J. Indian Inst. Sci., Mar.-Apr. 2001, 81, 125-129. © Indian Institute of Science

Short Communication

Benzofuro[2,3-b]benzofurans and benzofuro[3,2-b] benzofurans from 2-hydroxyacetophenones[†]

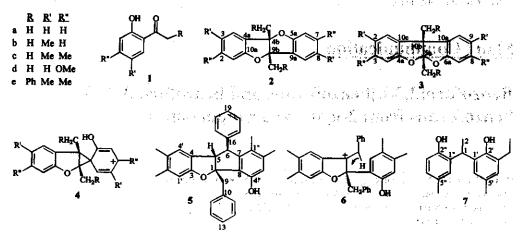
R. B. BATES,^a* S. CALDERA,^a[‡] B. L. MALIK,^b AND S. K. PAKNIKAR^b ^aDepartment of Chemistry, University of Arizona, Tucson, AZ 85721, USA. ^bDepartment of Chemistry, Goa University, Goa 403203, India. email: batesr@u.arizona.edu

Received on September 18, 2000.

Abstract

Yamamura's modification of the Clemmensen reduction provided a one-step route to symmetrical benzofuro[2, 3-b]benzofurans and benzofuro[3,2-b]benzofurans from 2-hydroxyacetophenones.

Keywords: Acetophenones, benzofurans


Yamamura's modification¹ of the Clemmensen reduction, when applied to 2-hydroxyacetophenones $(1a-e)^2$, gave little or no Clemmensen products, but instead gave symmetrical benzofuro[3,2-b]benzofurans (2a, b) and benzofuro[2,3-b]benzofurans (3b-e) (Table I). Although yields were not optimized for compounds 2 and 3, they were the major products identified in each case, and this is probably the best way to make them.

Products 2 and 3 resulted from pinacol reduction followed by acid-catalyzed dehydrations to 2 and rearrangement to 3. All three of these steps are known separately in related systems: 1) Yamamura's conditions were used to convert a *cage* diketone to the corresponding pinacol through an intramolecular pinacol reduction in 74% yield;³ 2) Certain pinacols have been previously converted under acidic conditions to benzofuro[3,2-b]benzofurans (2);⁴ 3) Acid-catalyzed rearrangements of benzofuro[3,2-b]benzofurans (2) to benzofuro[2,3-b]benzofurans (3) have been reported.⁵

In the **1a-b** cases, with no R" substituent *meta* to the hydroxyl group, significant amounts of the simple pinacol dehydration products (2a-b) were found. However, with **1c-e**, with **alkyl** or methoxyl R" substituents *meta* to the hydroxyl groups, rearrangement products **3c-e** predominated, presumably because the R" group provided stabilization to the rate-determining transition state adjacent to rearrangement intermediates (4).

In the case of 1e, with R = Ph, a third type of product, 5, isomeric with 2 and 3, formed, presumably via the hydride shift shown in 6. The structure of 5 was deduced from NMR and

[†]Dedicated to Prof. S. C. Bhattacharyya. [†]Deceased. *Author for correspondence.

mass spectra: the lack of coupling between H-5 and H-6 is consistent with the 90° dihedral angle between them with the 6-phenyl group *exo*, and this stereochemistry is strongly supported by the downfield shifts for 1"-C, 1"-H, and 5-H. In the case of 1b, the normal Clemmensen product (2-ethyl-4-methylphenol) and 7, presumably formed by a Friedel-Crafts reaction between the Clemmensen product and the alcohol from simple reduction of the ketone (1b), were also observed.

Under the same conditions, two compounds related to **1a-e** also gave some pinacol-derived products: 1) benzyl phenyl ketone, lacking an *ortho* hydroxyl group, still gave the pinacols⁶ (*meso*, 11%; dl, 2%), along with the Clemmensen product (bibenzyl, 16%) and an alcohol de-hydration product (*E*-stilbene, 5%); 2) Salicylaldehyde gave pinacol-dehydration product 2-(2-hydroxyphenyl)-benzofuran⁷ (18%), isomeric with benzofurobenzofurans 2 and 3.

Experimental

Reactions of 2-hydroxyacetophenones with Zn-HCl-ether: General procedure

Dry ether (25 ml) in a 100 ml round-bottomed flask equipped with a CaCl₂ drying tube was saturated with dry HCl gas at 0°C. Ketone (4 mmol) was added and dissolved by stirring. Activated zinc powder⁴ (20 mmol) was added in several portions over a period of 1 h. Stirring was continued for 1 h each at 0°C and at 25°C. The mixture was poured on to crushed ice, made

Isolated yields from the zine/HCl reduction of 2-hydroxyaceto phenones	
Reactant	Products (% yield)
1 a	2a (50)
1b	2b (15), 3b (21), 7 (9), 2-ethyl-4-methylphenol (4)4
1c	3c (16)
1d	3d (15)
1e ²	3e (25), 5 (14)
PhCOCH ₂ Ph	Meso-pinacol (11), d,1-pinacol (2), E-stilbene (5),
	bibenzyi (16)
Salicylaldehyde	2-(2-Hydroxyphenyl)-benzofuran (18)

126

alkaline with solid Na₂CO₃ (4 g), and extracted with ether (4×15 ml). The combined ether solutions were washed with water (2×10 ml), dried, and evaporated, and the residue was chromatographed on silica gel.

4b,9b-Dimethylbenzofuro[3, 2-b]benzofuran (2a)

The general method applied to 2-hydroxyacetophenone gave an yellowish solid, eluted with petroleum ether-ether (99:1), which on recrystallization from aqueous ethanol gave 2a: m. p. 123°C (lit.⁸ 129°C). IR (Nujol) 3049, 2975, 1594, 1479, 1461, 1267, 1239, 1086, 998, 752, 745 cm^{-1.} ¹H NMR: δ 7.43 (dd, 7.5 and 1.3 Hz, 2 H, H-4), 7.23 (m, 2 H, H-2), 6.95 (dd, 7.5 and 0.9 Hz, 2 H, H-3), 6.79 (d, 8.1 Hz, 2 H, H-1), 1.77 (s, 6 H, Me). ¹³C NMR: δ 158.4 (C-10a), 130.8 (C-4), 128.7 (C-4a), 124.5 (C-2), 120.9 (C-3), 110.7 (C-1), 96.0 (C-4b), 20.3 (Me).

2,5a,9,10b-Tetramethylbenzofuro[2,3-b]benzofuran (3b)

The general method applied to 2-hydroxy-5-methylacetophenone gave an yellowish solid which on recrystallization from aqueous ethanol gave **3b**: m. p. 204°C. IR (Nujol) 3300, 2980, 2950, 2930, 1600, 1580, 1260, 1080, 900, 800 cm⁻¹. ¹H NMR: δ 7.09 (s, 2 H, H-1), 6.93 (m, 2 H, H-3), 6.73 (d, 8.5 Hz, 2 H, H-4), 2.31 (s, 6H, 2-Me), 1.76 (s, 3 H, 5a-Me), 1.67 (s, 3 H, 10b-Me). ¹³C NMR: δ 154.3 (C-4a), 132.6 (C-2), 130.9 (C-10a), 128.8 (C-3), 124.7 (C-5a), 123.1 (C-1), 109.5 (C-4), 56.6 (C-10b), 21.0 (2-Me, 5a-Me), 20.3 (10b-Me).

3,4b,8,9b-Tetramethylbenzofuro[3,2-b]benzofuran (2b)

Elution of the nonpolar material with petroleum ether-ether (96:4 and 95:5) gave crystalline fractions which proved to be 1:1 and 3:2 mixtures of **3b** and **2b**,⁴ identified by comparison of its NMR parameters with those of **2a**. **2b**: ¹H NMR: δ 7.22 (d, 1.5 Hz, 2 H, H-4), 7.02 (dd, 8.0 and 1.5 Hz, 2 H, H-2), 6.68 (d, 8.0 Hz, 2 H, H-1), 2.31 (s, 6 H, 3-Me), 1.74 (s, 6 H, 4b-Me). ¹³C NMR: δ 153.0 (C-10a), 131.4 (C-4), 130.3 (C-3), 128.6 (C-4a), 124.6 (C-2), 110.2 (C-1), 96.1 (C-4b), 20.7 (Me).

2,3,5a,8,9,10b-Hexamethylbenzofuro[2,3-b]benzofuran (3c)

The general method applied to 2-hydroxy-4,5-dimethylacetophenone gave 3c as a petroleum ether-insoluble solid which was recrystallized from aqueous ethanol. 3c: m. p. 234°C. IR (Nujol) 3000–2860, 1660, 1610, 1510, 1290, 1250, 1085, 1030, 915, 850, 775 cm⁻¹. ¹H NMR: δ 7.00 (s, 2 H, H-1), 6.62 (s, 2 H, H-4), 2.18 (s, 6 H, 3-Me), 2.15 (s, 6 H, 2-Me), 1.72 (s, 3 H, 5a-Me), 1.62 (s, 3 H, 10b-Me). ¹³C NMR: δ 154.7 (C-4a), 136.9 (C-3), 130.2 (C-10a), 129.5 (C-2), 124.7 (C-5a), 123.4 (C-1), 111.1 (C-4), 56.4 (C-10b), 21.0 (2-Me, 5a-Me), 20.2 (10b-Me), 20.1 (3-Me).

3,8-Dimethoxy-5a,10b-dimethylbenzofuro[2,3-b]benzofuran (3d)

The general method applied to 2-hydroxy-4-methoxyacetophenone followed by recrystallization from ethanol of the fraction eluted with petroleum ether-benzene (95:5) gave 3d: m. p. 147°C. IR (KBr) 2921, 2852, 1622, 1604, 1501, 1445, 1292, 1196, 1160, 1076, 1059, 949 cm⁻¹. ¹H NMR: as reported.⁵ ¹³C NMR: δ 160.4 (C-3), 157.5 (C-4a), 127.7 (C-1), 125.8 (C-5a), 125.3 (C-10a), 107.6 (C-2), 96.5 (C-4), 55.6 (C-10b), 55.5 (OMe), 21.1 (5a-Me), 20.3 (10b-Me).

5a, 10b-Dibenzyl-2, 3, 8, 9-tetramethylbenzofuro[2, 3-b]benzofuran (3e)

The general method applied to 2-phenacetyl-4,5-dimethylphenol gave, as a petroleum etherinsoluble solid, **3e**: m. p. 234°C. IR (KBr) 3040, 3020, 2920, 1620, 1600, 1480, 1450, 1270, 1180, 860, 720, 700 cm⁻¹. ¹H NMR: δ 7.0–7.4 (m, 10 H, phenyls), 6.93 (s, 2 H, H-1), 6.73 (s, 2 H, H-4), 3.56 (s, 2 H, 5a-CH₂), 3.32 (s, 2 H,10b-CH₂), 2.24 (s, 6 H, 3-Me), 2.23 (s, 6 H, 2-Me). ¹³C NMR: δ 155.3 (C-4a), 137.5 (C-3), 136.6 and 134.9 (Ph-*ipso*), 130.9 and 130.8 (Ph-*m*), 129.3 (C-2), 129.0 (C-10a), 127.8 and 127.7 (Ph-*o*), 126.6 and 126.5 (Ph-*p*), 124.8 (C-1), 124.1 (C-5a), 111.3 (C-4), 60.5 (C-10b), 40.3 and 40.1 (CH₂), 20.5 and 19.8 (2-Me, 3-Me). Mass (*m*/*z*): 446 (M, 100%), 355, 264.

Compound 5

Chromatography of the petroleum ether-soluble products of the above reaction with petroleum ether-ethyl acetate (95:5) gave a white solid which was recrystallized from ethanol to give crystals of 5: m. p. 196°C. IR (KBr) 3320, 2950, 1600, 1300, 1270, 1110, 1000, 850, 700 cm⁻¹. ¹H NMR: δ 6.85-7.35 (m, 10 H, phenyls), 7.08 (s, 1 H, H-4'), 6.65 (s, 1 H, H-1'), 6.60 (s, 1 H, H-3''), 5.50 (s, 1 H, OH), 4.58 (s, 1 H, H-5), 3.75 (s, 1 H, H-6), 3.56 and 3.16(d, 14.2 Hz, 1 H, H-9), 2 × 2.16 and 2.14 (s, 3 H, 2'-Me, 3'-Me, 2''-Me), 1.76 (s, 3H, 1''-Me). ¹³C NMR: δ 156.3 (C-3), 151.9 and 151.8 (C-8, C-4''), 143.3 and 142.6 (C-16, C-7), 139.7 (C-2''), 136.8 (C-2'), 136.4 (C-10), 130.4 (C-18), 128.7 (C-3'), 128.1 (C-17), 127.9 (C-4), 126.5 (C-19), 126.3 (C-13), 125.6 (C-1''), 125.4 (C-4'), 118.0 (C-3''), 111.5 (C-1'), 101.2 (C-1), 60.0 (C-5), 57.2 (C-6), 43.8 (C-9), 20.1 and 20.0 and 19.8 (C-2', C-3', C2''), 15.9 (C-1''). Satisfactory elemental analysis. Mass (*m*/*z*): 446 (M), 355 (100%), 325, 281, 267, 221, 207, 191, 147.

Compound 7

Elution of the nonpolar material from the **1b** reaction above with petroleum ether–ether (94:6) gave 1-(3-ethyl-2-hydroxy-5-methylphenyl)-1-(2-hydroxy-5-methylphenyl)-ethane (7): m. p. 125°C. IR (Nujol) 3193, 3026, 2981, 2929, 1505, 1462, 1213, 812 cm⁻¹. ¹H NMR: δ 7.10 (br s, 1H, H-6"), 7.07 (brs, 1 H, H-6'), 6.83 (dd, 8.1 and 1.8 Hz, 1 H, H-4"), 6.81 (brs, 1 H, H-4'), 6.64 (d, 8.1 Hz, 1 H, H-3"), 5.87 (brs, 1 H, OH), 5.77 (brs, 1 H, OH), 4.56 (q, 7.1 Hz, 1 H, H-1), 2.57 and 2.55 (m, 2 H, CH₂), 2.27 and 2.26 (s, 3 H, H-5', H-5"), 1.63 (d, 7.1 Hz, 3 H, H-2), 1.19 (t, 7.5 Hz, 3 H, 3'-Me). ¹³C NMR: δ 149.9 (C-2'), 148.3 (C-2"), 131.1 (C-3'), 130.7 (C-1' and C-1"), 130.1 (C-5' and C-5"), 127.9 (C-6"), 127.7 (C-6' and C-4"), 124.9 (C-4'), 115.6 (C-3"), 30.3 (C-1), 23.2 (CH₂), 20.9 (5"-Me), 20.8 (5'-Me), 19.9 (C-2), 13.9 (3'-Me).

References

- 1. TODA, M., HAYASHI, M., Hirata, Y. and Yamamura, S.
- 2. MARVELL, E. N., REED, J. K., GANZLER, W. AND TONG, H.

Modified Clemmensen reductions of keto groups to methylene groups, Bull. Chem. Soc. Jap., 1972, 45, 264-266.

Photocyclization of 2-methoxy-4,5-dimethylstilbene, J. Org. Chem., 1977, 42, 3783-3784.

BENZOFUROBENZOFURANS

- 3. PAQUETTE, L. A., FISCHER, J. W., BROWNE, A. R. AND DOECKE, C. W.
- 4. SISIDO, K., NOZAKI, H. AND IWAKO, T.
- 5. KIEHLMANN, E., LI, E. P.-M. AND MILLAR, J. G.
- 6. STOCKER, J. H. AND KERN, D. H.
- 7. Clerici, A., Porta, O. and Arnone, A.
- 8. DONNELLY, D. M. X., GUNNING, P. J. AND MEEGAN, M. J.

Synthesis of [4]-peristylane and functionalized derivatives of this hemispherical ring system, J. Am. Chem. Soc., 1985, 107, 686-691.

The preparation of synthetic estrogens. IV. Condensation of biacetyl with phenols, J. Am. Chem. Soc, 1949, 71, 2037–2041.

The Claisen rearrangement of 1, 4-bis(m-methoxyphenoxy)-2-butyne, Can. J. Chem., 1986, 64, 1989–1997.

Quantitative studies in stereochemistry. Photochemistry V. The ratio of diastereomeric pinacols formed in the ultraviolet-promoted bimolecular reduction of deoxybenzoin, J. Org. Chem., 1968, 33, 1271.

Reduction of *o*-hydroxybenzaldehydes by aqueous titanium trichloride. A new route to 2-(benzofuran-2-yl)phenols, *J. Org. Chem.*, 1990, **55**, 1240–1248.

Studies on the synthesis of fungitoxic pterocarpans. 1. Synthesis of 6a-hydroxy-11a-methylpterocarpan, *Proc. R. Ir. Acad. B*, 1977, 77, 435–442.