenuation constant

$$\alpha = P_L/2 P_z$$
 [56]

has been evaluated and determined experimentally (see fig. 25) by using the v.s.w r. method and calculating α from the relation

$$\alpha = (1/l)$$
 are tanh (1/v.s.w.r.) [57]

١.

FIG. 35

Variation of attenuation constant of the dielectric rod waveguide with the diameter of the rod for the HE_n mode.

13. CONCLUDING REMARKS

The investigations lead to the following conclusions

The radial propagation constant k_2 outside the rod increases with increasing d/λ_0 for all the three modes E_{01} , E_{01} and HE_{11} But k_2 (HE_{11}) > k_2 (He_{01}) > k_2 (E_{01}) which means that in the radial direction outside the rod (Field spread)_{HE_{11}} < (Field spread)_{He_{11}} < (Field spread)_{E_{01}} as the argument of the Hankel function contains k_2 .

The radial field spread outside the rod decreases with increasing values of \overline{e}_{II} and d.

The axial phase constant increases at first with increasing d/λ_0 and tends in the limit to the value corresponding to that of a plane wave propagating in an infinite medium having μ and ϵ the same as that of the dielectric rod.

The symmetric modes E_{01} and H_{01} possess a cut-off wavelength depending on d and $\bar{\epsilon}_1$ of the rod. But there is no such cut-off behaviour in the case of HE_{11} mode. For small values of d/λ_0 , $(\lambda_z/\lambda_0) \rightarrow 1$, which means that a major part of the power flows outside the guide.

As d/λ_0 increases, λ_s/λ_0 decreases and finally approaches asymptotically the value of $1/\sqrt{\epsilon_1}$, which corresponds to the propagation of the wave through an infinite medium having a dielectric constant equal to ϵ_1 .

The difference between the theoretical and observed variation of the electric field in the radial direction may be possibly due to the following causes. Higher order modes may be present due to the discontinuity present invariably at the junction between the mode transducer and the dielectric guide. Though the probes are placed in preferred direction for a particular component, other components may induce unwanted currents in the probe. The presence of the probe may also affect the measurement due to interaction between the probe and the guide.

The power flow in the radial and circumferential directions is reactive.

The division of power between the inside and outside of the guide for the three modes is compared as follows

$$\left(\frac{P_z^i}{P_z^0}\right)_{HE_{11}} \left(\frac{P_z^i}{P_z^0}\right)_{H_{01}} \left(\frac{P_z^i}{P_z^0}\right)_{H_{01}} \right) \left(\frac{P_z^i}{P_z^0}\right)_{E_{01}}$$

The oscillatory nature of the input impedance of the dielectric guide for lower values of l/λ_0 and its tendency to become fairly constant for higher values of l/λ_0 remain to be justified by theory.

14. Appendix - A

Scattering Matrix of the Dielectric Waveguide: Let $\begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix}$ be the scattering matrix of the mode transducer and $\begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{pmatrix}$ be the scattering

matrix of the diclectric rod guide only. Then, (See fig. 26)

$$= \begin{pmatrix} E_{r1} \\ E_{r2} \end{pmatrix} = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} \begin{pmatrix} E_1 \\ E_2 \end{pmatrix}$$
[A.i]

$$\begin{pmatrix} E_{r3} \\ E_{r4} \end{pmatrix} = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{pmatrix} \begin{pmatrix} E_3 \\ E_4 \end{pmatrix}$$
 [A.2]

S0,

$$E_{r1} = S_{11} E_1 + S_{12} E_2$$

$$E_{r2} = S_{21} E_1 + S_{22} E_2$$

$$E_{r3} = \sigma_{11} E_3 + \sigma_{12} E_4$$

$$E_{r4} = \sigma_{21} E_3 + \sigma_{22} E_4$$
[A.3]

When the networks S and σ are connected, so that the terminals 2-2 and 3-3 are joined together

$$E_{r2} = E_{s}$$

$$E_{2} = E_{r3}$$
[A.4]

Substituting [A.4] in [A.2]

$$\begin{pmatrix} E_2 \\ E_{r4} \end{pmatrix} = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{pmatrix} \begin{pmatrix} E_{r2} \\ E_4 \end{pmatrix}$$
 [A.5]

which with [A.3] yields

$$\mathcal{E}_2 = \frac{\sigma_{11} S_{12} \mathcal{E}_1 + \sigma_{12} \mathcal{E}_4}{1 - \sigma_{11} S_{22}}$$
[A.6]

which with [A.3] yields

$$E_{t1} = \left[S_{11} + \left(\frac{S_{12}^2}{1 - \sigma_{11}}S_{22}\right)\sigma_{11}\right]E_1 + S_{12}\left(\frac{\sigma_{12}}{1 - \sigma_{11}}S_{22}\right)E_4 \qquad [A.7]$$

Similarly,

$$E_{r2} = \frac{S_{12} E_1 + \sigma_{12} S_{22} E_4}{1 - \sigma_{11} S_{22}}$$
[A.8]

$$E_{r4} = S_{12} \left(\frac{\sigma_{12}}{1 - \sigma_{11}} S_{22} \right) E_1 + \left[\sigma_{22} + \left(\frac{\sigma_{12}^2}{1 - \sigma_{11}} S_{22} \right) S_{22} \right] E_4$$
 [A.9]

The composite matrix $\begin{pmatrix} \Sigma_{11}, \Sigma_{12} \\ \Sigma_{21}, \Sigma_{22} \end{pmatrix}$ of the mode transducer and the dielectric guide is given by the relation

$$\begin{pmatrix} E_{r1} \\ E_{r4} \end{pmatrix} = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} \begin{pmatrix} E_1 \\ E_4 \end{pmatrix}$$
[A.10]

where the coefficients are

$$\Sigma_{11} = S_{11} + \left(\frac{S_{12}^2}{1 - \sigma_{11} S_{22}}\right) \sigma_{11}$$
 [A.11]

$$\Sigma_{12} = S_{12} \times \left(\frac{\sigma_{12}}{1 - \sigma_{11} S_{22}}\right)$$
 [A.12]

$$\Sigma_{22} = \sigma_{22} + \left(\frac{\sigma_{12}^2}{1 - \sigma_{11} S_{22}}\right) S_{22}$$
 [A.13]

which on substitution of the coefficients of S-matrix and Σ -matrix yield the coefficients of the σ -matrix.

15. APPENDIX - B

LAUNCHING EFFICIENCY

Assuming a matched load at the terminals 4-4 (see fig. 26) the launching efficiency HE_{11} mode on the dielectric rod guide is derived as follows

$$E_4 = 0$$
 [B.1]

From Appendix A

$$E_{r3} = \sigma_{11} E_3$$
 [B.2]

$$E_{t4} = \sigma_{21} E_3$$
 [B.3]

FIG. 26 (a)

FIG. 26(b)

Since S and σ networks are cascaded

 $E_{r2} = E_3$ [B.4]

$$E_2 = E_{r3}$$
 [B.5]

From Appendix A

$$E_2 = \sigma_{11} E_3 = \sigma_{11} E_{12}$$
 [B 6]

.

$$E_{r2} = S_{21} E_1 + \sigma_{11} S_{22} E_{r2}$$

$$= \frac{S_{21}}{1 - \sigma_{11} S_{22}} E_1$$
[B.7]

Power entering the σ - network

$$P_{\sigma_{1}} = |E_{r2}|^{2} - (1 - |\sigma_{11}|^{2})$$

= $\frac{|S_{12}|^{2}}{|1 - \sigma_{11}|S_{22}|^{2}} (1 - |\sigma_{11}|^{2}) |E_{1}|^{2}$ [B.8]

Therefore, the launching efficiency is

$$\eta_L = \frac{P_{\sigma 1}}{P_{\sigma 1}} = \frac{(1 - |\sigma_{11}|^2)}{|1 - \sigma_{11}|S_{22}|^2} |S_{12}|^2$$
[B.9]

where Pat represents the power incident on the S-network.

RIFERENCES

1.	Hondros, D. and Debye	, P.	••	Annia, Phys. 1910, 32, 465.
2.	Zahn, H.	•••		Ann. Phys., 1916, 49, 907
3.	Schriever, O.	••	••	Ibid, 1920, 63, 645.
4.	Clairicoats, P. J. B.	a •	••	Proc. Instn. elect. Engrs, P.T.C., 1961, 108, 496.
5.	Waldron, R. A.		••	J. Br. Instn. Radio Engrs, 1958, 18, 733.
5a	• <u> </u>			Ibid, 1958, 18, 677.
6.	Gillespie, E.F.F.	••	••	Proc Instn elec. Engrs, Pt. C., 1960, 107, 198.
7.	Clarricoats, P.J.B., and	Waldron, R.A,		J. Electron. Control, 1960, 8, 455.
8.	 ,	••	• •	Proc. Instn. elect. Engrs, 1963, 110, 261.
9.	Brown, J.		••	J. Instn. Telecommun. Engrs , 1963, 9, 140.
10.	Chandlor, C. H.	••		J. appl. Phys., 1949, 20, 1188.
11.	Elsasser, W. M.			J. appl. Phys., 1949, 20, 1193.
12.	Du Hamel, R. H. and Di	uncan, J. W.		IRE Trans. microw, Theory Tech., 1958, 6, 277.
13.	Angulo, C. M. and Char	ng, W.S C.		lbid, 1958, 6, 389.
14.	,	· •		Ibid, 1959, 7, 207.
15.	Duncan, J, W. and Du F	lamel, R. H.		Ibid, 1957, 5, 284.
16.			• •	Ibid, 1959, 7, 257.
17.	Kay, A. F.	••		Ibid, 1959, 7, 22.
18.	Brown, J. and Spector, J.	. 0.		Proc. Instn. elect. Engrs., Pt. 111 1957, 104, 27.
19.	Weil, G.			Annis Radio elect., 1955, 10, 228.
20.	Deschamp, G. A.		• •	Jour appl. Phys. 1953, 24, 1046.

ADDITIONAL USEFUL REFERENCES

Wait, J. R.	••	••	Electromagnetic Surface Waves, Advances in Radio Research, 1964, Vol. 4, Academic Press, 157-217.
Barlow, H. M., Brown, J.		• •	Radio Surface Waves, 1962. Clarendon Press,