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ABSTRACT

Using Born's theory the sceular equation has been formulated for the dynamics
of the rutile structure.  Group theoretical method has been used to decompose it
into smaller degree equations at the centre of the Brillouin zone. On account of
the electrostatic contribution to the elements of the secular equation, these elements
do not have unigue values at the wave vector =0, but rather depend on the
divection in which the wave vector tends to zero. In order to get the expressions
Jor all the infrared active transversc and longitudinal moaes, it is necessary to make
the calculations for the wave vector—0 along the two non-equivalent crystallographic
axes af the rutile structure.  The frequencies of vibration of iron fluoride, Manga-
nese fuoride, magnesion fluoride and rutile have been calculated using rigid ion
model with short range axially symmetric forces and long range Coulomb forces.

1. INTRODUCTION

Recently for the interpretation of the Raman and infrared spectra of
tutile, a group theoretical analysis of the vibration spectrum at zero wave
vector was carried out by Gubanov and Shur!. Some of the symmetry
relations, however, used by them appear to be incorrect. The formulae for
the frequencies of the various modes of the ruiile structure? as ¢—»0 have been
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rederived by us and have been successfully applied for evaluating the vibration
frequencies of the fluorides of iron, manganese and magnesiom and titaniun
oxide. The results are presented here.

2. THLORETICAL DERIVATION OF FORMULAE FOR FREQUENCIES

The unit cell of rutile tattice may be taken as shown in Fig. 1, consisting
of 2Ti*t and 4 0*° ions distinguished by the indices k=1, 2..,6 1
indicated. The vibration frequencies are obtained as rhe solutions of the
secular equation?,
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The symbols have their usual meaning®. On account of the ionic forces in the

’

wherg

. . k ’ .
lattice, the coefficients { ],(8 i will not have unique valuz at the centre of the
o

Brillouin zone but depend on the direction in which the wave vector
g approaches zero and since the two directions, namely a, and g,

are nom-equivalent, the symmeiy relations existing between ihe
)

coupling coeflicients [k k } at ¢ =0 are not same for these iwo directions.
1

’

The symmetry relations between the quantities [ IZ% ] following from the
@

symmetry of rutile structure for ¢—»0 in the direction a; are given in Table 1.
For the wave vector g—0 in the direction a4, these relations can be obtained
from the Table 1 by making use of the following equalities.

Fia. 1
The Unit Cell of Rutite Lattice.
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TABLE 1

Symmetry relations between the coupling coefficients for the limit g 0 along a, direction

w 2z Xy ¥z ED)
1" Tox ey Tz T Y 0
12 Dy i b 0 0 O
13 Cox €y Cpr Cyy 0 )
14 oy d,, d,, 7 0 0
13 [ “yy Coz v 0 G
3 . Aoy d,, 7 O O
7 a Aoy yy ~dy, 0 i
3 d.. d,, '—-dw [\) &
24 [ Coy —C 0 0
23 d, . o, —d\, 0 0
26 Cox Cy [ -, iy ¢
33 [ Cre [ €.y ] k4
M Fee Jow For 0 0 0
3 B Lo Sur 0 0
30 b, i, e 0 0 0
44 [ Cr e, e 0 0
13 . h, - 0 O 4
46 S Lo g.. -y, O 0
55 Coy [ [ Crp 4] 0
55 Fs i 0 0 0
66 Cpx Cew O Coy 0 0
by by o=, doo=d, 3
Eex = &ypr Sy =My and [ =N, [4]

Tn order to factorise the sccular determinant into smaller degree equations

~ 1k k'L

we have to find the unitary matrix / such that Ui ry U is reduced 1o
o

diagonal form. This matrix can be obtained with the help of the symmetry
coordinates for the stiucture. The latier are obtained with the help of the
following relation.

>
@i == ;x, (R) R g, [5]
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where, ¢' is a Ssymmetry coordinate corresponding to the ith irreducible
representation, X;(R) is the character under the operation R and g, is the
mass weighted displacement vector of the ion in the direction & ; (x =ux, y, 2,
In case where more than one normal mode belong to the same irreducible
representation, the vectors ¢' obtained may not be linearly independent,
However, using Schmidis process of orthogonalization they can be made
linearly independent. The uaitary matrix can now be obtained using the
relation,

U, ;= ¢} 6]
The matrix U thus obtained is given in Table 2 in the following form

U=U"N [7}

where N is a diogonal mairix.

N;j, [ ]Vij Sf.‘ Su’ [8]
and it takes into account the normalisation of the basic vectors.

Carrying out the transformation of the mairix {k};} with the matrix U
o

obtained above, one obtains as expected, a matrix which is diagonal except
for the irreducible representations to which more than one normal mode
belong. The frequency expressions thus obtained for wave vector g—0
along 2, are given below:

‘4|g: ny w’;) Rl PP Py hxx + Crr ™ Bxp

Azg B wg T Cax —f.‘u — 8k hxx Oyt 8y

N " 2 ..
‘812 3 Py wy=g,, \+./;rx_gx’x_hxx—'exy + &xy K_ (9]
. 3 \
Bl’x', DMy Wy ey, "fxx‘gx:c '<'h,u+ €y~ 8xy
) 2
Ey . ompoi=e, —g.,

Ayt w3 (T.0.) = [0my +2my) [ 2m, my) (a,,+b,,)
w2 (LLA)=0
By, 1 wgand w,

{Qlm) (u=2fte) = Qfmm (eu=d) |
{zlml mz)m (czz'—dzz) (l/ml) (a:z—bzz) —~w? I -



Lattice Dynamics of Crystels having Rutile

E,: w} (T.A)=0

Structure 125

0 (T.0), @ (L.O), wp(T.0), w3 (L.O), w;(T.0), w,;(L.0)

i A“—wz Ayz A A Ay Ass I
: Ap—w® Ay Ay Ags Asg ’
‘: Ass - w? Asy Ass Azs ‘
Ay—w? A, A [ =0
Age—w? Ay 1
; (symmelric pari} i
. Ags ™~ @ [
[10]
where A =4, =(/2m) 2a,,~b, . ~b,)
Ay =Ags=(1/2my mPV (o= ey, —2)
Agy=Agg=(2jmy) [Gny +2my/2m)|'? (e, + )
Ayg=(1/2m,) (byy" x5 )
A= (/2 my mY'2 (e~ ey +d,,)
Ayg=(Agg= A3y = Ay =0
Any=Aes={1/2my) Qe ~Fowt+ Bun—Hax=Fop+ 8y =11y}

Ay = Asg=(1/mg) [(my + 2m)[my )2 (d,, —c,,)
A= (1/2my m)'2 (e, —d,—c,,+d,)

Ags = (12my) (S — 2= By —Fest Bax— M)
A= A =[(my +2mp)dmy my) (Qag, +b,, +h,)

66

Ase={lmy - 2m3) [4m, m,] (b, —b,)

where m, and m, are the masses of titanium and oxygen atoms respectively.
We notice that due to the presence of the macroscopic fizld the degenerate
infrared active modes split up into corresponding transverse and longitudinal
vibrations for the wavevector ¢ — 0 along a, and since the atomic motions
in the 4,, mode are confined to the = direction, we get an expression for the
transverse frequency when the limit g—0 is taken in the directiona, The Raman
active mode Eg, however, remains degenerate as the motions of the anions in
opposite directions does not produce any change in the macroscopic dielectric
polarisations. The atomic motions of E, modes are confied to the xy-plane
and therefore for a wavevector g — 0 along a, the normal modes corresponding
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TABLE

Transformation

N

AN < ES, 43, Ey (@) E(a) F(@  E\
X 1/ m, 9 0 1 0 =2m, 1
vy 14/m, 0 0 —1 0 =2/vm, -1
¥y 0 Ly 0 1 0 -2\ -
2 0 1/\'m, 0 -1 0 =20\ my 0
EN o 0 1\my 0 0 0 0
I it 0 1/ iy 0 0 0 0
X3 14 my 0 0 0 1 /A n, 0
X 14/ m, 0 ] y -1 /v, 0
X5 1a'my 0 0 0 1 1A/, 0
xg 1vm, 0 0 0 -1 1v/my 0
¥ 0 1V, 0 0 1 A'm, 0
Vs 0 1/m, 0 0 -1 1/A7mm, 0
Vs 0 1V, 0 0 1 1V/my 0
s 0 1V n, 0 0 -1 14/, 0
Y 0 0 1A/, 0 0 0 ¢
Zy 0 0 tA/m,y 0 0 0 0
zs 0 0 11Vm, 0 0 0 Y
%6 0 0 1Vm, 0 0 0 0

i B4, B 51 | Ao
2 (m; +2my) 8 (my -+ Zmy) 4 (m, - 2my)
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-

Matrix U

By Eb) B, B, A Ay Ay By By, E,(a) Eyb)

¢ 2/m, 0 0 0 0 0 0 0 o 0

0 2m, 0 0 0 0 0 G 0 0 0

0 -2m 0 3 0 0 0 0 0 0 0

0 ~-2Vmy 0 0 0 0 0 0 0 0 0

0 0 1 0 2V m, 0 0 0 0 0 0

0 0 —~1 0 2Vm, 0 0 0 0 0 0

1 ~tm, O 0 0 1 1 1 1 ¢ 0

-t —1m, 0 0 0 1 -1 1 -1 0 0

1 ~1/m, 0 0 0 -1 ~1 -1 -1 0 0

-1 —1//m, 0 0 0 —1 | B | { 0 0

-1 1vVm, 0 0 0 1 -1 -1 1 0 0

1 1Vm, 0 0 i -1 ~1 1 i 0 0

-1 1/v/m, 0 0 0 -1 1 1 -1 0 0

I im0 0 0 I r -1 -1 0 0

0 0 1 —1//m, 0 0 o 0 1 0

0 0 0 -1 —1/m, 0 0 0 0 ¢ 1

0 0 0 1 —1Vm, O 0 0 0 -1 0

0 0 0 -1 —1m © 0 0 0 0 -1
E(e) EN») B, B, Efa) E(b) | EXa), EXb), Ay, Ay Bygs Bag

- V4 [ V4
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to E, representation are purely transverse and the degeneracies are not removed,
The frequency expression 4,, mode will yield the corresponding longitudina]
frequency for this direction. The modified formulae for the infrared active
vibrations for the wave vector g-> 0 along a, are given below:

Ayt wl (L0 =[(m, +2my)/2m my] (g, + 1 )

E,: 0;(T.0), v, (T.0), v;(T.0)
dy—w? 4y Ay
L4y Az Apy =0
]sz Az Ayp—o® |

where
Ay =) (2 —by)
Ay = @2)my mp)"? (e~ )
Ayy= Qm g +2mp) 200,V (0, + oty
Aga = (1) (Crx —Frxt Brx = Fixe)
Ay = (1fmmy) [(my + 2mg) [y 1 (A, — )
Agy=[0my -+ 2m) [2m m)] {a. . +b,.).

The frequency expressions for the normal modes belonging to the other
irreducible representations are, however, the same as for ¢ — 0 along a,. It
may be noticed that these formulae for normal modes are different from those

derived by Gubanov and Shur!. They tock the coefficients kk ] as cqual lo
Xy

zero. We do not find any justification for equating these coetficients to zero
as the symmetry of the structure does not impose any such condition.
Consequently their short range forces are charge dependent [Eq. 10 of ref. 1]
and vanish when the effective charges on the ions are zero. Secondly, their
formulae do not account for the electrostatic splitting of the infrared active
modes.

For the calculation of the vibration frequencies of the ciystals having
rutile structure, the long range Coulomb forces of attraction between point
ions and the repulsive forces between neighbouring ions were considered.
The short range potential function was assumed to be axially symmetric and

x fB

. . \ »kk , :
the corresponding coupling coefficients [ ] ate given in reference 3. The
electrostatic co-cfficients Cap ( -y ) for various erystals having rutde suucture
k

‘
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are given in Table 3 and these can be used to obtain the Coulomb part of

the coupling coefficients [kkﬁ] with the help of the following equation :
@

ek A (0N s (0,
dﬂ v ECaf kK ~k (33 o “k'af i % -5

The structural parameters used in the caleulation of these coefficients
are those reported by Bawr* and are givén below :

a e u
Ironfluoride 4.6960 A 3.3090A 0.300
Manganese fluoride 4.8734A 3.3099A 0.305
Magnesium fluoride 462104 3.0500 A 0303
Rutile 4.5920 A 2.9591A 0.306

Tt is to be mentioned that in the earlier calculations on magnesium
fluoride® 3 and rutile® the value of u used was .31 as reported by Wyckofi?
and therefore it was found necessary to repeat those caleulations using the
values of u as reported above.

The elements of the dynamical matrix can now be written as
{lck’ A kk]  MEE
a B J af | | «B
In order to esiimate the values of the short range parameters and the
effective charge on the ions, a least square analysis was carried out so as to
give the best fit to the observed Raman and infrared frequencies. The
parameters thus obtained are given in Table 4 and the calculated and
observed frequencies are listed Table 5. The observed Raman frequencies
are those given by Portc® er al. and the infrared frequencies by Barke:®.
Eagels', Parisou!! and Balkanski ef al.'? A comparison of the calculated and
observed frequencies in these crystals shows a very good agreement between
the two except for A,, iransverse optical mode, especially in rutile. This
discrepancy is probably due to the neglect of the polarisation forces in these
crystals and therefore a model which takes account of these forces should
give a better fii to the experimental values.

v
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TABLE 3

Coulomb coefficients Caﬁ (,j,) for crystals having ruiile structure

Manganese Magnesium

q ¥k’ Iron fiueride feoride fluoride Rutile
2,=q4,=0 Kk xx ~1.47736 ~1.09360 - {.78631 —1.50925
g,—0 §5% 11.08902 11.46777 11.78006 12.05713

zz ~ 961166 ~10.36917 -10.99375 —~11,54788
Xy 0.0 3.0 ao 0.0
12 xx ~5.71644 - 5.80961 —5.87335 —5.92286
» 6.84993 6.75678 6.69252 6.64352
2z -1.13351 ~0.94717 —0.81867 —0.72066
13 xx —8.88108 ~8.47108 ~8.35385 ~—8.12685
» 3.68528 4.09529 4.21252 4.43952
zz 5.19580 4.37579 4.14133 3.68733
xy ~11.69711 ~10.61803  —10.64718 ~10.04218
4 xx 1.53159 1.56800 1.53006 1.71759
»y 1409796 14.43437 14,09643 14.28396
2z ~15.62955 -16.30237  -15.62649 ~16.00156
xy 767218 8.43102 8.97039 9.51356
34 xx -1379297 —14,07462 ~14.52371 - 14.66452
yy 17.56200 17.39303 17.57695 17.444835
zz -3.78303 —3.31841 —~3.05324 —2.78033
35 xx  —7.14038 —7.08547 ~6.96785 —6.93653
»y 542509  5.48090 5.59853 5.62984
Iz 1.71439 1.60457 1.36932 1.30669
Xy  —245215 ~2.91034 ~2 63795 ~2.91110
36 ax 5.01563 4.82666 5.01058 4.8784%8
»y ~1.23260 - 1.50823 -1.95734 —~2.098135

G0, g0 122z 11.4328% 11.61922 11.74777 11.84572
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TasLr 4
Parameters for Crystals having Rotile Structure
— s Mamgmes Mameio Ruc
4, 103.1 776 66.5 148 8
B, —-3.1 2.3 ~6.0 --15.5
4, 57.4 70.5 67.4 1477
B, 14.0 2.0 ~3.8 ~36.6
Ay 5.6 2.0 4.1 s.1
By ~6.0 —-5.4 —0.4 —-2.7
Ay 1.5 22.4 16.5 52.7
B, 1.2 4.0 ~1.4 2.9
z 1.36 1.58 1.4 2.44
- 0.68 ~0.79 -0.7 ~1.22

(9]
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