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ABSTRACT
Although mechanical systemns subjccted to random excitations have been
extensively studied during the past few years, there appears to be no analysis which
takes into account the possible creep deformation of the mechanical elements due
to the Joading on the systern. As is well known, the creep in metals, being an
cnergy absorbing process, introduces an equivalent damping into the system and
hence attenuates the vibrations. A study of this creep damping in coiled springs

has been made by Hofft
In this paper, the study of mechanical systems idealised by a single degree of

freedom system, which admirs both elastic and creep deformations, has been
undertaken. By assuming a stationary,* Gaussian, white noise type of Random
excitation on the system, the statistical properties of the response have been
obtaised with the aid of Generalised Harmonic analysis?. Also, an estimate of
the damping introduced into the system due to creep, has been made by evaluating

the energy absorbed by the creep process.

ANALYSIS
Consider a single degree of freedom system whose equation of motien
can be written as
m(d*x/di*) + s =mg+ F [1j

where

is the mass

is the displacement

is the spring force

is the acceleration due to gravity
is the impressed force.

e omou oy

By Hooke’s law
Fe = K Xer [2}

*The Random process assumed is not only stationary bus also ergodic.
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where,

2 is the elastic part of displacement

K, is the spring constant,
Assuming the displacement or the spring deformation to counsist of oty
elastic and creep deformations, and the creep velocity 1o follow a lineas lay
of viscosity,

where x,, is the creep displacement and X, is the equivalent dashpot constant,

Now,
X X b Ker
Therefore,
dt ¢ )

The corresponding initial conditions ot 7 = 0 are
d

Xap me Ky, Koy w0, S5 ) fs}
dz

dx, F, mg

dr &, K’:

The particular solution for equation {1} and [5] under these conditions will be

mg  mgz e )
%, = 2 10 ¢ (satisfying the LC. 1
» X, X ( yimg i J ,

This represents the sieady state motion without impressed force acting on
the system,
Now making the transformation
Ko X — %,
and Q=F—mg }

8]

where the new variables X and Q represent the displacement and forcein2
system of zero gravitation.
by [2} A’el= Q/K\
dX, 0~ F [9]
by 3] Soer L = TH
y I3} X,
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5] d;v dQ/(Jt 0o-5 10]

by
Ay K,

d2Q/er+ do/lt-dFjd &KX _F-0

d
a X, % " Tm
2
ie %1?4 7,4‘1Q+ W0 = F(z) i 1)
where,
K, K
2 ==Ly wi-=L 12
Bty wheT fx2)
F dF,/dt 2 aF;
F(1 = W3F +28—L 13
(1) - l szxKx SR+ {13]

By solviog [10] and [11] we can get X and Q which in turn gives the solution
for the response x and creep in spring, etc.
. For this, at this stage it is necessary to specify the function F(f)i.e.in
turn F; (¢).
F,(t) is taken as a Gaussion random variable stationary, mean zero,
white noise type i.e., constant speciral density type.

Heance -ﬂ%@— which can be thought of as a linear combination of two
¢

normal random variables with subsequent passage to the limit, can also be
taken as a normal random variable with mean zero®.
dF (1)
dt

By similar argument #(¢) the linear combination ¥;{z) and is also

a normal random variable with mean zero.
Therefore the solution to equation [11] using the convolution integral
will be e
Q =exp { — 8)-(A cos Wyt + Bsin W, 1)

+‘fh (T)F(;“ 7)dr [14]

#(7) = [exp (- B¢}/ W] sin W7 f15]
Wiewi- g [t
17

Therefore @ (1) = f h()F(t—2)dr
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Mean or Expectation of Q(£): (g} ) :

As {F(1) p =0, {E() -0,
Henee . {Q{s} > =0 5]
Mean Square Value 0f @ (1) <02 () ) :

To determine € Q%(t) ), first, it is necessary to determine the auto
correlation frnction Rg(r, ) which will be just R {7)if Qis stationary,
As the system is linear and since F(t) is statiorary Q(¢) the output will be
stationary and hence we can specify the anto correlation function in terms of r
only and it will be independent of .

Now Ro(m)={Q{)QC+7)) {19)

B fhGD) CFG=r) Flivr =)D drvdn,

The terms in the angular brackets = &x (+ + 7 — ) [20}
Re() = F() Fr e ) ) =
by [13]] = {W§ Re; (7 + 4 8 Rumar (7) + 2 8 W3 [ Revarigar (7)
+ Raryjaew: {’f)]} o]

As F (1) is Gaussion, random variable, mean zero of white noise type ie,
constant spectral density type. Sy (W)= S; = const.  Where the letter §
stands for spectral density.

Ry; (7} = (Sa/2) 3 {x) (2]
Therefore
Rooga ) = e ()] = 57 27 L [ ()
[as v (2= 1)), - 188" () (23]
Reiapipar (1) = 0 4
Rivijarei (1) = 0 23]

Using {22] through [25] in {21] and substituting
Re (7) = (+5o/2) [Wd 5 (#) 1.4 528" (+)) {26]
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Substituting [26] and [20] in [19] and integrating ,
exp {(~ £r) {{(WF—4p8%) W, cos W, r
+ (W5 +45%) f sin Wy} [27]

e3={0*(1)), as {Q(t)> -0
- Ry (0) = (Sof/sBY(WE —ag?) " [28]

§
Ry (7) = —2
o (7 Y7

Therefore

Now
Rygjar (’l‘) = - (52/572) Ry (x}
= (S5/88 W) exp (~ B7) {(W§ — 45 W2+ 16 8%) W, cos Wy«
— (W 128 W§ + 16 8*) Bsin W, =}
Similarly,
Rypryaer (7) = ~ (3*far%) Rugpar (7)
= (So/88 W) exp(~ g7) { - W5 +8 8¢
—485° W&+ 6485) Wy cos Wy
+{-3mf+20 B2 W3- 808 W3 +645) BsinWyr}t  [29]

Now
ews | XO=(@IE)+Q/E) [ (0-F)a [30]
x@y-S@ . _E2, [31]
Here O - fQdt } integral transforms of O and F;
= | Fdt

Mean Square:  {x2(1)) = Ry(0):

Re(t, 7) = )
X xG+2)) ,< Q(t) L2® F.KE:)}

.08

{QOK, +7) Q’(It{:f) F (;{:r)}>

_Ra (1) Rollr) I(r)  Rei(7)
Kz Kz Kz
Ryl.pt? (1’) + Rp;? Ql(”) [32]
- _————K§ —
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where Ro (+) is given by [27]
Ro{wy=J ] Bo(<ydrdt, Rof-5i(7)=[ [ Rom(r)dtar
Re A (7) = [ [(Sof2) () dtde, Reitqt ()= [ Re&/w)drai[3)
Here Rori(m) =K QW A(t+7))

= [) FG =) e ) > dm

- %" E’.‘D_.%;JT) T{B% W3y sin Wyr ~ 25W, cos e} [34)
1

and Reiq () = (F: (1) QG+
= SR RO F (4 7= 1)) dm
= (Sof2) exp( — Re) {{W} — A7) sin Wyr - 28, cos Wy} [36]

Hence all the quantities in [39] and in turn [32] are knowa.  Hence &¢ (s, 7)
is known.
Now, x=X+X,
<x>==<X> +<Xp>
e = (mglKy) + (mg/Ky) 1 at Lime t
{x) =(mg/K)) + (mg]Kr) ¢ , f36]

Mean square value: {(x* (1)) :

2,2 m'lgl
Rt r)=Re(t, )+ ( L 4 28 TR [ (14 2) ]+ t(1+r)>
()= Re () (TE L IE TR (1 (4 ] B

Therelore
2 2 2 22
)= Rx<o)+<z Py ng> 1]
1

Ks X2

To calculate the strain energy absorbed by the creep process:
W. =work done = strain energy absorbed by the creep process

- 1’;' 0f (Fo- B d )

'But
F, ~F:-m[g &xfd) ]
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Therefore

2 ¢
W= —% J e~ 22 (@%/dr} + (/) [ [39]
i

2

W, (1)) ~ %‘ j [¢8— 2 {laxfat)) + C(dxjat’ ) |
-2

Here
(d°x/d?) = (7x[de*) [as (d2X/di%)p = 0]
_ (@0lay | (a0l - (ar/d)
K K,
As QY = (Fp =0,
(CET YN
Also,

larefary’y - L0l (dzi / ?ﬁf? 4+ {(dg/ary? 1;2 (dF [di)’)

{other terms are being zero)

Using these expressions along with [29] gives
(o (1)) =Kt - [l

where .
mzl 2 1 S 2 4 4 2 3
K oo e e e 2 S - 8 L) + 48 LY o ,..645:)
£ £ K 8,3( ¢ b Lo
1(8 Se 4 2 2 4
oo 4528 L 2 g — & [T + 16 )}]
KE{Z TB‘B( 0 ﬁ (] /3

Now, the decrease in the potentia] epergy of the system is

L F - F
dE=m AT
¢ [ A

2.2
Therefore {dE> = ﬂ;—' 4]
) 2
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D{t), the dissipated energy is provided for by the reduciion in kinetic
energy and

D)= (We {0} )~ {dEy =K't [42]

Hence D (¢), the decrease in kinetic energy is 2 measure of the damping in the
system as the differense between the squares of successive peak velocities js
proportiosal 1o this decrease in kinelic energy.

CONCLUSIONS

From the analysis, it is seen that inclusion of linear creep deformation is
equivalent to introduction of viscous damping into the system as the effect of
both is the same, viz.,, attenuation of the vibrations of the system  But the
similarity betwesn them is limited to this attenuation property, as the nature of
the response will be different for the two cases. As seen frem the reculs
{expressions {36] and {37] ), the response of the system to a stationary random
excitation (while remaining stationary for the case of viscous danping)
becomes non-stationary for the case considered in this analysis. This difference
in the statistical properties of the response can be attributed to the time
dependent nature of the creep phenomenon.

The creep process being an irrecoverable process, absorbs erergy, which
is met in part by the reduction of the potential energy of the system. The
decrease in kinetic energy supplies the rest of the emergy absorbed by the
creep process'and this is a measure of damping as it is an index to the ratio of
successive peaks of velocities. Since the excitation is random in narure, oaly
a mean value of this energy dissipation can be determined, from which an
estimate of the damping can be made.

REFERENCES

1. N.J. Hoff . . U.T.A.M., Collequinm on ‘ Creep in_Structures’
1960, Ed. M. J. Hoft, Publishers Springer-Verlag
1962, p. 355.

2. 1. D. Robson . - ¢ Random Vibrations®, Edinburg University Press,
1963.

3, V.L.Lebedsv .. .o Random  Processes in mechanical and electrical

systems' translated from Russian for the
Watural Science Foundation, Washington,
1965.





