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Tllr itispersion qf o w  liquid in the O I I I P Y  us fine gl.~bulrs requires encrzy 
(i) to form the e.itYa intrrjhi ial area nnd (ii) lo overcon~e tlie viscous rtbsisrailci~ 
dririnp the disintegration o f  the liquid into globirles via jets. The interfacial 
oierg. increases in direct proporfio~i ro rhe througfpirt o f  the dis.uorv pliase while 
airieh ia tgc~ r~lerzie: are required to oeerr.ome tire visco~ls dissipntion. The latter 
hos been caiculatedfirst for rhr rwo dimenrioml wedge J ~ O W  in such limiting cayes 
us low Re, high Re, bcunrlary k y e r  flow eti.., arx! the results are later e.rtcnc[ed 
to rliree dimensional axisymmetrir ,flow. If hus been .fou~id that fhr energy o f  
iiscous dis~dipation wries as the ~qual-e of' the througliput and accounts fo, most o f  
tire power consumption in  high speedpractical emulrifiers. There is fi,rourable 
agreement with die industrial data available. 

in  this paper, we wish to d;scbss the role of interfac::.l tcxsion ..r .I 
vkcos:ty in the process of emulsification. Th:: form..ilon -.:' -11 ~:udsio!i 
requires the dispersion of one liquid as fine.drop1ets in another 1iqu.d. Th.s 
means that the surface area of the liquid to be dispersed has to be ':;creased 
enormously and the process requires a definite smsnnt of ene-gy. I1 I.& beeii 
customary to cons;der this as the role external energy required .o farm an 
ernuis i~nl '~ .  But in practice amounts of energy many orders of inagnitude 
larger than this are needed to form emulsions in ordinary devices, llke homo- 
genisers. I t  appears likely that in high speed practical emuIs:fiers, viscous 
energy terms come into play prominently3 and so it is necessary to study in 
detall the two typzs of cnergy consumption, namely, surface energy and viscous 
energy. 

Frorn a knowledge of the size of the drops and-the surface forces, the 
wpdce energy could easily be calculated. I f  rhe bulk liquid is divided into 
dropleis of radius a, the work done per unit time agahst >he interfacial 
lension 7 ,  when an amount Q of the bulk phase is dispersed per unlt time, is 

W,-3 QYia.  111 



an jilustrction, we may consider thc powzr required to ernuis'r' I 
f.ic;al terisior~ a l dync/cm) :I[ 3 rate of about 100 

droplet'; sl-e aboul I p in r:tdlus, nboui 5 .  13.9'. would be requirrd 
to cre:l,e the new i n t e r f ~ ~ c c .  Bnr in practice, a homogeniser of this capacity 
\,ron!d consuvle :,bout 1 R.P , wbic11 is severnl order of magnitudes larger, 
~ 1 ~ 0  cq [ I ,  x g g ~ s t s  that ths power requirement ic proportiond to the 
rstluIsion tilroug~up~n; w h i e  i n  prdctice the power increases at a somewhat 
(aster r:iic4, w m e  higher powcr of Q .  

~n sn earlier papzlJ, consider;rrg :i very simplified ruodcl of emulsification 
system, applicable to  liornogeuiaers, we wero able to  show Lhar substsnt~a[l~ 
large amounts of power are <pent as  viscous dissipation and that this power 
consunlptior~ increases as eZ. But these calcularions which werc j u s l  .n 
extension of Hagen-Poiseuil!e lypz of solutions, had the obvious !imiLotio~~ of 
assuming Larn:nar flow. T i  is the purposz of  this paper to  give a more 
reliable eccirnate of the ~ i s c o u s  dissipation in convergent Iiows. 

i\ direct calculation oS the viscous energy cf 3 Buid flowing through a 
converging axisynulneiric nozzle is q ~ l i t e  difficult because of the following 
reasons. F~rs t ly  rhe flow will have to  be studied in szveral distinct regLons 
like far off from the apex, near the apex, :*long the wall surface elc., wherein 
the different hydrodynamic approxin~at~ons  o r  low Rzynolds number. h~gh 
Reynolds numbzr, Boundsry layer flow etc. ,  will havz t o  be used. The11 the 
viscons cnerpy in each such flow will have to  be calculated to find tile total 
resistance to the Row. Because all  these region5 ovcrlsp on each other, 
matching of the solutions causes certain d;fficultics. Secondiy the flow near 
:he apex of the cone is not clearly known. Hence the flow pattern will have 
to be arbitrarily assumed in order t o  make  he calculation. This con he 
either a pure sink Bow with radial velocity diqtribution or a vortex flow as was 
assun~cd by Ackz~ berg. 

In view of these difficulties, it appears best t o  solve the two dimensional 
case first. Here the  compiete solutions o r  the Wavier-Stokes cquations are 
known,and the calculations can be performed in detail. The three dimensional 
case will be teken up  later, in Section 3, using the above results for guidance. 

The completc soluiion of the Navier-Stokes equations for the wedge flow 
is knowiL6' " and these can be used to calculate the viscous energy in full 
detail for the two dmensional flow. Hence the present section is concerned 
with the two dimensional analysis. 

We shall first su~nnlarize the wedge flow solutior~s needed for our 
calculations. Using (r .  0, I) coordinate s y s t ~ n ~ ,  the z-axis being along the 
line of interseciion of the two planes, wc can write the r a d ~ n l  flow solution 



where a. is the  s z m i - ~ c d g e  angle. (Sec ]Fig. la). 

The conditions at t h e  walls 0 -  & oc give 

Fja)-F(~-a)-0 f j j  

i 1 

FIG. l a  FG. lb  
Two dirnenriornal wedge Bow, (r. 0 ,  z)  co-nrdinatz Geometry of an axi-symmetric flow. 

System. z-axis is t h e  line of  intersection ofthe 
IWO planes. 

end ehmmating p between the two equations, we get 

F "  F 2  4F K - 0  

where H nnd K arc thc constmts to be evaluated. 



The solution [ 6 ]  can be wrlilcn in terms of the sliipricdl intcgrais 

where m and k are constants to be evaluated. One can introduce R, depending 
on the velocity along the axial streamline. 

Then 
R,=F=e,=-u,r.,'v 

m2=(I+R,/2)/(1 -2k2) .  [91 

Insertion of F(& a)  SO yields a transcendental determination of k, 

rln2(m r . k )  - 1 - RJe, [lo] 

and hsncc 

For extremzly large R, , 

S)r2(nr u ,  I;) = ( I  -2k' ) /k2(k2-2)  [I21 

The value of k can be found by solving eithsr of the equstions [ I l l  or [121. 
This value of k can be substituted into the eq. 181 LO determine the velocity 
profile. 

We use the above solution of the wedgz flow problem6, '. "0 calct~iate 
the viscous dissipation. Since numerical computation is quire involved, we 
shall consider some of the limiting cases and evaluate the vkcous energy. 

2.1 Flows izr low Re, snmll a : 

In lhis case, vie get . .  



rhe familiar parabolic distribution. The pdctor R, can be replaced in terms 
of rhe volume flow rale & by us~ng [3], i . ~ . ,  

Ci 

& / v =  $ F(8) d 0 = 4 w R O / 3  
- e 

Hence the velocity distribution is governed by the equation 

u,= ( 3 Q j 4 f f r )  [ I  - (OP/a')]  (14) 

Then a calculation of viscous energy is straight forward and one gets 

Here 7 is the viscosity of the liquid, ( p = ? / P ) .  

For a-0, the geometry approaches that of flow between parallel walls. For 
such a case, 

where R and a are the radii as the inlet and outlet of the tube and L i ts .  
length. Then 

E-- 3 q Q2 L ( R  t -  a ) /4  R Z 2  [I71 

For flow between parallel walls, a--R and we get back the well known 
expressionlo. 

For a typical case of cu = 6" or w / 3 0  radians. 

E -  (7 Q2/4) [I/,,: -1lr:l 2700. 

2.2 Flows at large Re ; ( a  R:l2 large) : 

In ?his case, 

F-R, [3 tanhz { ( ~ ~ 1 2 ) ~ "  ( a  - 8 )  +tanh-' 2/(2/3)1 - 2 1  [ ls ]  

where Ro can be found from 

Q / v  = f F ( @ d o  
- z  

tanh (d2R, j  or 2 a - (2 /R, )1J2 --- - 
1 +O.815 tanh ( d 2 ~ A , ) a  



=j?,2a for large R, D O 1  

Then the viscous energy dissipation can easily be calculated. 

PlI 

For rhe typical case of a=6" = n/30 radian, Q = 5  cc/sec, u;= C.G.S. units, 

R, = 012 v a e 2377, 

E== (q Q2/4) [Ijr: -- l / r : ]  1957 P I  

As rile Re goes on increasing, tila iiow pattern in the wedge also undergoes a 
continuous change. Whereas at lo~v Re, the flow was parabolic, at h~gh  Re, 
the flow noar the as?s of the wedge remains almost uniform and the viscous 
effects which detrrrn;ne the velocity prolili: predornlnate only near the walls. 
A part of rhe viscous dissipation develops ;n the boundary layer region also. 
The angle i n  which the boundary I:>yzi occurs is approximately given by 
3(V/Ur)1:L  or 3 Ro- l i2 .  T ~ C  contnbuiion froin the boundary layer region alsohas 
been separately calculated and this forms only a fraction of the total diss~pation. 

The form of the above expression 1211 is sl~ghtly different from the 
corresponding one at low Re [16]. This is because of the different flow 
patterns and the different limiting cases 111 which the two are applicable. 
But for typical values of the parameters, the two are of the samo order of 
magnitude The details of the flow pattern a t  small and large Re do have 
interesting differences. But the viscous dissipation is the integrated effect 
over the whole flow pattern and this apparenJy is not greatly altered. Hence 
a calculation of viscous energy at low Re can probably be used over a wider 
range of Re to a good degree of approxim.ition. We n n y  expect a silnilsr 
situation in the three dimensioiial ax~symmztric flow also. 

The estimation of viscous energy at any spec~fic Re iilvolves 2 good deal 
of numerical computation. The values of m and k are to be found by solving 
the equations [9] and [ l l l  and then the velociiy profile can be obtained from 
the equations [S]. From this velocity profile the dissipation energy can be 
calculated from the integration of [15]. However it has just now been shown 
that the viscous energy Is independent of the magnitude of Re to the first 
approximation. This seems to imply that we can safely neglect the contribu- 
tion from ths  inertial terms in the equations of motion. Then the equation 
determ;ning F would be Crom [5] 



we get 
& cos 28 --- coa 2 a F = ..... 
v s i n 2 w - 2 a  c o s 2 a  

Q c o s 2 8 - c o s 2 u  
21 = - 
' P s m  2 a  -2oc cos 2oc 

Then the expressiori for viscous energy becomes 

lia cos'2r.i -12cos 2s s in2u : i -q  sin 4ar +lOa  - -  
(2a cos 2a - s i n 2 ~ ) ~  

[271 

For srnnll oi, 

For 31 -= 6" - ri/30 radians, 

The th~ee different casts 01 evaluating (he viscous cnergy lead to almost the 
same rcsulrs, riarnely the equations [16], [21] and [27].  So, as was remarked 
earlier, in any practical case, the cnergy required can he found by using any 
one of these. Also the functional form of the energy is very similar ro that 
In the rhrce dimensional case, as will he shown later. 

It 1s nor necessary here to go inlo the dctails of the bounda~y layer flow 
in a wedge, as the solution in no way differs from the full solution obtained 
~reviously at high Re, i .e . ,  12OjU. Onc can choose the co-ordinates (x, z), 

&-axis along the boundary layer and z perpendicular lo i t .  Then if the 
\relocity a t  infinity is u-= - [Io (//A), Lr0 being the speed at x = l ,  then the 
miution satisfying the boundary conditions i s  

This agrees with equation [IS]  if (z1.r) is replaced by ( a  - 8 ) .  The viscous 
energy d;ss;pation is the17 found by integra~ing over the boundary layer 
Ihickness, (0 varying from 0 - 8' to oc, 8' - 3/R& 
Hence 



is a fraction of lhc total dissipation [Eq. 211. Even though the boundary 
layer effects are in~portsnt in determining the local conditions of flow, the 
energy dissipated in this region is smaii compared 1 ,~ the total dissipation. 

This completes our calcu8ation of the two disniensional problem. We 
shall apply these results t o  the question of emulsificalion in a laler sectken. 

In order to exielid the two dimensional wcdge Aow caiculalions to th: 
three dilnensional case. it hecoines necessary to understand the hydrodynamic 
detaijs of the flow inside a cone. An attempt along these direclions has 
been made by several workerb6- 'la 12. ~cl ierberg"  has summarised rhe 
details of the problem and these wili be used for the calculation of eneigy in 
the present case. 

3.1 Stokes region ; 

in  the two dimensional problem of the Row through a wedge, the full 
equations of motion are satisfied by a radial flow solution". And so a natuiai 
extension would be to look for a radial Row solution inside a cone also. 
Harrison6 succeeded in obtaining such a solution when the contribution from 
the inertial terms is neglected. .By an iterative procedure Ackerherg" was 
able to include the inertial terms as successive correct& factors. In the 
problem we have a steady, axisymmetric converging motion o i  an incam- 
pressible viscous flnid inside an infinitc right circular cone [fig. lb]. A 
spherical polar coordinate system (r, 8, @) can be used with the velocity 
components u,, uB and u*. .  Axial symmetry allows us to drop out thc @ terms. 
If the fluid has density P and viscosity 7 ,  ( , ,=?/P) .  Ackerberg was able to 
show taht 

11,- - (v2 /At2)  [fi ( P )  <- fl '( ,U)/Ci- - . -1 

I h e  boundary conditions at the wall surfiace and the volume Bow rate 
condition have been used. From such a calculation, it can clearly he shown 
that Harrison's solution which consisted only of the S, tern described purely 
radial flew. The presence of the St, f2, . . terms deviated the streamline 
from purely radial flow towards the wall. For the case of a ~lonncwtonian 



fluid, it has recently been shown that such a bending of the streamlines 
should finally resuit in a vortcx flow ncar the apexw. This has co t  been 
expfiylicitly observed in any ~f t h e  experin~cnts so Far. 

From the exprzssion of the velocity components, the energy of dissi- 
pation can be cnicttlaled. Retaining only the leading terms, we have 

The complete expression can be found clsewhereSL. 

For small angular cones, f will have to be considerably large for Siokes 
flow to be valid. (Ackerbarg showed that if p:-0.866, ie., a =30°, c s 2  
tbr Stokes assumplion to hold). For 3 typical case of Pa0.90.  8=:107, 

In terms of ( r ,  p), eq. [33] L.dn be written as 

If L is the length or the cone, R, o the two r ad~ i ,  and i f  the apex angle a !s 
small, ie. b'z 1 - 8, 8 small, then [34] reduces to 

Except for the 6 term, this expression can also be derived by an extension 
of the Hagen-Poiseuille flow paiternI5. 

3.2 Flo~v pattern near $he open of the cone : 

The above calculations hold good only in the Stokes region, id . ,  regions 
of !OW Re or large f = r y / ~ .  For typical cases of the throughput @%A) 
0.1 cc/sec, 1 cc/sec, 10 cc/sec, the assumption requires a minimum distance of 
the efflux from the apex to be 3, 30 or 300 cm respectively. For distances 
swdller than this, the Stokes assumption is not vnlid and the remlts may 
(kviale cunsider3bty. 



1-1:.s neccssit:itec more detailed ca l cbb l~o i l s  LLI find the fiow pattern 
tile of the cone. lizrt. s i ~ ~ c e  f is small. :he local Reynolds numbcr 
1115) w;li he large enough .lo permit a bs-rundary Layer to occur. Hence two 
distincr regions of Row appcar-one along the  axis of the cone conf,;;;rmlng ro 
rhc buundary conditions at the axis and the  otlicr aicnp the wall wit11 the 
cond;tioi~s a t  the wall setisfied. The two flows merge with each othrr at the 
edge of the boui-idary layer, rlie thickness of which can be raken as the 
\ iscons lengtlt. 

For the boundary layer caicizlalior?$ LO be vzlrd, :he local Re should be 
atleast i'F the order of 102 arid for the lypical cases of the lhroughpui 
mentlonzd earlier, i . e . ,  O.1, 1.0, 10.9 cc/sec, r should be less than 0.01, 0.1, or 
1 cni rcspcctively. This lcavcs out a wide r c g ~ o n  belweer: the Stokes flou 
arid ~11e bouldary layer Ilow, where flow I S  no: easy Lo comprehend. 

Several mure diRiculliw crop up in an  liilslysis o f  the c:xe flow and the 
boundary kye r  flow, such ils the evaluation of cei-rain comtants of integralion 
I n  the a n a l c ~ o u s  case of the two diinensional wedge fiaw, the full solutions 
of  tlie cqu:lL;ons are alrehdy available and so i i  is easier to cxtznd the calcu- 
laticns of viscous diss;pation near the efflux by ,I c o r n p a r ~ m  wiih thz two 
dhaensional case. 

It has been shown in an earlier section that the viscous energy of the 
fluid flowing in a convergent channel call be estimated in several 1m;iing 
cases, nemely (a) flow at  low Re (b)  flow at  large Re. (c) flow a: a h i r e  Re 
with ineni i l  terms neglected and (61) boundary layer flow. The viscous 
energy in tLe first three cases is nearly the same. The boundary layer flow is 
confined to 3 relatively small volume and so in this region  he dissipation is 
small compared to  that in the outer regions oi' !he Aow. From these results. 
Ir is clear that the  viscous energy does not, to the first order, depend on the 
magnitude of the Re and so any of the limiting cases, as  in (a )  to (4 can be 
used for an estimation of ihc viscous dissipation 

It is quite likely that a similar siiuation exksis For ?he three d;mensional 
flow ~n a cone. Here there are mainly two rcgions of flow, (u) Stokes flow 
r-gion w h z ~ e  the Reynolds number is small and (b) the flow near the apex 
wlxre the flow pattern is not clearly defined. Of course there rs the inter- 
mediate region beiween these two. The boundary layer regLon which is 
present. in addition, does not significantly contrib~ite to the viscous energy as 
ia th.: two din~ensioual case. The flow paitern near the apex ceil be eithcr 
a radml flow as in the Stokes region or a vortex flow. If we assume it to be 
a sink flow wi,~h radial streamlines, then results very 5lm;lar to those in 
Stokes region are ohtaliled. 

Although a detexminution of the complete flow patteen near the point- 
?ppe?t cf the cons is quite complicated, i n  practice we observe a potentid 
sink flow U Y  I /  7'. This is because of the finite dilnensions of thc efflax  hi-‘]^ 
in hcmogeilisers. 



4 s  was shown previously, the viscous energy does not, to the first order, 
depend on the magnitude of the Re and so the expression [34] or [35] can be 
used to find the viscous energy dtssipation. 

4. RESULTS AND DIS~USSION 

In this paper, the power required to disperse a liquid as globules in 
another liquid is calculated. Because of the increased area of the dispersed 
phase, a defimte amount of energy is required to overcome these interfacial 
forces and this energy increases In direct proportion to rhe throughput of 
the disperse phase. But in practice, comparatively 1arge.r energies are 
<equired in the dispersion and in fact the energey increases much faster than 
the throughput. 

The viscous resistance to the flow appears to be ihe dominant factor in 
the energy requirements of the dispersion. This contribution has been calcu- 
lated, first in the two dmensional wedge flow and then in the axisymmetric 
convergmg flow. 

In the two dimensional wedge flow, the full solutions of the Navier- 
Stokes equations are available for the cases of low Re, large Re, finitz Re with 
inertial effects neglected and boundary layer flow. The power required to 
overcone the viscous resistance in the boundary layer region is relatively 
cmall as the bondary layer occupies only a fraction of the total volume and 
becomes s:gn~ficant a t  very high Re. The other thrze cases give nearly ths 
same results probably because the viscous resistance is a bulk property and 
does not very much depend on the details of the flow pattern. Hence the 
calcnlared viscous dissipation at low Re is practically the same as the energy 
requirement a t  high Re also. We expect this to bs true in three din~ensional 
csse as well. 

The viscous dissipation in the flow through an axisymmetric converging 
channel is later calculated with the Stokes flow paltarn. To a first order of 
megnitude, these resu1,s will be applicable even at  high Reynolds nuntbers. 

The present model gives correct orders of powers required in practical 
:muls;fication. If there are 100 nozzles in parallel, the viscous power required 
to emulsify 100 gallons of 1:qu:d per hour will be-200 HP if a-  1 P a a d - a  
HP if a- 10 P. These figures compare very well with the data In industrid 
practice. The power required for dF:eating new interface amounts to 6 x HP 
' f a =  1 i* and 6 x 10-5 HP if a= 13 @. . Also the v'scous power varies as the 
quare of the throughput showing the predominance of these forces over the 
~nterfacial forces in  industrial machinery. Typical values of the V~SCOUS power 
xquired to be overccme are shown in fig. (2) toge~her with the industricl 
'equirements. For  a machine like a homogeniser, the geometry of wlrich has 
Iten used in the present calculations, tpeqreement  is quite good. 



FIG, 2 
Power rwuiroment of emulsifyinp machinery, compared with the calcuhted value 
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