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ABSTRACT

The present paper investigates the secondary flow inducea in a Riviin-
Ericksen fluid contained between two coaxial cones, due 1o rotational oscillations
of the cones about their common axis.  The secondary motion consists of a steady
distribution as well as a periodic motion with frequency iwice that of the primary
motion. The steady part of this flow is studied in detail for the following cases :
(1) The outcr cone is oscillating with fowr times the angular velocity of the inner
cone in the same phase, and (2) the other cone is oscillating with four iimes the

. angular veiocity of the inner cone in the opposite phase for cones with semi-
vertical angles (i) 0,=w[4 and O,=w/2 and (i) O, =n|4 and O,=x/3.
We notice that the secondary flow is strongly dependent on the frequency of the
osciliation and aiso on the state of relative motion of the cones.

1. INTRODUCTION

The present ,paper seeks to discuss the problem of secondary flows
induced in an elastico-viscous fluid confined between two co-axial cones
oscillating about their common axis. Oscillatory motion of the boundaries
is of particular interest in the above class of fluids, because it is here that
we can observe the effects of elasticity comicuously as indicated by the
general theorems established by Bhatnagar (P.L.) for cylindrical and spherical
gecmetries’.  So far discussion has been confined to sieady rotational
problems in cone-cone geometry due to certain difficulties in solving the first
order motion. We have overcome this difficulty by assuming that the
frequency of oscillation is small so that the Reynolds number can be used as
a perturbation parameter. Tn earlier papers®? the secondary flow generated
in #n elastico-viscous fluid contained between two concentric oscillating
spheres has been studied. In these investigutions the authors have restricted
their discussion to the steady component of the secondery flow field. We have
also done like-wise because the calculation af the fluctuating component is
exiremely cumbersome,
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2 FORMULATION OF THE PROBLEM

Let us consider a mags ol Riviin-Ericksen (R.E.} fluid contained between
wo coaxial cones. The cones are represented by =6, and 6=6, (>0,)
in spherical polar coordinates (r, 8, ¢) with the origin at the common vertex
of the two comes. The two cones perform oscillations about the axis §=0
with the same frequency n/27 but different angular velocitiss £, and 2,.
If 4 v, w are physical components of the velocity vector, the boundary

conditions of the problem are :
u=0, v=0, w=r 12, sind, ¢ on §=0, %r,
[2.1]
=0, v=0, w=r £2, sind, & on §=0,r

The constitutive equations, momentum equations and continuity equation are

is follows :
Ty—-—p8,+ Py, 2.2}
Pi=¢y Ej+ey Dy+ds ETE,, {2.3]
Ey=% Gy, +uy ), 2.4}
D=4, AL T 24, W, 2.5
A=u"w Lt (dular), {2.6)
PLRU/> D -y, W) =T ) [2.7)
u =0, {2.4]

where the symbols have the usual meaning and a suffiix following a comma
denotes covariant differentiation.
Introducing the nondimensional quantities through the relations:

r=L% | t=n=ty u=Lént', v~L¥*ng', l
w=Lnw, Q=n®, 2,=nl2, (2.9}
Pymngisly.  pep Lty

where L* is a characieristic length.

The boundary conditions of this problem reduce :
#=0, p=0, w=rQsinb, & onb=0,, ¥r ! 12.10]
s

%0, p=0, w=risinf, e ond=6,, ¥r
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Here and after, the prime denoting non-dimensional quantitie g
dropped for simplicity and the real parts are to be undersiood wherever
complex expressions are quoted for physical quantities.

3. Due to nonhnearity of the equation of stale, we restrict ourselves to
solve the problem approximately by assuming the parameter (= ]QIH}Q;}I)
to be small.so that we can express Lhe velocity coniponents, stress components
and isotrbpic Pressure 4s a power sgries in Q m the form :

u=LPeg(r, 6, N+ ., 7

v=02h(r, B, -+ 0.,

w=87@ 0) e+, 8, DA -0,

Pa=QRG(r 0, D4 - e, ’

Pag= P H@E 0,00+ -,

Peg= MG 0.0+« -,

Pg=PL(r, 0,0+ «+ +

Pee=R0Q 0 0) !+ 0220, 0,0, 1)+ .« +

Prg=RT(r, 0) "+ PT (r, 0, )+ + . -

P=AN@ 6.0+ - e [3.11

Substituting these expressions in the equations of siate equations of motion
and confingity and separating the terms.in & and £2* and neglecting higher
order terms in &2, the following system of linear partial differential equations
is obtained : T

Q=173 f]56-fcot 6] (1 +ik), . 3.2
T=[3 flar-fi1} (1+ik), [3.3]
L[l 20 20coif >T, 3T
G=2(1+k i) 28, 2k+8) {e" (if__[}lz 3.5
ar /) ar ar .r /)
~a{1se 2\ ( Lok g\ 2%+S (., f5f 2
# 2<1'kar)(7 56+T)+ 7~ {e (%—é-fcow)} Bl

PR e
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L= (1 +k.§_) (_}.‘. »,L-—]- &2 ~—,1~) +(2E+S) {e" [i[-i) <
ar/ \or roar r ar 7

ot (f"!.—fcot@)! . [3.8]
50
it £y2 +
ag (S BN [\G 26 L AL L g H: M} {3.91
R T EV Y r

X

cot 9] (3.10]

ST T ety

. s p2 _
b @S = ! 5N+1{§£‘+3L+_j. of H
-

2 (r gsind) + % (rhsin @) =0 [311]

where
R=(I¥*np/$,) is the Reynolds number for the flow

k=(np,/¢,), S=n¢,/p, are the dimensionless parameters, ’ specifying the
effects of viscoelasticity and cross-viscosity on the flow field respectively.

The boundary conditions in terms of dimensionless quantities are
g=0, h=0, f=m,rsin6, on 6=0, \./,-] (.12
g =0, h=0, f=m,rsinf, on 8=0, \/r

2, 92 . [3.13]

|
3
1
o

4. SOLUTION OF THE EQUATIONS

(@) Primary motion

To obtain the primary motion, we eliminate ¢ and T from [3.2]~[3.4].
Thus, we get the following second order differential equation® determining f:

R f&? mi(z’_f_ +c016§_f»f cot? B*f) af

7? 64
L22f2r [4.1]
roar r [
where
I
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The boundary conditions to be satisfied by /are :
F=m;rsinf, on §=9, r]

14.2)

f=myrsinf, on 8=0, ¥ r
We notice that we cannot delermine u function g (8) such the f=rg ()
satishes the cquation [4.1} and the boundary conditions [4.3]. Hence we
adopt a perturbation method, assuming the Reynolds number of the motion
to be small, so that we assume fof the form f=W3+R W), neglecting the
higher order teims in R,

1320, a W, | Wy
e 2000 cot @20 W cot? O W, ) - 2
0 r"( 2 62 20 e o art
2
+2 3 = Wy [4.4]
r ar I

R:1i4

. 1/ &*w, 3 W, 2
W, 5= | &1t cotg 2oL -W, cot’ 8+ W, L
X ’2( v e X 1 1} P
L2 2w 145]
roar ”2
With boundary conditions :
Wy=m,rsin®;, on 8=6, Mo } (46
Wy=myrsint,, on 8-6, S P
W,=0 on 8=90,, M, ) (4.7
W,=0 on 0=0, S, Y
The solution of the cquation [4.4] is
Wy=r sin 8 [A4 (—cot 6 cosec 6 +/n tan 6/2) + B] {+8]

where A and B are arbitrary counstants and are given by using boundary
condition [4.6]

my -,
[Intan (8,/2) ~Intan (8,/2) - cot 8, cosec 6, 1 cot §, cosec 6,)

L[4.9]
P [cot 8, cosec 0, — i tan (0,/2)) 1 my [Intan (8,/2) ~col 8, cosec 8] ‘
Untan (8,/2) ~ Intan (8,/2) ~cot B, cosec 8, +cot 8, cosec 8,]
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The solution of the equation {4.5] is given by

W,=r*5(8)sin6 [4.10}
where
$(0)=(Y10) w (9 + (135 cos? 8) {C—~(D/32) [cosec & cot 6
—6 /ntan (8/2) +(25 cos 6)/(1 -5 cos® B)]} , [4.11]
[4.12]

w(@)=A[—cot 8 cosec B |intan (6/2)]+B.

C and D are arbitrary constants and are given by (using the boundary
conditions [4.7])

K " - i )
SUThkHE|{ (15 cost8,) (I~5cosby) |’ ’
|
171/ cos8, cosb tan 6,/2 ‘
N [ 2\ 4
g { 2 (sm2 0, sin¢ 82) 3 {tan 02/2} ’
L 25 cosB, cosb, [
2\ 1~5c0s?8, 1-5c0s*8, A[- [4.13]
and 1‘
!
D1 cos6, 8, 25 cos 8
=l e el =3 Jpan o4 T T
16[2 e A T M i s 61] {l
—— kml_‘ f
0 (1+k3 (1-5cos? b)) j

Hence we get
F=rsind w (8) +Re®sin @ F(B) +[(Rr*sin0/10) k 1 [w (B)/(1 +k )]

+i[RPAsin 6w (8)/10 (14 kY, [4.14]

where
F(6)= (1~ 5 cos? 9) [C—(D/32) cosec O cot §—6 /n tan 6/2

+(25 cos 8)/(1—5 cos® 8) 1. {4.15]

(b) Secondary motion

Having determined f, we use the set of equation [3.5] —[3.11] to discuss
the second order motion, which we shall call the secondary motion. An
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examination of the equations [3.5] to .[3.10] reveals that purley periodic
primary motion is associated with an additional steady velocity distribution ag
well as a periodic motion with 1wice the frequency of the primary motion,
Theretore to separate the steady and unsteady parts, we sei

p=g 0 N rgy (o p) exp(2in),
GC=0 {r, 0)+G, (r, B) exp (2i1).
M=M, (r 8y~ M, (r, 8) exp (211),
N=N, (£, )+ N, (r, 0y exp (2 i1}, ; 14.16)
by (e, 81 hy . B) exp (2100,
HeHy o 8) 1 Hy (e, 8) exp (2},
LeLy (r, 0) 4Ly (1, 8) exp (2if),

‘We shall concentrate our attention here only on ithe sieady part of the
secondary flow generated.

Substituting [4.16] in equations {3.5]~{3.11] and equating the time mde
pendent parts we get :
> L ! > 2
G—238 . 2kS [ af S , ) 14.17)
or 2w ‘

-

=2
r

afy L&\, 2kt 3 o PE 418
30 )”7‘""7;1%‘”9!»’ [4.18]

r r 2

rt

_{ah 1 sg R\ 2k+S 5SS (37—'
=3 lee My 2k S o oS SN poa)] L e
. (ar» Pl ,>+ = RI [(ar 56 feot » (4.201

(
M =2(g‘ L hycot 8 5 {
. AN

a_fchoteg +' D_-—.Z‘f ’

WM N, 102G 26 ek Ly g HiEMY g0
2r 3r  Rlar ror a8 r ¥
__f./; 7_5]\7, 1 By . aH
Trcmﬂv Y E'_‘-T3Ll+ =5 ‘+(H! M) cotﬂ} [4.22]
& (g sin8)/3r +3 0 hy sinB)/ar=0. 14.23}

The bar over an expression denotes its complex conjugate.
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Eliminating &, from [4.21] and {4.22], then using the relations  [4.14],

[4.17]-[4.20] and introducing a stream function ¢ (r, 6) defined by

rg, sin 8= 3(krsin6y/> 6, l

14.24]
rip=—3{rHlar }
we get the equation satisfied by ¢ (v, 8) to be
2 (r, 8) =[2 (k+S)/*] Fy (6)+RE, (8)+(2k +5) Fy (6) [4.25]
+SR Fy (&) + R¥%?F, (8)
where
7 3? 2 3 1 > coté 3 1
L | =t e b e e e -
[a #ooroar 2o a0 risin? 9] [4.2¢]
and the boundary conditions :
3(fsind)/af=0 on 6=6, and 66,
} {4.27]
3 (gr)far =0 on 0=6, and 6-0,
Fi(8)= -8 A% cosec* 0 cot B, [4.28]
Fy(0)~ —~2 4 coscc 8 { A[Inian (8/2)—cot & cosec 8] - B}, 4.29)

e
Fy(8) = —20.4C cosec & (14 cos® B) + 40 _‘_ﬂl_:,_io_s_dl),,in tan 6/2
4 sin 6

: En 3018 H
17 cos 8§ + 10'02509 15 cos 0} 4 ZOA[ A(—cot 8 cosec
S1I

+ Intan 8/2) -+ B] cosec 0 —48 4% cot 8 cosec*d, [4.30]

Fy(8) = ~20 AC cosecd (1 +cos?8) +fZD_. x

17 cos 8 + 10 cos®d —~ 15 cm-"BJ

5in’ @

— 2,
{__I_S_QM In tan (6/2) +
sin 8 ,

—48 4% cot § cosec*d, [4.31]
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Fy(8)=2 AC [ —cosec 8 +9 ¢os’8 cosec 8 ~21in2 € /n tan 6/2]
+{4D[8) { ~60n28 (intan 6/2)
+[(39 cos?@ - 11)/zin O] Jntan §/2
+(21 cos A — 27 cos*t)/sin®}
L (BDID[~ 3sin 6 cos 8 [ntan (8/2) -+ {3 cos™t —~2)sin 4], [4.32)

Let us put
GG =201 5, (r, O 4R (1, )4 (24 +S) Ry (r, 6)
SR r, @)+ R s (r, B) [4.33)

then
LBy . 0= F, (O)irs L y=Fy(8), L43=Fy(6)

-, - [4.34)
L3y (r, )~ F,(8) and L2s=1*Fy (6) )

To solve the equaticn [4.25] we shall put
W, =1* cosec 8 X, (8), dhy=rtcosec B K, (B), .
=rfcosec O X3 (&), hy=r* G x.(8) , ’
Yy=r sec 6 X5 (6) = r* cosecd X,(6) L (439
and i
Pis=+% cosecX; (8)

and using tke methcd of variaiion of parameters, we shall get the solution of
the equation as fcllows :

X (@) =4 by cos B¢, E(B) +d, £, (8) +(4%/2) &, (6), [4.36]
O~ () +hy &, D)+ §5 () +d, £,(0)
~(A%/2) & (8) - AB/60, (4.37
Ny 6)- oy :(6) ' b; 51 (9) iy §3 (9)4"’"3 54 (6) 4542 §5 (9)
(AD[3D) £ (B) + (5 AC(12) &, (0) — (A/16) £,, () - ABI6,  [4.39]
Xy 1B) ey £.8) by 6, (8) 4 00 £ (0) -y £, (8), +5AY £5(0) +(AD]32) £4(8)
+(5/12) AC &, (8) ~ (A2/16) £, (8) | AB/G [4.391
Xs (B =c5 &5 (8) 85 &5 (8) 105 £5(8) +dy £, (8) +(AC/3079) £, (B)
(AD]128) ¢, (8) + (BD/8192) &, (8) - (BC/15) £,,(O) {4.40]
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where

& (6)=cos® @ ~cos 0,

& (O)=£(8) Intan 82 +cos?0 -1,

£, ()= £ (0) (Intan 6)2)*4-(2 cos’@ ~ 1) (Jn tan 6/2 +cos 8},

£,(6)=7 cos’0 —10cos*0 +3 cos G,

£,(8) =5 (0) Intan 8/2+7 cos*d — 2% cos?0 +- 1§,

£ () =(— £ cos®0 + I cos®0 —F cos 0) (Jntan 6/2)*+(~32 cos*d

S+ 20 L —£3 30 12 30241
F4L cos?0~4) Intan 6/2 —£3 cos®0 +2 cos®0 + 21L cos B,

£, (0) =(—25 cos*8 + 34 cos®F - 9 cos 0) (In tan 6/2)+(~ 50 cos*d
+142 ¢05%0 —1.1) Intan 8/2 -4 cos°0 + 3% cos®0 — 28 cos 6,
£,(6)=(—6 c0s’@ +7 cos*@ —cos 8) Intan 6/2—6 cos*d + 12 cos®0,
£, (0) =33 cos™0 — 63 cos’9 4-35 cos*0~5cos 8,
£,(8) = £5 (0) Intan 62+ 33 cos®0 — 52 cos*@ -+ 142 cos?§ ~ 128,
£,0(0) = (305 cos’8® —335 cos®9 + 19 cos®@ -+ 11 cos 8) Intan /2
+305 cos - 799 cos*6+11 cos?8 ,

£,1(0) = (~ 145 c0576 =295 c0s56 — 179 cos € +29 cos 0) «
(Intan 6/2)% 4 ( --290 cos%9 + LA8L costd —£18 cos™0
+48) In tan 6/2 4 (~ 2382 cos70 + 21213 cov’O
—2128 cos’0 45 cos B)
£5(0) = (35 cos®0 — 1383 00570+ 1882 c0s%0 — 232 cos®0) Intan 6/2
—2135 cos?+ 2403 cos50 - 2312 cosdl —22 cos’6
£13(0) = (- 270 cos®0 + 396 cos? — 126 cos 0) (/a tan 6/2)*+
(—862 cos*@ -+ 612 cos?0--96) In tan 8/2—643 cos’0 718 cos’d
—105 cos 6.

£,4(0) = cos"0 —cos%0 [4.413

%, b, ¢; and d, are the arbitrary constants and are determined by the
boundary conditions :
3/56 (f;sinf)=0 on @=0, and 6=6,
afar (1) =¢ on =6, and 0=0, }
i=1, 2, 3, 4 and 5.

[4.42]
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3. DHsCUSIION

We have studied in particular the flow field for a fluid specified by
k/R =—0.2 and S/R=0.6, for a particular Reynolds number R=0.5. In case
I (6)—I (b) we have taken 6, ==/4and 6,=7/2. While in W (@), TT(5) we
have taken 6, =m/4and O,==/3. In 1(a), 1I(4) we have taken m;=02,
my=0.8 and T (3), 1I (b) we have taken m1;=0.2, m= —0.8.

Case 1

No separation is observed for Newtonian fluids in cases I (4) and I ().
In case I(q) the fluid is drawn in near the cone and thrown out near the
plate. In the case of the above R. E. fluid a separating stream line is present
extending from the cone to the plate in I (@). In the inner regions closed
loops are formed, while in the outer the fow resembles the Newtonian paitern.
As the Reynolds number increases the separating stream line will move away

4.

Fic. 1
Siteam Lines of Sesondary flow when m;=0.2, 21,=0,8, R=0.5, k=0.1, §=0.3.
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from the vertex. Tn T (b) the stream line pattern is opposite to that for
Newtonian fluid for the same Reynolds number. This reversal of the secondary
flow pattern. is characteristic of these fluids.

Case 2

When the cones oscillate in the same phase, the outer oscillating with
four times the angular amplitude of the inner, we notice that the separation
of the secondary flow has just set in sor the above fluid when R=0.5. In
meridian plane the fluid is drawn in near the inner cone and thrown out at
the outer resembling the Newtonian pattern. In I (d) the secondary flow
field resembles that of the Newtonian fluid with fluid drawn in near the outer
cone and thrown out at the inner cone, when compared with I (b) we notice
that the separation sets in earlier for the same fluid at the same Reynolds
number when the oscillating boundaries have semi-vertical angles = /4 and=/2
when compared with semi-vertical angles = /4 and /3.

The secondary flow in the above cases resembles that when the bounda-
ries Totale because Wy in the primary motion for oscillating boundaries is
wlentical with the primary motion for ro.ating boundaries.

/s

74

T2

Fic. 2

Stream Lines of Secondary flow when m,=0.2, m;=~0.8, Re=0.5, k===0.1, §=0.3.
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Fro. 3
Siream Lines of Secondary flow when m s=0.2, ny%0.8, Ra=0,5, h=~0.1, $=0.3.
T4
T3
w2

Fic. 4

Stream Lives of Sscondary Sow when mw0,2,m, =08, R=0.5, ke=~0.1, So0.3.
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