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ABSTRACT

The molecular model of Jaswal! has been extended to take into aceount the
second vnerghbow interactions. The frequencies of the localised modes duc to
U.centres sn atkall halides and substitutional impurities in {11.V semiconductors
have been computed and discussed 1n relation (o thelr infrared absorption spectra.

INTRODUCTION

For the study of the local mode vibrations due to point defect in crystals,
the molecular model put forward by Jaswal' has been found to be of great use
in cstimating the weakening of the force constant between the defect and its
first neighbour by fitting the calculating local mode frequency for the U-centre
with the experimental infrared absorption frequency. Such a knowledge of
the force consiants between the U-centre and its first neighbour alkali jons in
different alkalr halides was helpful in explaining the sphiting of the degeneracy
of the local mode vibration due to U-centre in alkah halides when an addition
impuwiity of another alkali ion is introduced in the first coordination sphere of
the U centre®. Since the infrared spectra of alkali halides containing U-centres
and additive halogen impurity in the second coordination shell have been
reported by Mirlin and Reshina®, it was felt necessary to work out the
molecular model o take into account the substitutional impuraties in the second

neighbour coordination also.
i
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As a first step we have carried out numerical calculations on the localised
modes due to {/-centres in alkali halides and localise¢ modes dug to defects in
111-V Semiconductors, mainly with the jdea of estimating the weakening of 1he
force constants between the defect and its first and sezond neighbours and the

results are presented in this paper.

THEORY aND RgsuLls

The theory employed is just an extension of that of Jaswal!, by taking a
bigger molecular unit with the defect at the centre, surrounded by the first
nerghbours and second neighbours. We assume that in the localised mede,
this unit alone takes part in the vibration, with the rest of the lattice at rest,

We treat the interaction potential in the ripid ion approximation and take
the electrostatic Coulcmb interaction between the diffzrent lons and the short
range central interaction upto second neighbours. If the number of fist
neighbours is 7, and number of second neighbours is ny, then the potential
can be writien as

@ ={~afr)+m® (#)+n0,(r) 1]

where o is the Madelung constant of the Jattice and r; represent the distance
between an atom and its first neighbour and r, the distance between atom and
its second neighbour.

Following Jaswall, the coupling coefficient due to Coulomb interaction
between atom / and atom I’ can be written as follows:

1. I"=1 By symmetry of the lattices of NaC!. Cs€l and ZnS, we find
that D}g '~ I) which represents the interaction on tie ajom / by the rest of
the crystal turns out to be zero.

1 elelt) [, (1-IYrp 21y
* ) 8 | [2]
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where e (I} and e(I') are the charges of the ions / and /* and [r(=1)]
represents the equilibrium distance between 7 and /.

Following Kellerman® the short range potential @, fornearest neighbours
and &, for next nearest neighbour are defined by
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o ‘l’w‘ & -
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where /) and 5 represent the equilibrium first mneighbour distance and

second neighbeurs distance respectively and ¥ is the volume of the unit cell
(@) Rock Salt Structure: Let us designate the defect atom (H ~ ion)
as 1 situated at the origin and we have six first neighbours Na” atom labelled
from 2 to 7 and situated at (100) 7o, (100} rg, (0:0)rg, (070} 7y (001} rg,
(00T} rs. The second neighbour ¢/” ions are 12 in number and they are
labelled fron: / =8 to 19 and their position vectors in order are given below,
() Ot {9) (110} (10) (110)ry (11) (T10) 1o
() (011} r (13) (0TD)r (u4) (011} (15) {0T1) 1o
(16) (101} 7, (17) (T61)r (18) ([01) 7 (19) (10T1) e
The maic aim is to obtain the dynamical matrix for this molecule with
19 atoms having Oy symmetry and to find out the normal modes.
Using Eq. [7] the Coulomb part of the dynamical matrix can be written.
The first neighbour short range interaction is described through the parameter
A4 and B and second neighbour short range interaction through 4, and B, as
defined above. The interaction between the defect and its first neighbour is
described through similar parameters A" and B and that between defect and
second neighbours through parameters 4; and Bj. We asspme that there is
no relaxation around the defect and that makes B =B and B =8;. Ose
can however find out the values of B and B; by fitting the infrared data and
in order to simplify the probiem this has not been done here. Further the
second neighbour interactions between the positive ions are neglected. With
these parameters the short range coupling coefficients are worked out 1o be

DR (L=1) = (/v H m)' 4" + 2B +24] +48)] 1]
D5 (2~ 2) = DEA3 -3} =« D}, (4 ~4) = D}, (5 - 5) = DI, (§ - 6)
=DE (7 =T = (V) )34 4 A2} + {4] +74,/4} +28+ 48]  [8]

DL~ =05 (2-2)- D, (3-3) = D1 (3-3) = DL (4 4)

= D% (4~ 4) = DL (5 5) = D5 (5~ 5) = DL (6 - 6) = D5, (7T-7)

= D4 (T=T)= D5, (6—6) = [(4+28 + 24, + 4B} (&)%) (1/m2) 9]
|

DEg(I-1) =0forl=1, 7
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DRSS - 8) = D% 8 — 8) = DA (9= 9) = D519~ 9) = DY (10~ 16} = D (10~ 10}
=Df§(11—11)=D§y(1x_{1)=nﬁ;(xz 212y = DR(12-12) = DR, (13~ 13)
= D2{13 - 13) = DY, {14 - 14} = DX (14 14} = DR {15~ 15) = DE (15 15)
= D0 (16 —16) = DE(16 - 18) = D517 - 17y = DR (#7217} - DE(I8 ~18)
=Dh(18-18) =DX (1518 = DL (19 19)
« (V) (1/m) [a+2B+ (T4 + A)/4- 4 B] [1]

PRS- §)= DR -9)=DE(16 - 10) = DR (11 11) - DR (12 1)
~DX{13-13) = DR, (14 14} = DX.(15 - 15) = DL.(46 - 16) . DI (17 - 17)
= DR (18~ 18) = D& (19 - 19) = (e)- (1 /m) (4 + 2 B+ 24:+ 48)  [12]

DE(8 8 =DR(9-9)=DR(12~12)=D,(13-13) - DL (16 - 16)

w DR (1T = 17) = (/7 ) (1 /mm3) (4) - A}/4 [13]

DE(10-10) = DR (11— 11) = DR (14 —14) = DE (15 15) = DL (18 - 18)

= DE(19 —19) = (/¥ - (1/ms) (4, - 4})/4 L4l

2 H
: ERR N (O IR TS DU I
Daﬁ(l—‘l)“‘"”,‘/(mlmz) 0D e+ Bl [15]

for { running from 2 to 7

&1 A =B (1= Drgg (1 - 1)

PR (U ) P - ! 2 Bs,,
a5l ) 2V V(m‘mg,)l re{l—1) + 5 5“""\1 ]

where [ runs from 8 to 19
For first neighbours iateraction with /.21 and V31, we have

2 1 (A= B roe (1 = Myrgg (1 - 1')
DR (i) = e e ﬁ___[_.* e Tl ) pses
o 2V o (mymg) ol -1 o

{17

For second peighbour halogen-halogen interaction with /sl and I's1, one
can obtain |

Di(1~i) = -

_e_i_ﬂl_ﬁ[ (4 =B roa (1= 1) rep (1-1)
LV A {mymy) A=) + B Eaﬁ} {18]
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The jons are assumed to carry uait charges. The parameters 4, B, A, By
are related to the elustic constants and the infrared frequency as given by
Cowlay’

et | A L::Sﬁo«tz*] f19)
Fo 2 B
e | AL Z2BE3 B g y150g 2 J {20}
V?'o 4 3
(‘2 (A1 - Bl) A L2
ey m e ALY 66953502 "
“ Vi { 4 1 ]
by o= f:’l | A +23_4_ff.2 {22]
7o v 3

The equilibrium condition is
B+2B = ~2f3aydd (23]

When a,,is the Madelung constant. From these equations using the avilable
experimental data of Oy, Cya wro etc. the short range parameters are
calculated for the sodium, potassium and rubidium halides. We assume
a weakening of the short range interaction by 50% for ¢/ centres and hence 4’
is taken as 4/2 and A is taken as 4 1/2.

With these short range and long range coupling coefficient the dynamical
matrix of order (57 x 57) for the set of determinental equations can be written
and this wus diagonalised to get the eigenvalues and eigenvectors. The 57 eigen
frequencies fall under the following irreducible representations for the 0,
point group

Pogm2 A+ Aug 3B+ 3F ¥ 3Fop 4 Aoy + E, +6F,, +3 Fyy

The { centre local mode falls under Fy, representation and corresponds to the
highest three degenerate eigenfrequencies. The other perturbed normal modes
are less than the Jongitudinal optical frequency for zero wavevector of the
perfect lattice. They can be classified into the various irreducible repre-
sentations by comparing the eigenvectors obtained with those given in the
tables of Ludwig.®

Tust lo see the nature of U centre frequency for no change in force
constants namely 4’ « 4 A{ = 4, a simple caleulation was done for U centre
in NaC!. The U centre frequency was found 1o be 15,83 x 10 sec™! as against
the value of 15.90 % 18" sec™! obtained by Jaswal’ for his first neighbour
maodsl for 4" w 4,
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In fact, A’ was given values ranging from 4 to 4/4 and similarly 4]
from 4, 1o A;/4 and all possible combinations of the values of A and 4] were
tried in a sample calculation for the U centre frequency in NaCl. It is found
that the best fit could be made with the comhination 4’ = 4/2and 4] = 41/2 and
accordingly in subsequent calculations of Ucentres of other alkali halides,
only this combination of 4" and 4] is taken.

Table I gives the results of our computation for U centre frequencies of
various atkali halides. Experimental results of Fritz et al” are also given for
comparison. We have also made computa:ions fov the gap mede {requencies
in K7 due to both anion and cation impurities. Table II gives our computed
results and experimental tesunlts of Sievers®,

TasLe 1
U Centre frequencies from Alkali halides

Local mode frequency 1a units

of 103 sec=?
Crystal o e e e e
Calculated Experimental
NaCl 9.88 10.65 B
NaBr 9.26 7.7L
Nal 8.57 8.12
K<l 8.91 9.45
KBr 8.51 8.48
K1 7.68 T8
RbCl 8.83 8.96
RbBr 7.94 8.06
Rbl 7.31 681
TasLE 2

Gap mode frequencies in KI (in units of 10'® sec-1)

Localised mode frequercy in
units of 1012 sec~1

Lmpurity ~

Calculated Experimental
F- 2.86 24
Cc1- 1.5% 1.45
Br™ L.18 1.90
Na 2.81 1.22

Ca 0.98 1.57
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From the results it is evident that the weakening of the force constant
for U centre is around 50% for halkali halides and a second neighbour model
does not improve the calculated value of U centre frequency from that of a
first neighbour model as can be scen from the present results of U centre in
NuCf and that of Jaswal.  This is further reflected in our computed resulis of
U Centre in NaCl, where we found that one 4 is fixed at 4/2, different values
of 4 did not yield very different vaiues for local mode frequencies showing
thereby that the condition of the variation of A; was less stringent for the fit.
This shows that the U centres give rise to ideal cases of localised modes where
the amplitudes of vibration die down very fast as one goes from the site of
the defect.  There is no agreement between the computed and experimental
resulis for the gap modes in K/, mainly because most of them lie in the
continuum of the frequency distribution except that for the CI™ replacement and
hence are not of localised nature in the strict sense,

(b} Caesium Chloride Type Lartice: Eventhough extensive calculations
have not been done as in the case of NaCl we have extended the model to
CsCl and Z,8 type lattices as well. Sample calculation in the CsCl type lattice
has been done for the U centres in CsBr.

Here surrounding the H ™ jon at the origion which we label as I, we have
8 Cs*ions labelied from 2 to 9, situated at the following sites in order (ll!)rg,
(i) re, (1o, (1) v (111)re, (Ti1) 7 (1) re (11075, Also we
have 8 second neighbour halogen ions labelled from 10 to 1S situated respec-
tively at {200) ro, (200) ro. (020) o, (020) r, (002) rg. (002} 7.  The electro-
static coupling coefficients can be written using equation [2}

For the short range part, following the procedure of Krishnamurtby,” we
define for the first neighbour

[(52 @1)/(5 '2)] ”"/fﬁo = (ez/V) 4 [24]
(/) Gefan].va,=(]V) B 23]

the case of perfect lattice and corresponding dashed parameters for the
interaction of defect with its first neighbours. We also put B= 8.

Similarly for second neighbours of perfect lattice we define
[(52 QZ\’/(S rl)]rf~2 Tl (ez/V) 4 [26]

K1) (2 0af 1)Ly are= (EV) By {271

We hive 4, and B for the defect  Again we sssume Bi = By and also that
the (Cs Cs) and (Br-Br) interactions are the same, to make the situation

simpler. Then the non-vanishing elements of short range matnx can be

written as follows:
DR 1) = (V) (1m) ['84 +16B)/3+ 24 +4B] [28]
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DR -D=(f/P) (1 /m) {4 +7 4 +16B)/3+24; + 4 B] {201
with / running from 2 to 9.

DR (- D =(&y)(1fms) [{(8 4+ 16 B){3 + 4y + A1 + 4 By] {30]
with { running from 10 to 15.

& 1 l roe (1= Drgg (1 1) }
DEG-D=~— A - By = + B3, 1
CDgp(1-10) valmz( ) IO, Bop| 1]
with / rusning from 2t 9
éoi { roa (1= 1) 7o (1= ) ]
il e —— A - By) +B s 32
/3( ) V’\/ml7”3 ( 1 1/ rg(kul) 1048 [ ]

for ! running from 10 to 15.

For Lel, {1 the first neighbours interaction gives

Ty ol 1Y rgel1-1)
B e ! ) PLAEAG) -« BS 33
. Du,&‘( ) v Vmimﬂi. (A ) rg(l i 1”) ¢ af { ]

For second neighbours

. ea 1 *01(1—1)505(7-—}
Deg(l=l) = = | (dy = B) =iy o 4 ByBug | 3]

P2~ =B (3-3) =~ LR(4~4) = DRI5- 5) = DR(6-6)
=DR(7=7) = DR(8~8) = DN(D 8= (/) (ifmy} (4" — 4}{3 [35]

D (4 ~4)=D5(4~4) = DE(5 - 5) = DE (5~ 5) = D5, (6 - 6)
= D56~ 6)« DE(7T-T) = DR~} = DR (8 - 8) = DR (&~ 8)
= D5{9-9) = DE(9-9) = (/) (1/m) (4 - 4T)/3 [36]

The elements of the resulting matrix of order (45 x 45} can be easily
writter down. The charges on the jons, z are assumed to be unity. We are
left with only four independent parameters 4, B. 4; and B, They are reluted
10 the elastic constants and wr , by the relations®

ey = (e V) (4 +28) £ Lo, 4+ 140179 27) {37
eize (& V) [F{d - 48) - L B, ~ 137935 ;7] [38]
cas = e rg) (£ (4 + 28) + 4 8, — 070089 27) 139]
wh= 1 VL {E(4 1 28) - (aey3) ) . {40



Molecular Model for Localised Modes in Cubic Crystals 9

The equilibrium condttion is
B+ B~ -';‘Gufz- {411

From these equations using known values of elastic constants and wr the
parameters 4, B, A;, B; are evaluated. Computations have been done for
two cases first with 4’ = 4 and A) = 4, and then with 4’ = 4/2 and 4, - 4,/2.

For 4' = 4, etc., the value obtained for U centre frequency is 13.6 x 10
sec. ~' and for 4’ = A/2 etc . the value is 8.7 % 10" sec. ™', The experimentally
observed values by Mitra eral®™ is 6 83 x 10 sec. ! This shows that the foree
constant changes are definitely more than 50% unlike in other alkali halides.

{c) 2,8 Type Lattice: We had extended the first neighbour molecular
model 1o Z,§ structure earlier and here we have also included the interaction
of second neighbours. A sample calculation has been done for the case of A1
in £,58. .

We have Al atom Jabelled as 1 at the origin with four nearest neighbours
of Sb atoms labelled from 2 to 5 situated respectively at (111)r/2, (11T} 1o
T1T)r, (M) 7

There are 12 second neighbours of /n atom labelled from 6 to 17 whose
positions in order are defined as follows:

(6) (W10)ry () (T10)ry (9) (1T0) 1, (2) (T10) 1y

(10} (611)rg (11) 0IT)rg (12) (08D} kg {13) (01} 1y

(14) (101 ry  (15) (TO0) e (16) (TOL) 1 (17) (100D rg
The Covlomb coupling soefficients are written using Equarion [2}.  We define
parameters 4, B, 4y, By, 4', A) etc. as in the case of Nall type lattice for
short range interaction, with the further assumption that {In-fr} interaction
and {$b-5b) interaction are the same, Then the short range matrix elements)
can be written as follows:

DEAL= 1= () (1/m) [(24' +4B)/3+ 240 + 4By} [42]
DRI = (V) (/o) {4 +34+88)/6+2 4, +4B) {431
forl2t05

DE(6-6) = DL (6 ~€) = DS (7~ 7) = D5, (71— 7} = DE(8 - 8)
= DR (8~ 8)= D% (9-9)~ D% (9-9) = DT, (10— 10) — DA (16~ 10)
= DR (11 =11} = DR (1L~ 11) = D8 (12 -12) = DR (12~ 12)
= D8 (13~ 13) = DR (13- 13) = DR (14 ~ 14) = DY, (14 - 14)
= DE(15 ~ 15) = DR (15— 15) « DX (16— 16) = D (16 — 16)
=D (17— 1T = DR (17 ~17) = (V) (/m;) [(24 + 4 B)/3
{74+ 4)/5+4B] [44)
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DE(6—~8) w D(T T} = DE(8  8) = DAY - 9) = DE (10— 10)
= DR ~11) = D8, (12 -12) = DR 3 - 13) = 25, (14 - 14)
DR (15~15) =5 {16 - 163 = DE (17 - 17)

w (A7) (1m) (24 +4 83 424, 4 48] [45]
rou {1 = N rog {1 = 1} ]
Dh(i-D= - { e Bt P B\a;}
2 )= 27 x/m;mz et~ 1) Ca
far =210 % {46}
roe (1 = Py {1 = 1) ]
Digll=D) = o — o [ IR A RACRRALLA A 3
) s x/nqmglL( Y ro i~ {3 ' Oaf
for J=6t0 17 [47}

For first neighbour interaetion with Jand ' not equal to 1

& [ roa (L= 1) ry 1-1)
DRl 1) e — — E A - By ‘* e’y B3, 48
5( ) V\/mm;» { Yo 0(1 + g f ]

For second neighbour interaction with f and ¢ not equal to 1

1 roo{1=1) g0 (1= 1)

) |
D= 1m | (a3 0D ]

2V N oy l
DE2-D=L(3-N=DR(4-4) =1} (5-5)

« (&) (1[m) (4 - 4')j6 [s0]
DE(3-3)w D5 (3-3) = D5, (8- 4) = DE (4~ 4) = DL{5 - 35)

DL (5~ 5) = (€5/¥) (1ma) (4’ ~ 4)/6 [51]

D5 (8~8) = DE{9-9) = DX (12— 12) = DR(13 ~ 13) = DX(16 - 16)
OLOT-17) = (V) (1m) (40~ 41)4 [s2
DL —10) = DR (11 = 11) = DE(14~14) = DL (15 - 18) = LR (16— 16)

o DG (1T =17} = (/%) (t)ma) (4} — &) /4 {53
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Following Rajagopal and Srinivasan'’ expressions were derived for the elastic
constants Cyy, Ciy and Cy in terms of 4, B, 4;, B and Z°

Cy = (¥ rr) [(A+28)/12 + 4, + By + 0-12381 2%] {s4]
Co={PVr) {4~ 4B)12 + 4y~ 5 B)J2 ~ 1432296 7] i55}

Caa =/ Vro[{4 +2B)/124 (4 + 3B)[2 - (4 - B)*/12{4 + 2B}
- 0-06192"  [56]

The equilibrivw condition is

B+8B = —2:521937° {57}

Using these relations and wy, the values of 4, B, 4,, 8 and Z?* are determined
for mShand 4:86 We found that values of B and By are roughly the same
for both InSb and 4 Sb respectively.

The resulting (51 x 51} matrix when diagonalised yields eigenfrequencies
which fall under the irreducible representations of the 7, point group. The
tocalised mode falls under F, representations and gave a frequency of
5.3 % 10" sec.” which is lower than the experimental value of 3 83 x 10%% sec.™?
wheress a first neighbour model itself gave the local mode frequency as
557 %107 gec. " for 4 = 4.

CONCLUSIONS

Thus one may conclude that the model with second neighbour interaction
is net really needed to explain the localised modes in /nSh, Whereas the
localised modes due to defects in 13-V compound can be explained even in the
mass defect approximation we find that for U cenires a weakening of the force
constants by about 50% has to be invoked to fit the computed result with those
of the experimental observation.
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