JOURNAL OF

THE

INDIAN INSTITUTE OF SCIENCE

VOLUME 51

APRIL 1969

NUMBER 2

LATTICE DYNAMICS OF CRYSTALS HAVING RUTILE STRUCTURE (FeF2, MnF2, MgF2 and TiO2)

By R. S. KATIYAR AND R. S. KRISHNAN [Department of Physics, Indian Institute of Science, Bangalore-12, India]

[Received: Oct, 29, 1968]

Abstract

Using Born's theory the socular equation has been formulated for the dynamics of the rutile structure. Group theoretical method has been used to decompose it into smaller degree equations at the centre of the Brillouin zone. On account of the electrostatic contribution to the elements of the secular equation, these elements do not have unique values at the wave vector q=0, but rather depend on the direction in which the wave vector tends to zero. In order to get the expressions for all the infrared active transverse and longitudinal moaes, it is necessary to make the calculations for the wave vector—O along the two non-equivalent crystallographic axes of the rutile structure. The frequencies of vibration of iron fluoride, Manganese fluoride, magnesium fluoride and rutile have been calculated using rigid ion model with short range axially symmetric forces and long range Coulomb forces.

1. INTRODUCTION

Recently for the interpretation of the Raman and infrared spectra of rutile, a group theoretical analysis of the vibration spectrum at zero wave vector was carried out by Gubanov and Shu¹. Some of the symmetry relations, however, used by them appear to be incorrect. The formulae for the frequencies of the various modes of the rutile structure² as $q \rightarrow 0$ have been

rederived by us and have been successfully applied for evaluating the vibration frequencies of the fluorides of iron, manganese and magnesium and titanium oxide. The results are presented here.

2. THEORETICAL DERIVATION OF FORMULAE FOR FREQUENCIES

The unit cell of rutile lattice may be taken as shown in Fig. 1, consisting of $2 Ti^{4+}$ and $4 0^{2+}$ ions distinguished by the indices k=1, 2...6 as indicated. The vibration frequencies are obtained as the solutions of the secular equation²,

$$\left| \left\{ \begin{array}{c} k & k' \\ \alpha & \beta \end{array} \right\} - \omega^2 \, \delta_{kk'} \, \delta_{\alpha\beta} \right| = 0 \tag{[1]}$$

where

$$\begin{pmatrix} k & k' \\ \alpha & \beta \end{pmatrix} = \frac{1}{(m_k m_{k'})^{1/2}} \begin{pmatrix} k & k' \\ \alpha & \beta \end{bmatrix}$$
[2]

The symbols have their usual meaning³. On account of the ionic forces in the lattice, the coefficients $\begin{bmatrix} k & k' \\ \alpha & \beta \end{bmatrix}$ will not have unique value at the centre of the Brillouin zone but depend on the direction in which the wave vector q approaches zero and since the two directions, namely a_2 and a_3 , are non-equivalent, the symmetry relations existing between the coupling coefficients $\begin{bmatrix} k & k' \\ \alpha & \beta \end{bmatrix}$ at q=0 are not same for these two directions. The symmetry relations between the quantities $\begin{bmatrix} k & k' \\ \alpha & \beta \end{bmatrix}$ following from the symmetry of rutile structure for $q\rightarrow 0$ in the direction a_2 are given in Table 1. For the wave vector $q\rightarrow 0$ in the direction a_3 , these relations can be obtained from the Table 1 by making use of the following equalities.

FIG. 1 The Unit Cell of Butile Lattice.

KK'	хх	уу	<i>22</i>	xу	yz	zr
11	a _{xx}	a _{xx}	a _{zz}	axy	0	0
12	b _{xv}	h_{vv}	h_{zz}	0	0	0
13	Cxx	C_{yy}	C_{zz}	Cxr	0	0
14	d_{xx}	d_{yy}	d_{zz}	$d_{\lambda r}$	0	0
15	Crex	c_{vy}	Czz	Cxv	0	0
16	ℓl_{XY}	d_{yy}	dzz	dxy	0	U
22	an	a_{xx}	a_{zz}	$-a_{xy}$	0	0
23	d_{xx}	d_{yy}	d_{zz}	$-d_{xy}$	0	0
24	Cxx	C_{vv}	c_{zz}	- Cxv	0	0
25	d_{sx}	d_{yy}	d_{zz}	$-d_{w}$	0	0
6	Cvx	$c_{\mu\nu}$	C = =	$-c_{xy}$	0	0
3	e_{xx}	Cxx	C _{zz}	exv	0	0
4	f_{xx}	f_{vy}	f_{zz}	0	0	0
5	SAX	S.v.	g.,	S.,,	0	0
ń	hxx	hy	J _{zt}	0	0	0
4	e xx	exx	e	-exu	0	0
5	h _{xx}	h_{yy}	J _{zx}	0	0	0
ű	$g_{\lambda x}$	8 vv	g.,	- 5.4	0	0
5	C'xe	e . x	e	Cru	0	Û
ũ	1 Jan	J ev		0	0	0
5	er v	Crr	С.,	-e.,	0	0
				<i>x1</i>		

TABLE I

.. .

$$b_{xx} = b_{yy}, \quad c_{xx} = c_{yy}, \quad d_{xx} = d_{yy}$$
[3]

$$g_{xx} = g_{yy}, \ f_{xx} = h_{yy} \text{ and } f_{yy} = h_{xx}$$

$$\tag{4}$$

In order to factorise the secular determinant into smaller degree equations we have to find the unitary matrix U such that $\widetilde{U} \begin{bmatrix} k & k' \\ \alpha & \beta \end{bmatrix} U$ is reduced to diagonal form. This matrix can be obtained with the help of the symmetry coordinates for the structure. The latter are obtained with the help of the following relation.

$$\phi' = \frac{\Sigma}{R} \chi_{i}(R) R q_{a}$$
[5]

where, ϕ^i is a symmetry coordinate corresponding to the *i* th irreducible representation, $\chi_i(R)$ is the character under the operation R and q_d is the mass weighted displacement vector of the ion in the direction $\dot{\alpha}$; ($\alpha = x, y, z$). In case where more than one normal mode belong to the same irreducible representation, the vectors ϕ^i obtained may not be linearly independent, However, using Schmidts process of orthogonalization they can be made linearly independent. The unitary matrix can now be obtained using the relation.

$$U_{ij} q_j = \phi_j^i$$
 [6]

The matrix U thus obtained is given in Table 2 in the following form

$$U = U^{\circ} N$$
^[7]

where N is a diogonal matrix.

$$N_{ij,i'j'} = N_{ij} \,\delta_{ii'} \,\delta_{jj'} \tag{8}$$

and it takes into account the normalisation of the basic vectors.

Carrying out the transformation of the matrix $\begin{cases} k & k' \\ \alpha & \beta \end{cases}$ with the matrix U obtained above, one obtains as expected, a matrix which is diagonal except for the irreducible representations to which more than one normal mode belong. The frequency expressions thus obtained for wave vector $q \rightarrow 0$ along v_2 are given below :

$$A_{1g}: m_{2} \omega_{1}^{2} = e_{xx} + f_{xx} - g_{xx} - h_{xx} + e_{xy} - g_{xy}$$

$$A_{2g}: m_{2} \omega_{2}^{2} = e_{xx} - f_{xx} - g_{xx} + h_{xx} - e_{xy} + g_{xy}$$

$$B_{1g}: m_{2} \omega_{3}^{2} = e_{xx} + f_{xx} - g_{xy} - h_{xx} - e_{xy} + g_{xy}$$

$$B_{2g}: m_{2} \omega_{4}^{2} - e_{xx} - f_{xx} - g_{xx} + h_{xx} + e_{xy} - g_{xy}$$

$$E_{g}: m_{2} \omega_{5}^{2} = e_{zz} - g_{zz}$$

$$A_{2u}: \omega_{6}^{2} (T.O.) = [(m_{1} + 2m_{2})/2m_{1} m_{2}] (a_{zz} + b_{zz})$$

$$\omega_{7}^{2} (L.A.) = 0$$

$$[9]$$

 B_{1n} : ω_{g} and ω_{g}

$$\begin{array}{l} (1/m_1) \left(e_{zz} - 2f_{zz} + g_{zz} \right) - \omega^2 & (2/m_1 m_2)^{1/2} \left(c_{zz} - d_{zz} \right) \\ (2/m_1 m_2)^{1/2} \left(c_{zz} - d_{zz} \right) & (1/m_1) \left(a_{zz} - b_{zz} \right) - \omega^2 \end{array} \right| = 0$$

$$E_{n}: \omega_{10}^{2}(T.A.) = 0$$

$$\omega_{11}(T.O.), \omega_{11}(L.O.), \omega_{12}(T.O.), \omega_{12}(L.O.), \omega_{13}(T.O.), \omega_{13}(L.O.)$$

$$\begin{vmatrix} A_{11} - \omega^{2} & A_{12} & A_{13} & A_{14} & A_{15} & A_{16} \\ A_{22} - \omega^{2} & A_{23} & A_{24} & A_{25} & A_{26} \\ & A_{33} - \omega^{2} & A_{34} & A_{35} & A_{35} \\ & & A_{44} - \omega^{2} & A_{45} & A_{46} \\ & & & A_{5r} - \omega^{2} & A_{56} \end{vmatrix} = 0$$
(symmetric part)
$$\begin{vmatrix} 10 \\ 10 \\ 10 \\ 10 \end{vmatrix}$$

where
$$A_{11} = A_{44} = (1/2m_1) (2a_{xx} - b_{xx} - b_{yy})$$

 $A_{12} = A_{45} = (1/2m_1 m_2)^{1/2} (c_{xx} - d_{xx} + c_{yy} - d_{yy})$
 $A_{13} = A_{46} = (2/m_1) [(m_1 + 2m_2/2m_2)]^{1/2} (e_{xy} + d_{xy})$
 $A_{14} = (1/2m_1) (b_{yy} - b_{xx})$
 $A_{15} = (1/2m_1 m_2)^{1/2} (c_{xx} - d_{xx} - c_{yy} + d_{yy})$
 $A_{16} = (A_{26} = A_{34} = A_{35} = 0$
 $A_{22} = A_{55} = (1/2m_2) (2e_{xx} - f_{xx} + g_{xx} - h_{xx} - f_{yy} + g_{yy} - h_{yy})$
 $A_{23} = A_{56} = (1/m_2) [(m_1 + 2m_2)/m_1]^{1/2} (d_{xy} - c_{xy})$
 $A_{25} + (1/2m_2) (f_{yy} - g_{yy} + h_{yy} - f_{xx} + g_{xx} - h_{xx})$
 $A_{33} = A_{66} = [(m_1 + 2m_2)/4m_1 m_2] (2a_{xx} + b_{xx} + h_{yy})$

where m_1 and m_2 are the masses of titanium and oxygen atoms respectively. We notice that due to the presence of the macroscopic field the degenerate infrared active modes split up into corresponding transverse and longitudinal vibrations for the wavevector $q \rightarrow 0$ along \mathbf{a}_2 and since the atomic motions in the A_{2u} mode are confined to the z direction, we get an expression for the transverse frequency when the limit $q \rightarrow 0$ is taken in the direction \mathbf{a}_2 . The Raman active mode Eg, however, remains degenerate as the motions of the anions in opposite directions does not produce any change in the macroscopic dielectric polarisations. The atomic motions of E_u modes are confied to the xy-plane and therefore for a wavevector $q \rightarrow 0$ along \mathbf{a}_3 the normal modes corresponding

Trans	formation
-------	-----------

α_k ij	E_{2u}^{0}		A^{0}_{2u}	$E_{y}^{1}\left(a ight)$	$E_u^2(a)$	$F_{u}^{3}\left(a ight)$	$E_{a}^{1}(b)$
	$1/\sqrt{m_2}$	Û	0	1	0	$-2/\sqrt{m_1}$	1
^v 2	$1/\sqrt{m_2}$	0	0	1	0	$-2/\sqrt{m_1}$	- 1
У,	0	$1/\sqrt{m_2}$	0	1	0	$-2/\sqrt{m_1}$	- 1
J_{2}	0	$1/\sqrt{m_2}$	0	1	0	$-2/\sqrt{m_1}$	0
<i>-</i> ,	0	0	$1/\sqrt{m_2}$	0	0	0	0
£2	0	0	$1/\sqrt{m_2}$	0	0	0	0
.x ₃	$1/\sqrt{m_1}$	0	0	0	1	$1/\sqrt{.n_2}$	0
X_{ij}	$1/\sqrt{m_1}$	0	0	0	1	$1/\sqrt{m_2}$	0
x5	$1/\sqrt{m_1}$	0	0	0	1	$1/\sqrt{m_2}$	0
x_6	$1/\sqrt{m_1}$	0	0	0	-1	$1/\sqrt{m_2}$	0
J'3	0	$1/\sqrt{m_1}$	0	0	1	$1/\sqrt{m_2}$	0
)°4	0	$1/\sqrt{m_1}$	0:	0	-1	$1/\sqrt{m_2}$	0
<i>У</i> 5	0	$1/\sqrt{m_1}$	0	0	1	$1/\sqrt{m_2}$	0
~ 6	0	$1/\sqrt{n_1}$	0	0	-1	$1/\sqrt{n_2}$	0
z3	0	0	$1/\sqrt{m_1}$	0	0	0	С
z_4	0	0	$1/\sqrt{m_1}$	0	0	0	0
Z5	0	0	$1/\sqrt{m_1}$	0	0	0	0
<i>5</i> 6	0	0	$1/\sqrt{m_1}$	0	0	0	0
ij	E ⁰ _H	A ⁰ _{2µ}	$E_u^3(a)$	$E_a^3(b)$			A ₂₄
N _{ij}	$\frac{m_1 m_2}{2 (m_1 + 2 m_2)}$	$\left[\frac{1}{n_2}\right]^{1/2}$	$\left \frac{m_1}{8(m_1 + 1)} \right $	$\left[\frac{m_2}{2m_2}\right]^{1/2}$		$\frac{m_1 m_2}{(m_1 + 2m_2)}$)] ^{1/2}

Matri	x U									
$E_u^2(b)$	$E_u^3(b)$) B	1 1 <i>u</i> B	$^{2}_{1u} = A_{2u}$	A.,	g A ₂	$_g B_{1g}$.B ₂₅	$E_g(a)$	$E_g(b)$
0	2/√m	1 () () ()	() 0	0	0	0	0
0	$2/\sqrt{m}$		0 0	0 0	() 0	Û	0	0	0
0	$-2/\sqrt{m}$	1 () () 0	(0 0	0	0	0	0
0	$-2/\sqrt{n}$, I	0 (0 0	(0 0	0	0	0	0
0	0		1	0 2/	$\sqrt{m_1}$ (0	0	0	0	0
0	0		1	0 2/	$\sqrt{m_1}$ (0	0	0	0	0
1	$-1/\sqrt{m}$	2 () () O	1	1	1	1	0	0
-1	$-1/\sqrt{m_z}$	2 0	0	0	1	-1	1	-1	0	0
1	$-1/\sqrt{m}$	2 () (0 0	-1	-1	-1	-1	0	0
-1	$-1/\sqrt{m}$	2 () (0	-1	1	-1	1	0	0
-1	$1/\sqrt{m}$	2 () (0 0	1	-1	-1	1	0	0
1	$1/\sqrt{m_{f}}$	2 0	0	0	-1	-1	1	1	0	0
-1	$1/\sqrt{m_{f}}$. 0	0	0	-1	1	1	-1	0	0
1	$1/\sqrt{m_{f}}$	2 0	0	0	1	1	-1	-1	0	0
0	0	(0	1 -1/	$\sqrt{m_2}$ 0	0	0	0	1	0
0	0	() 3	i −1/·	$\sqrt{m_2}$ 0	0	0	0	0	1
0	0	() 1	-1/2	$\sqrt{m_2}$ 0	0	0	0	-1	0
0	0	C) -1	-1/2	$\sqrt{m_2}$ 0	0	0	0	0	- 1
$E^1_u(a)$	$E_u^1(b)$	B ² _{1µ}	$B_{1''}^1$	$E_{\mathbf{g}}(a)$	$E_{g}(b)$	$E_u^2(a)$), $E_{u}^{2}(b)$, A ₁₈ ,	A_{2g}, B_1	g, B _{2g}
	$\frac{1}{2}$			v	/ <u>1</u> 2			$\sqrt{\frac{1}{8}}$		

to E_{μ} representation are purely transverse and the degeneracies are not removed. The frequency expression A_{2n} mode will yield the corresponding longitudinal frequency for this direction. The modified formulae for the infrared active vibrations for the wave vector $q \rightarrow 0$ along \mathbf{a}_3 are given below :

$$A_{2u}: \omega_{\delta}^{2} (L.O.) = [(m_{1} + 2m_{2})/2m_{1}m_{2}] (a_{zz} + b'_{zz})$$

$$E_{u}: \omega_{11} (T.O.), \omega_{12} (T.O.), \omega_{13} (T.O.)$$

$$\begin{vmatrix} A_{11} - \omega^{2} & A_{12} & A_{13} \\ A_{12} & A_{22} & A_{23} \\ A_{13} & A_{23} & A_{33} - \omega^{2} \end{vmatrix} = 0$$

where

$$\begin{split} A_{11} &= (1/m_1) \ (a_{xx} - b_{xx}) \\ A_{12} &= (2/m_1 \ m_2)^{1/2} \ (c_{xx} - d_{xx}) \\ A_{13} &= (2/m_1) [(m_1 + 2m_2)/2m_2]^{1/2} (c_{xy} + d_{xy}) \\ A_{22} &= (1/m_2) \ (e_{xx} - f_{xx} + g_{xx} - h_{xx}) \\ A_{23} &= (1/m_2) \ [(m_1 + 2m_2)/m_1] \ (d_{xy} - c_{xy}) \\ A_{33} &= [(m_1 + 2m_2)/2m_1 \ m_2)] \ (a_{xx} + b_{xx}). \end{split}$$

The frequency expressions for the normal modes belonging to the other irreducible representations are, however, the same as for $q \rightarrow 0$ along \mathbf{a}_2 . It may be noticed that these formulae for normal modes are different from those derived by Gubanov and Shur¹. They took the coefficients $\begin{bmatrix} k & k \\ x & y \end{bmatrix}$ as equal to zero. We do not find any justification for equating these coefficients to zero as the symmetry of the structure does not impose any such condition. Consequently their short range forces are charge dependent [Eq. 10 of ref. 1] and vanish when the effective charges on the ions are zero. Secondly, their formulae do not account for the electrostatic splitting of the infrared active modes.

For the calculation of the vibration frequencies of the crystals having rutile structure, the long range Coulomb forces of attraction between point ions and the repulsive forces between neighbouring ions were considered. The short range potential function was assumed to be axially symmetric and

the corresponding coupling coefficients ${}^{n} \begin{bmatrix} k & k' \\ \alpha & \beta \end{bmatrix}$ are given in reference 3. The electrostatic co-efficients $c_{\alpha\beta} \begin{pmatrix} 0 \\ k & k' \end{pmatrix}$ for various crystals having rutile structure

are given in Table 3 and these can be used to obtain the Coulomb part of the coupling coefficients $\begin{pmatrix} k & k' \\ \alpha & \beta \end{pmatrix}$ with the help of the following equation:

$$c \begin{bmatrix} k & k' \\ \alpha & \beta \end{bmatrix} = \frac{e^2}{v} z_k c_{\alpha\beta} \begin{pmatrix} 0 \\ k & k' \end{pmatrix} z_{k'} - \delta_{kk'} \sum_{k''} z_k c_{\alpha\beta} \begin{pmatrix} 0 \\ k & k' \end{pmatrix} z_{k'}$$

The structural parameters used in the calculation of these coefficients are those reported by Bau1⁴ and are given below:

	а	С	и
Ironfluoride	4.6960 Å	$3.3090\mathrm{\AA}$	0.300
Manganese fluoride	4.8734Å	$3.3099{ m \AA}$	0.305
Magnesium fluoride	4.6210Å	$3.0500\mathrm{\AA}$	0 303
Rutile	4.5929 Å	2.9591 Å	0.306

It is to be mentioned that in the earlier calculations on magnesium fluoride^{3, 5} and rutile⁶ the value of u used was 0.31 as reported by Wyckoff⁷ and therefore it was found necessary to repeat those calculations using the values of u as reported above.

The elements of the dynamical matrix can now be written as

 $\begin{bmatrix} k & k' \\ \alpha & \beta \end{bmatrix} = {}^{o} \begin{bmatrix} k & k' \\ \alpha & \beta \end{bmatrix} + {}^{n} \begin{bmatrix} k & k' \\ \alpha & \beta \end{bmatrix}$

In order to estimate the values of the short range parameters and the effective charge on the ions, a least square analysis was carried out so as to give the best fit to the observed Raman and infrared frequencies. The parameters thus obtained are given in Table 4 and the calculated and observed frequencies are listed Table 5. The observed Raman frequencies are those given by Porto⁸ er al. and the infrared frequencies by Barkel⁹. Eagels¹⁰, Parisot¹¹ and Balkanski et al.¹² A comparison of the calculated and observed frequencies in these crystals shows a very good agreement between the two except for A_{2u} transverse optical mode, especially in rutile. This discrepancy is probably due to the neglect of the polarisation forces in these crystals and therefore a model which takes account of these forces should give a better fit to the experimental values.

TABLE 3

			- ap the	•	-	
q	kk'		Iron fluoride	Manganese fluoride	Magnesium fluoride	Rutile
$q_x = q_z = 0$	kk	xx	-1.47736	-1.09860	- 0.78631	- 0.50925
$q_{y} \rightarrow 0$		уу	11.08902	11.46777	11.78006	12.05713
		Z Z	- 9 61166	- 10.36917	- 10.99375	-11.54788
		хy	0.0	0,0	0 0	0.0
	12	xx	- 5.71644	- 5.80961	-5.87335	- 5.92286
		уу	б.84993	6.75678	6.69252	6.64352
		<i>zz</i>	-1.13351	- 0.94717	-0.81867	- 0.72066
	13	xx	- 8.88108	-8.47108	- 8.35385	- 8.12685
		уу	3.68528	4.09529	4.21252	4.43952
		ZŻ	5.19580	4.37579	4.14133	3.68733
		ху	- 11.69711	-10.61803	- 10.64718	- 10.04218
	14	xx	1.53159	1.86800	1.53006	1.71759
		уу	14.09796	14.43437	14,09643	14.28396
		22	-15.62955	- 16.30237	-15.62649	- 16.00156
		хy	7.67278	8.43102	8.97039	9.51356
	34	xx	-13 79297	- 14.07462	-14.52371	- 14.66452
		уу	17.58200	17.39303	17.57695	17.44485
		22	- 3.78303	-3.31841	- 3.05324	-2.78033
	35	xx	-7.14038	- 7.08547	-6.96785	- 6.93653
		уу	5.42599	5.48090	5.59853	5.62984
		22	1.71439	1.60457	1.36932	1.30669
		xy	-2.45215	-2.91034	-2 63795	-2.91110
	36	λ Χ	5.01563	4.82666	5.01058	4.87848
		YY	-1.23260	-1.50825	- 1.95734	-2.09815
$q_x - q_y = 0, q$	₂ ->0 1	2 22	11.43288	11.61922	11.74777	11.84572

Coulomb coefficients $C_{r,s} \begin{pmatrix} q \\ b \\ l \end{pmatrix}$ for crystals having rutile structure

	Parameters fo	r Crystals having R	atile Structure	
Parameter	Iron fluoride	Manganese fluoride	Magnesium fluoride	Rutile
A	103.1	77 6	66.5	148,8
B_1	-3.1	2.3	-6.0	-15.5
Å2	57.4	70.5	67.4	147 7
B2	14.0	2.0	- 3.8	-36.6
A_3	5.6	2.0	4.1	5.1
B ₃	-6.0	-5.4	-0.4	-2.7
A_4	1.5	22.4	16.5	52.7
B_4	1.2	4.0	-1.4	22.9
z ₁	1.36	1.58	1.4	2.44
Z ₂	- 0.68	-0.79	-0.7	-1.22

ΤA	BL	Е4
----	----	----

2

÷

		Vibratio	n frequencies (j	n cm ⁻¹) of crys	tals having rutil	e structure		
	lron fi	iuoride	Mangane	se fluoride	Magnesiu	m fluoride	Ru	tile
Assignment	Calculated	Observed	Calculated	Observed	Calculated	Observed	Calculated	Observed
A_{1_E}	340	340 R	341	341 R	410	410 R	612	612 K
B_{1g}	73	73 R	61	61 R	92	92 R.	143	143 K
A_{2R}	364	l	337	ł	325	ł	573	Ι
B_{2g}	496	496 R	476	476 R	515	515 R	825	826 R
E_{g}	257	257 R	247	247 R	295	295 R	447	447 R
A2" (T.O.)	372	440 IR	362	295 IR	437	399 IR	410	167 IR.
E. (T.O.)	192	200 J.R	159	159 IR.	247	247 IR	168	183 J.K
$E_{s}^{2}(T.0.)$	331	320 IR	289	255 IR	399	410 IR	367	388 IR
E ³ (T.O.)	480	480 IR	362	363 JR	460	450 IR	503	500 I.F.
B_{1u}^1	330	I	288	١	453	1	430	ì
B2 Ju	55	I	66	t	189	I	206	١
A ₂₄ (L.O.)	498	ł	520	520 JR	625	625 IR	810	811 TR
$E_{u}^{1}(L.0.)$	234	I	175	210 IR	304	303 IR	366	373 IR
$E_{\mu}^{2}(L.0.)$	334	I	290	260 IR	403	415 IR	393	458 JR
$E_{u}^{3}(L.0.)$	571	1	514	530 IR	613	617 IR	789	806 IR
ALC: 17 MILLION MARKED VERSION			R-Raman	effect, IR-In	frared spectra.			

TABLE 5

132

R. S. KATIYAR AND R. S. KRISHNAN

3. **RFFERENCES**

١.	Gubanov, A. I. and Shur, M. S.	• •	Soviet. Phys. solid St., 1966, 7, 2124.
2.	Born, M. and Huang, K.	•••	Dynamical Theory of Crystal Lattices, 1954, Oxford Univ Press.
3	Katiyar, R. S. and Krishnan, R. S		Can. J. Phys., 1967, 45, 3079.
4.	Baur, W. H.		Acta crystallogr., 1961, 14, 209.
5.	Krishnan, R. S. and Katiyar, R. S		Indian J. Pure and appl. Phys., 1967, 5, 237.
б	Katiyar, R. S. and Krishnan, R. S.		Physics, Letters, 1967, 25A. 525.
7.	Wyckoff, R. W. G.	•••	Crystal Structures, 1, 1948, Chapter IV, p. 15.
8.	Porto, S. P. S., Fleury, P. A. and Damen, T. C.	••	Phys. Rev., 1967, 154, 522.
9.	Barker. A S.	۰.	Ibid, 1964, 136, A 1290.
10.	Eageles, D. M.		J. Physics. Chem. Solids, 1964, 25, 1243.
11	Parisot, G.	••	C. r. hebd. Scanc. Acad. Sci., Paris, 1967, 265, 1192.
12.	Balkanski, M., Moch, P. and Parisot, G.	• •	J. chem. Phys., 1966, 44, 940.

e in the second

.

34