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ARSTRACYT

The dispersion of onc fiquid in the other as fine globules requires energy
(i) to jorm the extra intcrfacial area and (i) lo overcome the viscous resistance
during the disintegration of the liquid into globules via jets. The interfacial
energy increases in direct proportion to the throughput of the disperse phase while
much larger #nergies are required to overcome the viscous dissipation. The latter
has been calculated first for the rwo dimensional wedge flow in such Iimiting cases
as low Re, high Re, bcundary layer flow efe., and the results are later extended
10 three dimensional axisymmetric flow. It has been found that the energy of
viscous dissipation varies as the squave of the throughput and accounts for most of
the power consumption in high speed practical emulsifiers. There is fuvourable
agreement with the industrial data available.

{. INTRODUCTION

In this paper, we wish to discuss the role of interfacizl tensic
viscos'ty in the process of emulsification. Ths formution «f 21 umalsive
requires the dispersion of one liquid as fine droplets in another liqu.d. Tha.s
means that the surface area of the liquid to be dispersed has to be “ncreased
enormously and the process requires a definite amcunt of enevgy. It lus been
customnary to coms.der this as the sole external energy required o form an
emulsion!’ 2,  But in practice amounts of energy many orders of magnitude
larger than this are needed to form emulsions in ordinary devices, like homo-
genisers. It appears likely that in high speed practical emuls fiers, viscous
energy terms come into play prommently® and so it is necessary to study in
detad the two types of energy consumption, namely, surfacc energy and viscous
energy.

From a knowledge of the size of the drops and-the surface forces, the
surface energy could easily be calculated. If the bulk liquid is divided into
droplets of radius 4, the work dome per unit time against the interfacial
tension 7, when an amount Q of the bulk phase is dispersed per unit time, is

W, =3 Q7/a. [1]
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As an illustration, we may cons:der the power requived to emuls'fy ing)
(with intetfacial tension Y=1 dynefem) at a rate of about 100 gul/nour
if the droplets are about 1 » in radius, about 5. 1074 H.P. would be Tequired
1o creae the new interface.  But in practice, a homogeaiser of this capacity
would conswne sbout 1 H.P, which is several order of magnitudes larger.
Also eq [1] suggests that the power requirerent is proportional to the
emulsion throughput, while in practice the power increases at a somewhat
faster ratc, as some higher power of Q.

Tn on carlier paper®, considering a very simplified model of emulsification
system, applicable to homogenisers, we were able to show that substantilly
large amounts of power are spent as viscous dissipation and that this power
consumption increases as Q% But these calculations which were just en
extens;on of Hagen-Poiseuille type of solutions, had the obvious limitation of
assuming Laminar flow. Tt is the purpose of this paper to give a more
reliable estimate of the viscous dissipation in convergent lows.

A direct caleulation of the viscous energy of a fluid flowing through s
converging axisymmetric nozzle is quite difficult because of the foilowing
reasons.  Fursily the flow will have to be studied in several distinct regions
like far off from the apex, near the apex, along the wall surface etc., wherein
the different hydrodynzmic approximaiions of low Reynolds number, high
Reynelds number, Boundary layer flow ete., will have to be used. Then the
viscous energy in each such flow will have to be calculated to find the total
resistance to the flow. Because all these regions overlap on each oiher,
matching of the solutions causes certain difficulties. Secondly the flow near
the apex of the cone is not clearly known. Hence the flow pattern will have
to be arbitrarily assumed ip order to make the calculation. This can be
either a pure sink flow with radial velocity distribution or a vortex flow as was
assumed by Ackerberg.

In view of these difficulties, it appears best to solve the two dimensional
case first.  Here the compiete sclutions of the Navier-Stokes equations are
known and the calculations can be performed in detail. The three dimensional
case will be tzken up later, in Section 3, using the above results for guidance.

2. ViscOUS ENERGY DISSIPATION IN Two DIMENSIONAL WEDGE FLOW

The complete solulion of the Navier-Siokes equations for the wedge flow
is knowr® 7 ¥ and these can be used to calculate the viscous energy in full
detail for the two d mensional flow. Hence the present section is concerned
with the two dimensional analysis.

We shall first summarize the wedge flow solutions needed for our
calculations. Using (r. 6, z) coordinate system, the z-axis being along the
line of interseciion of the two planes, we can write the rad.al flow solution

=y F(D)/r, “B"’O . [2]
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where » is the kinematic viscosity of the liquid. The (oial volume flux
per unit distance perpendicuiar to the flow plane is equal to

P I
O Jg u, rd@=y j F(8)ad 3]
- ~a
where a is the semi-wedge angle.  (Sec Fig. 1a).
The conditions at the walls 0= 4 o give
F(a)=F(—a)=0 {4

(n,6¢)
FiG. la FiG. 12
Two dimensiomal wedge flow, (r, 8, 2) co-ordinate Geometry of an axi-symmetric flow.
system. z-axis is the line of intersection ofthe

iwo planes.

On substitwion of the expressions for #, and u, from (2) in the equations of
motion,
~ (%) Fr= = (1[p) (3 pfar) +v* F'[r°

0= —(1/P) (28/38) = 2'F' )1
&nd eliminating p between the two equations, we get
F*+F* 1 4F+K=0 5]

dF 16}

or @=@/)v T
G2 [(ny(F- 6FI-FHi2

where H and K are the constanis to be evaluated.
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For a convering channel, F»0. Il ¢, eqand eg are the roots of the
cubie cquation
H-3KF-6F2 -F*-0,
then the roots are real when ¢ =0, Ome ze, -
The solution [6] can be wrilten in terms of the elliptical integrals

P\ [N
6= <—r;)dn [( }7—0;>2 Lk } m

or F=2mk?~2) ~ 1]+ 6m?(t -k2)dn~2mb, k) 18]
where m and k are constants to be evaluated. One can introduce R, depending
on the velocity along the axial streamline.

Then
R,=F=e,=urlvy

mE=(1+Rj2)/(1 —2k?). 19]

Insertion of F(d o) =0 yields a transcendental determination of &,

drf(mo, k)=1—R,je; [10}
and hence
. 1242
Srtman 8 = g = (Rj2)) & =] i
For extremely large R, ,
Smx, )l - R EEE -2y ' 112

The value of & cun be found by solving either of the equations [11] or [12].
This value of & can be substituted into the eq. 8] lo determine the velocity
profile.

We use the above solution of the wedge flow problem® 7 % 1o calculate
the viscous dissipation. Since numerical computation is quite involved, we
shall consider some of the limiting cases and evaluate the viscous energy.

2.1 Flows at low Re, small x :
In this case, we get e
F=R(1-0%a%) 13
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the familiar parabolic distribution. The factor R, can be replaced in terms
of the volume flow taite @ by wsing {3]. ie.,

Qiv= [ F(0)d0-4aR,3

Hence the velocity distribution is governed by the equation
= (3Q/4ar) [1 - (8 a)] 14
Then a calculation of viscous energy is straight forward and one gets

3 r2 2 2 1/au 2
- ey SHN 4 M, (R
E<f [ r r7[2(ar) r’+ A {15]

g=-a r=r1

_n @31 1\3(12a%+5)
)T (el

Here 7 is the viscosity of the liquid, (»v=7/#).

For a—0, the geometry approaches that of flow between parallel walls. For

such a case,

arL RL R—a
O e A

where R and @ are the radii as the inlet and outlet of the tube and L its .

length. Then
E=33 Q*L(R+a)[4 R (7

For flow between parallel walls, a--R and we get back the well known
expression'®,
For a typical case of a =6° or w/30 radians.
E= (g Qz/4) [l/l’f—-l/r%] 2700.
22 Flows at large Re; (o RY? large) :
In this case,

F =R, [3 tanh? {(Ry/2)!/ (a —0) +tanh™! ¥/(2/3)} ~2] [18]

where Ry can be found from

O~ [ F(@)ad

_ _ us tanh (V/2Ry) o ] (19
R“[ 22O R) e S e VIR 1
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=Ry2« for large Ry 120

Then the viscous energy dissipation can easily be calculated.
E=7;_Q_2(_1____1_)[0.4383 R 6 _ 6927

) 2 =
4\ r;

«? A afRE &)

For the typical case of a =6°=/30 radian, @ =3 cc/sec, y==1072 C.G.S. units,
Ro=Q/2" a ~ 2377,
E= (4 Q%4) [1[r}—1[+3] 1957 [22)

As the Re goes on increasing, the flow pattern in the wedge also undergoes a
continuous change. Whereas at low Re, the flow was parabolic, at high Re,
the flow near the axis of the wedge remains almost uniform and the viscous
effects which determine the velocity profile predominate only near the walls.
A part of the viscous dissipation develops in the boundary layer region also.
The angle in which the boundary Iayer occurs is approximately given by
3(w/Ur' or 3 Ry™H2. The contribution from the boundary layer region also has
been separately calculated and this forms only a fraction of the total dissipation.

The form of the above expression 211 is shghtly different from the
corresponding one at low Re [16]. This is because of the different flow
patterns and the different limiting cases m which the two are applicable.
But for typical values of the parameters, the iwo are of the same order of
magnitude  The details of the flow pattern at small and large Re do have
interesting differences. But the viscous dissipation is the integrated effect
over the whole flow pattern and this apparenily is not greatly altered. Hence
a calculation of viscous energy at low Re can probably be used over a wider
range of Re 10 a good degree of approximation. We may expect a similar
situation in the three dimensional axisymmetric flow also.

2.3 Flow at finite Re, Inertial effects neglected :

The estimation of viscous energy at any specific Re involves 2 good deal
of numerical computation. The values of m and k are to be found by solving
the equations {9] and {111 and then the velociiy profile can be obtained from
the equations [8). From this velocily profile the dissipation energy can be
calculated from the integration of [15]. However it has just now been shown
that the viscous energy is independent of the magnitude of Re to the first
approximation. This seems to imply that we can safely neglect the contribu-
tion from the inertial terms in the equations of motion. Then the equation
determining £ would be from [5]

F"+4F 4 K=0.

Using the conditions  Q=y | F(8)dB, F(+x)=0 4]
-a
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we get
o @ cos20-cosla 25
vy sin2a -2 cos 2
¢ cos28-cos 2ax
Wy Do e 26
or T r sin2a -2 cos 2« el

Then the expression for viscous energy becomes

2 (2a cos 2o —sin 2a)*

2 2

E:LQ.Z (_1____1_> 1200 cos® 2w — 12 cos 2o sin 2a +4 sin 4o + 10 [27]

For small o,

7?1 1\3
g0 (1 1)\3 28
4\ e’ 28]
For o =6° = /30 radians,
2
=121 1\ [28a]
4 P

The thiee different cases of evaluating the viscous energy lead to almost the
same results, namely the equations [16], {21] and [27]. So, as was remarked
earlier, in any practical case, the energy required can be found by using any
one of these. Also the functional form of the energy is very similar to that
m the three dimensional case, as will he shown later.

24 Boundary layer calculutions in a wedge flow :

It 15 not necessary here to go into the deiails of the boundary layer flow
ina wedge, as the solution in no way differs from the full solution obtained
previously at high Re, i.e., {208, One can choose the co-ordinates (x, z),
r-axis along the boundary layer and z perpendicular to it. Then if the
velocity at infinity is w= — U, ({/2), U, being the speed at x=/, then the
solution satisfying the boundary conditions is

I3 1{2
u= n‘l‘L{s tanhzf(ﬁ_’> <i)+ 1.146 | ~2] [29]
X 1\ 2y x ;

This agrees with equation [18] if (z/x) is replaced by (o ~¢). The viscous
energy dissipation is then found by integrating over the boundary layer

thickness, (6 varying from 6 -8 to «, & ~ 3/RY).

Hence
FL2Q0 (11N 3 10029 (0} 6616 [30]
4 2 2 x? | R{l}ll ap R(‘)/"
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which is a fraction of the total dissipation [Eq. 21]. Even though the boundary
layer effecis are important in determining the local conditions of flow, the
energy dissipated in this region is small compared to the total dissipation.

This completes our calculation of the two dismensional problem. W,
shall apply these results to the question of emulsification in a later secticn.

3. VISCoUS INCOMPRESSIBLE Frow INSIDE A CONE

1n order 1o extend the twe dimensional wedge flow calculations to th:
three dimensional case, it becomes necessary to understand the hydrodynamic
details of the flow inside a cone. An attempt along these direclions has
been made by several workers® M 12 Ackerberg? has summarised the
details of the problem and these will be used for the calculation of eneigy in
the present case.
3.1 Stokes region; '

Tn the two dimensional problem of the flow through a wedge, the full
equations of motion are satisfied by a radial flow solution'®. And so a natural
extension would be to look for a radial flow solution inside a cone also.
Harrison® succeeded in obtaining such a solution when the contribution from
the inertial terms is neglected. By an iterative procedure Ackerberg'® was
able to include the inertial terms as successive correction factors. In the
problem we have a steady, axisymmetric converging motion of ad incom-
pressible viscous fluid inside an infinite right circular cone [fig. 1b]. A
spherical polar cocrdinate system (r, 6, ¢) can be used with the velocity
components #,, #, and uy.. Axial symmetry allows us to drop out the ¢ terms.
If the fluid has density P and viscosity 5, (v=7/P). Ackerberg was able to
show taht

=~ A1, (1) + [([E+ - - -]
g =[P {AB A — PP [ AJE+ « o v ] 31

where /) (u) =(1/3) B (s~ B)? (1 +28)
Fa(8)=(1/36) B2 (1~ 1) (2 — B)? (20 — (582 — 3)/ ]
B=3{(1—B)* (1428} {31

E=rp/A, w=cos®, B-=cos a, 2wA =volume flow rate.

The boundary conditions at the wall surface and the volume flow rate
condition have been used. From such a calculation, it can clearly be shown
that Harrison’s solution which consisted only of the f, term described purely
radial flow. The presence of the S Ja» « v+ terms deviated the streamline
from purely radial Slow towards the wall. For the case of a nonnowtonian
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fiuid, it has recently been shown that such a bending of the streamlines
should finally result in a vortex flow near the apex'¥. This has not been
explicitly observed in any uf the experiments so far.

From the expression of the velocity components, the energy of dissi-
pation can be calculated, Retaining only the leading terms, we have

4 B? s 2
PRLLUS 5[(% 1)( Vg ap L ape 3)1
sl 3 15

A3 NE
B/ I - 36,,q ay | 224 ‘)( YAY

BrL Ly 9 42 P 33
24(§g )( B+ p BT ) [33)

The complete expression can be found clsewhere'S.

For small angular cones, & will have to be considerably large for Stokes
fiow to be valid. (Ackerberg showed that if 8-=0.866, ie., «=30°, £z=2
for Stokes assumption to hold). TFor a typical case of BQJ,OSO. B=107,

4Pyt B2/ 1 1
g TR Y L 0.0238) 1 —f .. -y J(—0.0024
o (e ar) om0

Interms of (7, B), eq. [33) can be wrilten as

1T 1)\ 3(488°-982 -~ 468 -23)
E~dnpAl — - )2 !
1 (r; r3) 15(1 - B)2 (1 +28)*
(1 1\ 3(9BP 4582 - T98 +35)
—dmnAY L 34]
M (rg r‘,‘> B =B (I +28) {

If L is the lengib of the cone, R, @ ithe two radii, and if ihe apex angle « Is
small, je. B~1-8, § small, then [34] reduces to

E N_SWLQZ (R2+a‘-'¢Ra) (1--38) [35]
o 3 Rd

Except for the § term, this expression can also be derived by an extension
of the Hagen-Poiseuille flow pattern’®.

32 Flow pattern near the apex of the cone :

The above calculations hold good only in the Stokes region, i.e., regions
of low Re or large £=ry/A. For typical cases of the throughput (27A)
0.1 cefsec, 1 co/see, 10 cc/sec, the assumption requires a minimum distance of
the efffux from the apex to be 3, 30 or 300 cm respectively. For distances
smaller than this, the Stokes assumption is not valid and the results may
deviate considerably.
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Th.s necessitates more detailed calculations to find the flow patters near
the apex of the comne. Here sinee £ is simall, the local Reynolds number
(1j€) will be lacge enough to permit a boundary layer to occur.  Hence two
distinct regions of flow appear—one along the axis of the cone conforming 1
the boundary conditions at the axis and the other along the wall with the
conditions at the wall satisfied. The two flows merge with each other at the
edge of the boundary layer, the thickness of which can be taken as the
viscous length.

For the boundary layer calculations to be valid, the local Re should be
atieast of the order of 10* and for the typical cases of the throughput
mentioned earlier, i.e., 0.1, 1.0, 10.0 cc/sec, r should be less than 0.01, 0.1, or
1 em respectively.  This leaves out a wide region between the Stokes flow
and ihe boundary layer flow, where flow 18 not easy 1o comprehend.

Several more difficultics crep up in an analysis of the core flow and the
boundary layer flow, such as the evaluation of certain constants of integration
In the analcgous case of the two dimensional wedge ffow, the full solutions
of the equations are already availabie and so it is ecasier to extend the calcu-
laticns of viscous dissipation near the efftux by a comparison with the two
dimensional case.

It has been shown in an earlier section that the viscous energy of the
fluid flowmg in a convergent chamnel can be estimated in several Lmmiling
cases, nemely (@) flow at low Re (b) flow at large Re, {(¢) flow at a finite Re
with inertial terms neglected and (d) boundary layer flow. The viscous
energy in the first three cases is nearly the same. The boundary layer flow is
confined to a relatively small volume and so in this region the dissipation is
small compared to that in the ouler regions of the flow. From these resuls,
1T is clear ihat the viscous energy does not, to the first order, depend on the
magnitude of the Re and so any of the lLimiting cases, as in {a) to () can be
used for an estimation of the viscous dissipation

It is quite likely that a similar situation exisis for the three dimensjonal
flow m a cone. Here there are mainly two regions of flow, (&) Stokes flow
region where the Reynolds number is small and (b) the flow near the apex
where the flow pattern is not clearly defined. Of course there 15 the inter-
mediate region beiween these two. The bouandary layer region which is
present, in addition, does not significantly contribute to the viscous energy as
in the iwo dimensional case. The flow pattern near the apex can be either
a radial flow as in the Stokes region or a vortex flow. If we assume it to be
a sink flow with radial sireamlines, then results very similar to those in
Stekes region are obtained.

Although a determination of the complete flow patteen near the point-
appex of the cone is quite complicated, in practice we observe a potential
sink flow Ual/#%  This is because of the finite dimensions of the efflux hole
in homogenisers. ‘
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As was shown previously, the viscous energy does not, to the first order,
depend on the magnitude of the Re and so the expression [34] or [35] can be
used to find the viscous energy dissipation.

4. RESULTS AND Discussion

In this paper, the power required to disperse a liguid as globules in
another liquid is calculated. Because of the increased area of the dispersed
phase, a definite amount of energy is required to overcome these interfacial
forces and this energy increases 1m direct proportion to the throughput of
the disperse phase. But in practice, comparatively larger energies are
required in the dispersion and in fact the energey increases much faster than
the throughput.

The viscous resistance to the flow appears to be ihe dominant factor in
the energy requirements of the dispersion. This contribution has been calcu-
lated, first in the two dumensional wedge flow and then in the axisymmetric
converg:ng flow.

In the iwo dimensional wedge flow, the full solutions of the WNavier-
Stokes equations are available for the cases of low Re, large Re, finite Re with
inertial effects neglected and boundary layer flow. The power required to
overcome the viscous resistance in the boundary layer region is relatively
small as the bondary layer occupies only a fraction of the total volume and
becomes s gmficant at very high Re. The other three cases give nearly thz
samte results probably because the viscous resistance 1s a bulk property and
dees not very much depend on the details of the flow pattern. Hence the
calculared viscous dissipation at low Re is practically the same as the energy
requirement at high Re also. We expect this to be true in three dimensional
case as well.

The viscous dissipation in the flow through an axisymmetric converging
channel s later calculated with the Stokes flow pattern. To a first order of
megnitude, these resulis will be applicable even at high Reynolds mumbers.

The present model gives correct orders of powers required in practical
smulsification. If there are 100 nozzles in parallel, the viscous power required
to emulsify 100 gallons of 1.quid per hour will be~200 HP if a~1 u aad~4
HP if a~10 4. These figures compare very well with the data n mdustrml
practice. The power required for creating new interface amounts to 6 x 1074 HP
fa=1uand 6x10-5 HP if a=10 «.. Also the v'scous power varies as the
square of the throughput showing the predominance of these forces over the
wterfacial forces in industrial machinery. Typical values of the viscous power
equired 10 be overccme are shown in fig. (2) togedher with the industrisl
‘equirements. For a machine like a homogeniser, the geometry of which has
een used in the present calculations, the.agrecment is quite good.
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