
Nv K .  S .  Bn.kri.mr;nR 

[Deparrrrieni o j  Applied Maflipmarics. Jndian lnsrircrtc a f Science, Bangalore i2, India 

(Received, October 30, 1968) 

771r prernri popper inw.~ri,got~ rhe secondmy . ~ I V  h ~ d u m t  in a Rivlin- 
Ericksen fluid co,rfaimd belween rwo cotixirrl cones, due lo rotational oscillotiorri 
ofrhr cones nbotrt rheir ionrmon axis. The secondary lnoriorz consists qf a steady 
drsaibt~fion a,? well rrs u periodic motion wifh Jrreqaene)~ lwii'e l l~ul  of the primurj~ 
nrolion. T i ~ r  stimly part of this flow is studied irt cletuil for I ~ C  following c o w  : 
( I )  The ourcr cone is osdlkathg with jbw ri~~ze.s the angz~lar velociiy of the inner 
cone in rhe sume phase, and (2) file othur. cone 13 osciilu~inp wirh Jh l ir~es rhe 
nngtrlar vriociry of the inner cone in rhe opposire phase for cones wirh semi- 
vertical angles (i) 0, = m / 4  and %,- n / 2  a d  (ii) 8, = 7r/4 and 0,= n/3. 
W e  norice ?hat the secondmy flow is strongly clependnrr on rhe frequnacy o f  frhe 
orcil~ation and also on rhe srare of relarive morion of the cones. 

1. INTRQDUCTI~N 

The presen't ,paper seeks to discuss the psoblem of secondary flows 
induced in an elastico-viscous fluid corifined between two co-axial cones 
oscillating about their common axis. Oscillatory motion of the boundaries 
is of particular interest in the above class of Auids, because it is here that 
we can observe the eEec~s of elasticity conicuously as indicated by the 
genera1 theorems established by Rhatnagar (P.E.) for cylindrical and spherical 
gecmetries'. So far discussiot~ has been confined to steady rotational 
problems in cone-cone geometry due to certain difficulties in solving the first 
order motion. We have overcome this difficulty by assuming that the 
frequency of oscillation i s  small so that the Reynolds number can be used as 
a perturbation parameter. In earlier  paper^"^ the secondary flow generated 
in an elastico-viscous fluid contained between two concentric oscillating 
spheres has been studied. III these investigations the authors have restricted 
their discussion to the steady component of the second2 ry flow field. We have 
also done like-wise because the calculation af the fluctuating component is 
extremely cumbersome, 
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Let us: consider a mass ol' Rivlin-Ericksen (RE.)  fluid contained betweell 
coaxial cones. The cones are represented by 8=01, and e)-$$ ( 28 , )  

in spherical polar coordinates (r, 8, $1 with the origin at the common vertex 
of the two cones. The two cones perform oscillations about the axis B=0 
with the same frequency t1/21e bur diEeferent angular velocities 92, and 8,. 
~f ti, v, )v are physical components of the velocity vector, the boundary 
conditions of the problem are : 

The constilutive equ:dons, momenlum equations and continuity equation are 
:s fo~lows : 

wherz t h e  symbols have the usual meaning and a suffiix following a comma 
denores covariant differentiation. 

Introducing the nond;mensional quantities through the relations : 

r=E*rs , t--n-Qrs, u - = ~ * r r t t ' ,  u--L*~tu ' ,  

~ = L * t , n f ,  Q , = n R ; ,  q = n Q i ,  I r2.V 

P,~-"$,P;' P'PL*~"' 

"ere L* is a characieristic length. 



$ere and after, the prime denoting non-dimensional quai;titie is 
dropped for simplicity and the real parts are to be understood wherever 
complex expressions are quoted for physicxi1 quantities. 

3. Due to nonl~nearily o r  the equation of  stale. we ~eslrict ourselves to 
solve the problem approximately by assuming the parameter L?(= /Q,l + l Q 2 ) )  
to be smalLso thnt we can express lhe velocity coniponents, stress colliponents 
and isotropic pressure as a power series In .Q (211 the  form : 

I L - Q 2 g ( r ,  8, 1 ) ' -  . . . .  1 ~ .  

v = Q 2 A ( r ,  8, !)-I . . , 
>i,- Q J ( r ,  fl) 4 Q3L (r ,  0. t )  4 " . @ , 

p , , = Q a i ; ( r ,  8 ,  t ) -c  . . , 

p s ,  -- Q2 11 ( I . ,  0, I )  .+ . . , 

p .  P +  = - Q 2 M ( r . ,  0, t ) t .  . 3 ,  

L ( r ,  0 ,  I ) +  ., . . . 
pod = Q Q (r ,  8) p'l i Q3 Q, (r ,  8. I )  -I- . . . . 
P,, = 52 T ( I - ,  0) e" + R3 T, (r., 8, t )  -1 . . . , 

p - Q 2 N ( r , 0 , t ) + .  . a .  

. ,. . - [ l l ]  

Substituting these expressions in the equations of  state equations of motion 
and csntinuity and sepirdting tha ierme,in and Q3 and neglecting higher 
order terms in 8, the following system of linear partial d~fferentinl equations 

is obrsined : 

Q = ( l / r )  [3f/3 0- - f  cot 81 ( l + i k ) ,  E3 21 



2 ( ? a g  s i n ~ j  +-?- (rh sin @ = 0  
ar a 8 
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where 

R=(L*'n is the Reynolds number for the flow 

fi=(n&/+,), S = n  +,!+, are the dimensionless parameters, specifying the 
effects of viscoelasticity and cross-viscosity on the flow field respectively. 

The boundary conditions in terms of dimensionless quantities are 

g =0, h=O, f =m,  r sin 8, on O=O, r 
[3.12] 

g =3, h-0 ,  f =m,r sin%, on Q=O, V r  

4. SOLUTION OF THE EQUATIONS 

( 0 )  Pritnnry motion 

TO obtain the primary motion, we eliminate Q and T from [3.2]-13.41. 
Thus, we get the following second order differential equation' determining f :  

where 



The boundary coiiditions to be satisfied by J'nre : 

,f=m, r sill 8, on 0 = 8 ,  f+ r 

f=m,r sin 6, on 6=@,  -\J I. 1 
We notice that we cannot determine n funciio~t y (8) such rhe / = r  q (0) 
satisfies the cquation r4.11 and the boundary conditions 14.3j. Hence we 
adopt a perturbation method, assuming the Reynolds number of the motion 
to  be small, so thar we assume Jo f  the form f =  Wo+X Wl, neglecting the 
higher order telms in R. 

With boundary conditions : 

Wo-nr,rsin@,, on 8-8, +f I* 

W,=ni, r sin 0,. on B - 6, + P 
j4 61 

Tile solution of the cquation L4.41 is 

WOir  sin 6 [ A  (-cot 6' cosec H +hi tan 812) A B] f4.81 

where A r.nd B are arbitrary constants and are given by using b ~ u n d w  
condition [?.6] 

M I  -. nr2 A - - - - -  - .  
[itt tan (0,/2) -In tan (8,/2) --.cot 0, cosec 8,  i cot 0, cwec l i , ]  1 

B -  i ~ ,  [cot O2 c o w  d2 -hi tan (02i2)J nl,[Ii~rn~i (0,/2) -coi 8,  cosec O,] 
-__lls---_--__- 

[In tan (8,/2) - 111 tan (8,/1) -cot 0, cosec 6, +cot 0, cosec H,] . 



Secondary Flow oY s Elnstlco-Ks'iscow Fhid 

The solution of the equation [4.3J is given by 

PV, - r3 .F (0)  in 6 

where 

s(8)=(62/10) w ( 8 )  l- ( 1  .-5 cos2 0) {C- (D/32)  [cosec 6  cot 8  

- 6 hr tan (0 /2 )  + (25 cos 6)/(1 - 5  cosS 8 ) ] ]  , E4.111 

@ ( @ = A  [-cot 6 cosec 0 t l t i tan (6 /2 ) ]  +B. 14.121 

C and D are arbitrary constants and are given by (using the boundary 

f=rsln@ w (8)  -Rrs  sin f3 F(O)+[(Rr'sm !3/iO) k ]  [ w - ( 8 ) / ( l + k 2 ) ]  

- I [R / $ s i n  B w (8)lIO ( 1  KZ) , 

where 

F ( @  = ( I -  5 cos' 8 )  [C-(D13.2) cosec 0  cot 0-6 In tan 812 

i (25 cos @/(I-5 coss 0 )  1. [4 151 

(b) Secondary motion : 

Havhg determined f, we use the set of equation [3.5] - [3.1 I]  to discuss 
the second order motion, which we shall call the secondary mot~on. An 



We shall concentrate our at~enlio-l here only o n  the  sresdy part of thc 
secondary flow generated. 

Substituting (4.161 in equations [3.5] --[3.il] and equaling the rime inde- 
pendent parts we get : 

a (r'g, sin O)/a r + a (, h, sin 8 ) / ? r = Q .  (4.231 

Tls bar over an expression denotes i ts  cornpies conjbgace 
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~[imiilating N, from r4.211 and 14.221, then using the  relation^ I4.141, 
[4.17]-[4.20] and introdwing a stream function $ (r, 0) defined by 

r g ,  sin 0 -  a(#r  sin @)/a 6 ,  
and 1. i 14.241 

r hI = - a (r  $,/a r 

we get the equation satisfied by J, (r, 8) to be 

z2 $ (r, 8) = [2 ( k  i- s)/r21 F, (6) + R F2 (8) + (2 k + S )  Fs (8) L4.251 

i- SR F, (0) +R2rZF, (0) 

vhere 

and the boundary conditions : 

($ sin 0 ) l h O  - 0  on B -0,  and 8- 0, 
14.271 

( )  - 0  on 6 - @ , a n d 8 - 8 ,  

F, (8) = - -8  A2 COSCC' 0 cot 6 ,  [4.?R] 

F2 (0) - --I A coscc 0 A [ I 1 1  tan (812) --cot B cosec H] k- H } ,  [4.29] 

f In tan 012) --I3 cosec 6-48 A2 cot 8 cosec4B, i [4.30] 

- 15 (1 +cos18) 17 cos 8 J- 10 cos38- 15 cob58 - -  In tan (612) f ---- 
sin 8 sin5 6 

,, - 48 A2 cot ecosec48, [4.31] 



Let us put 

$ (r, 8) -2 ( k  -! S )  $, (r. ,  8) 1 R ibt (r,  0) - I  ( 2  I< 1 S )  R zh3 ( r ,  0) 

SR  $4 (r, 0) -1- R2 $s (r ,  8 )  14.331 

then 

.i;" (r ,  8 )  -F, (@jr2, 2 $,=p2(0), G ~ ; Z ~ - F ,  (6) 1 
1 [4.34] 

Ea $, (r,  0) - F4 (8) and i2 Gllr, =r2 .F5 ( 0 )  

To solve the equaticn (4.251 we shall pat 

4, = r 2  cosec 6 X,  (6) , =r%osec 6 x, ( 0 )  , 
J ~ ~ = T ~  cosec 6 X, (0) , 4,=r4 cosec8 &(dl . 1 

and i [4 351 

$, = j 6  cosec XJ (0) 

and using t t e  methcd of var;a~:on of parameters, we shall get the solution of 
the equation as fcllows : 

Xi ( 0 )  = ?, -i b, ccs 6 t c, f ( 0 )  + (1, f ,  (0) 4 ( A 2 / 2 )  f ,  (01, [4.36] 



Srcondury Flow of a Ehtico-Viscous Fluid 
where 

f (8) -COG % -COS 0, 

f1 (8) = f (0) I n  tan 012 + cos2B -4 , 
f ,  (0) =- f (8) (In tan %/2)= i (2 cosZ6 - 1) (In tan 612 +cos 8) , 
f, (0) = 7 cosS% -10 cosWt  3 cos 8 , 

f4  (0) = E3 (0) 1r1 tan %/2 + 7 cos4% -? cos2% i- f + , 
f, (6) = (-  + cos5%,; cos3% -+ cos 8) (h tan 6/2)2 + (-$ C O S ~ ~  

- L J ~ -  coosZ% -f) In tan 012 -$$ cosSB -I-+ c o s 3 % + # ~  cos 0 ,  

f ,  (8) = (-25 cos56 -t 34 cosSB - 9 cos 6) (In tan %/2)* -t ( -. 50 co$% 

+1$2 cos26 +) In tan 012 -3; cos56 + >$ cos3% -?+- cos 6, 

f ,  (0) = (-6 cosS% +7  cos" -cos 8) In tau %/2 -6  cos4% -1-18 cosZ% , 
E, (8) = 33 cos70 -- 63 cos50 8- 35 cos3% - 5 cos e , 
f1 (8) - f s  (6) In tan 8/2+33 cos6% -52 cos4%+J-p cosZ6 -e$, 
flo(%) = (305 cos7% - 335 cos58 + 19 cos36 -t 11 cos 6) 112 tan 812 

+ 305 c0s66 -- z p  c0s48 +- i I COSV , 

Es3(8) = ( -- 270 coss6 + 3% cos3% - 1 6  cos 6) (In tan 6/2)'-+ 

( -  562 cos48 -t 612 cosa6 - t  96) In Lan 612 - 643 cos5% t 715 cos38 

-105 cos 6. 

E,.,(%) = cosv - C O S ~ ~  r4.411 

at, b ; ,  ti and di are the arbitrary constants and are determined by the 
boundary conditions : 

a /a8  ($, sinO)=O on 0=8 ,  and 6=8, ! [4.42] 
r ( r) = ?  on 6 = 8, and 8=8 ,  

i=1 ,  2, 3, 4 and 5. 



We have studied m particular the flow field for a Auid specified by 
R/R = -0.2 and S / R = 0 . 6 ,  for a particular Reynolds number R=0.5. In case 
I (a)-I (b) we have taken Ul=m/4 and f11=?r/2. Whtle in TI (a), I l  (b) we 
have taken 6, =m/4and f12-=%/3. In  I (a),  11 (a)  we have taken mi-0.2, 
m,=0.8 and I (b), 11 (b) we have taken m, -0.2, m =  -0.8. 

Cage d 

No separation is observed for Newtonian Auids in cases I (a) and I (b). 
In case I (a) the fluid is drawn in near the cone and thrown out near the 
plate. In  the case of the above R. E. Auid a separating stream line is present 
extending from the cone to the plate in I (a). In the inner regions closed 
loops are formed, while in  the outer the flow resembles the Newtonian pattern. 
As the Reynolds number increases the separating stream line will move away 

FIG. 1 
Stream Lines o f  Sesondary Bow when rnl=0.2, m,=Oa, +05, k-0.1, S-5.3. 



froln the vertex. Tn 1 (b) the stream line pattern is opposite to that for 
Newtonian fluid for the same Reynolds number. This reversal of the secondary 
flow pattern is characteristic of these fluids. 

Case 2 

When the cones oscillaii: in the same phase, the outer oscillating with 
four tinles the angular amplitude of ihe inner, we notice that the separation 
of the secondary flow has just set in ;or the above fluid when R=0.5. In 
meridian plane the fluid is drawn in near the inner cone and thrown out at 
the outer resembling the Newtonian pattern. In I (b) the secondary flow 
field resembles that of the Newtonian fluid with fluid drawn in near the outer 
cone and thrown out at the inner cone, when compared with I @ )  we notice 
that the separation sets in earlier for the same fluid at the same Reynolds 
number when the oscillating boundaries have semi-vertical angles %/4 andm/2 
when compared with semi-vertical angles 7 ~ / 4  and n /3 .  

The secondary Aow in the above cases resembles that when the bounda- 
ries rotate because We in Lhe primary motion for oscillating boundaries is 
identical with the prtmary motion for ro,ating boundaries. 

FIG. 2 
Stream Lines o f  Secondary flow when ml=0.2, m,=-0.8, R-0.5, k--0.1, 510.3. 



PIG. 3 
Stream Lines of Secondary flow when mr-0.2, n;.-0.8, R-0.5. X--0.1, S=0.3. 
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