THE OSCHLATIONS OF A SPHEROID ALONG ITS AXIS IN MICROPOLAR FLHMD

By Mrs. Reruka Ravindran
(Departanent of Applied Mathemaitics, Indian Institate of Science, Bangalore-12, India)

[Received: Janiayy 3, 1969]

Abstract

The present paper investigates the nature of the fiow ficta when a spheroid is suspended in a infinitely extending micropolar fluid. This is a sequel to our earlier paper on a similar motion in an elastico-viscous fiuid and was underiaken with a vies to studying the effect of micro rotation on the flow field and to compare the fow behaviour of the above tho flads. The particalar case of a sphere is stualied in aletail.

1 Introduction

The present invesigation is a sequel to our earlier paper on the oscillation of a spheroid along its axis in a non-Newtonian fluid. It was undertaken with a view: (i) to compare the stream function for the flow in the case of a micropolar fluid with that in the case of a non-Newtonian fluid, (ii) to study the nature of microrotation, and (iii) to examine the effect of varying Reynolds number on the flow. We have considered a a spheriod to be suspended in an infinitely extending micropolar fluid, whose constitutive equation was given by Eringen ${ }^{2}$, and we have studied the flow induced when it performs small amplitude oscillations along its axis. The assumption that the amplitude of oscrllation is small is generally the case in any experimental set-up and it introduces much simplification in our calchlations. We are now able to express the stream function in terms of Bessel functions and Legendre polynomials, without the use of complicated spheroidal wave functions ${ }^{3 \cdot 4}$.

2. FORMLLATION OF THE PROBLEM

Let the spheroid be defined by the equation $R=a(1+e \cos 0)$ in a spherical polar coordinate system (R, θ, ϕ) with ongin at a focus and the axis of symmetry of the spheroid as the $\theta=0$ axis. The spheroid ascillates along $\theta-0$ about its mean position. Since the amplitude of oscillation is assumed to be small, we have taken Sookes" approximation to hold at all points within the fluid. Under this approximation, we can lake the
dependence of all velocity components and micro-rition components on time T through a factor $e^{i n T}$, omiting all powirs wide pracucs vir volocay wai micro-rotation components.

The field equations of the micropolar fluids are given by the following partial differential equations:

Continuity equation:

$$
\begin{equation*}
\bar{p} / \Delta t+\nabla \cdot\left(\rho_{\underline{v}}\right)=0 \tag{2.1}
\end{equation*}
$$

Momentum squation:

$$
\begin{align*}
& \left(\lambda_{v}: 2 u_{v} \cdot \kappa_{v}\right) \nabla \nabla \cdot \underline{v}-\left(\mu_{y}+k_{v}\right) \nabla \therefore \nabla \therefore \underline{v}+k_{y} \nabla \cdot \underline{v}-\nabla p \therefore \rho_{f} \\
& \quad=\rho\left[\underline{v} / \partial r-\underline{v} \cdot(\nabla \cdot \underline{v})+\frac{1}{2} \nabla \underline{v}^{2}\right] . \tag{2.2}
\end{align*}
$$

First stress moment equation:
where \underline{v} and ν are the velocity vector and the micro-totaion vector respectively, β the density of the fluid, $\lambda_{p}, \mu_{p}, \kappa_{r}$, are coefficients of viscosity and $\alpha_{n}, \beta_{1}, \gamma_{n}$ are coefficients of gyro-viscosity; f and I give the body force and body couple, respectively; p is the isotropic pressure and the microinertial rotation is given by $\dot{\sigma}_{k}-j \dot{v}_{k}$, where j is a constant on the assumption of micro-isotropy.

Let u, v, w be the physical components of the velocity vector and ν_{r}, ν_{p}, v_{ϕ} those of the micro-rotation vector in the r, θ, ϕ directions, respectively. Then we have

$$
\begin{align*}
& u=u(r, \theta) e^{i n T}, v=v(r, \theta) e^{i n T}, w=0, \\
& \nu_{r}=0, \nu_{\theta}=0, \nu_{\phi}=v_{\phi}(r, \theta) e^{i n T} . \tag{2.4}
\end{align*}
$$

We non-dmensionalise the quantities involved by the relations:

$$
\begin{array}{r}
u=a n \bar{u}, v=a n \bar{v}, \nu_{\phi}=n \overline{v_{\phi}}, \quad p=\rho a^{2} n^{2} \bar{p}, \quad t=n_{1}^{-1} \bar{t}, \quad r=a \bar{r}, \quad n_{2}-\mu_{\nu} a^{2} / \gamma_{\nu} \\
n_{3}=\left(k_{\nu} a^{2} / \lambda_{\nu}\right), j=a^{2} j_{0}, \quad \operatorname{Re}=\rho a^{2} n /\left(\mu_{\nu}+k_{v}\right)=\text { Reynolds number }[2.5]
\end{array}
$$

The non-dimensional form of the equations governing the motion are (on Aropping bars):

$$
\begin{align*}
& \frac{\partial u}{\partial r}+\frac{2 t}{r}+\frac{1}{r} \frac{\partial v}{\partial \theta}+\frac{v \cot \theta}{r}=0, \tag{2.6}\\
& \nabla^{2} \vec{q}-n_{3} /\left(n_{2}+n_{3}\right) \operatorname{curl} \vec{v}-R e \operatorname{grad} p=i \operatorname{Be} \vec{q}, \tag{2.7}
\end{align*}
$$

and

$$
\begin{equation*}
- \text { curl curl }{ }_{p}+n_{3} \operatorname{corl} \vec{q}=\left\{2 n_{3}+i R e j_{0}\left(n_{2}+n_{3}\right)\right\} \overrightarrow{v_{n}} \tag{2,8}
\end{equation*}
$$

where

$$
\begin{equation*}
\vec{q}=u \hat{i}+u \hat{j} \text { and } \quad \vec{p}=v_{p} \hat{\dot{i}} \tag{2.9}
\end{equation*}
$$

$\hat{i}, \hat{j}, \hat{k}$ being the unit vectors in the direction of $\dot{r}, \hat{\theta}, \phi$ increasing respectively.
Eliminating \rightarrow between equations [2.7] and [2.8],
we get the following equation to determine \vec{a} :

$$
\begin{equation*}
\nabla^{4} \vec{q}-a \nabla^{2} \stackrel{\rightharpoonup}{q}+b \vec{q}=c \operatorname{grad} p \tag{2.10}
\end{equation*}
$$

where

$$
\begin{align*}
& a=i R e\left[1+j_{0}\left(n_{2}+n_{3}\right]+\frac{n_{3}\left(2 n_{2}+n_{3}\right)}{n_{2}+n_{3}}\right. \\
& b=\left[2 n_{3}+i R e j_{0}\left(n_{2}+n_{3}\right)\right] i R e, c=i b \tag{2.11}
\end{align*}
$$

Since a and b are constants, we can write [2.10] in the form

$$
\begin{equation*}
\left(\nabla^{2}+h^{2}\right)\left(\nabla^{2}+k^{2}\right) \vec{q}-c \operatorname{grad} p \tag{2.12}
\end{equation*}
$$

where the operators are commutative and

$$
h^{2}=-\left(\frac{a-\sqrt{ }\left(a^{2}-4 b\right)}{2}\right), \quad k^{2}=-\left(\frac{a+\sqrt{ }\left(a^{2}-4 b\right)}{2}\right)
$$

are in gemeral complex quantities.
We define a vector \vec{q}_{1} such that

$$
\begin{equation*}
\vec{q}=\vec{q}_{1}+\left(c / h^{2} k^{2}\right) \operatorname{grad} p \tag{2.13}
\end{equation*}
$$

then, provided $\nabla^{2} p=0$, we have

$$
\begin{equation*}
\left(\nabla^{2}+h^{2}\right)\left(\nabla^{2}+h^{2}\right) \overrightarrow{I_{4}}=0 \tag{2.14}
\end{equation*}
$$

with

$$
\begin{equation*}
\operatorname{div} \vec{q}_{1}=0 \tag{2.15}
\end{equation*}
$$

Lei

$$
\begin{equation*}
\left(\nabla^{2}+k^{2}\right) \vec{q}_{1}=\vec{q}_{2} \tag{2.16}
\end{equation*}
$$

then [2,15] states that

$$
\begin{equation*}
\cdot\left(\nabla^{2}+h^{2}\right)^{-b}=0 \tag{2.17}
\end{equation*}
$$

Choose

$$
\begin{gathered}
\vec{q}_{1}-\vec{q}_{3}+1 /\left(k^{2}-h^{2}\right) \dot{q}_{2} \\
\left(\nabla^{2}+k^{2}\right) \vec{q}_{1}-\left(\nabla^{2}+k^{2}\right) \vec{q}_{3}+\left(\nabla^{2}+k^{2}\right) 1\left(/ k^{2} \cdots h^{2}\right) \vec{q}_{2} \\
=\left(\nabla^{2}+k^{2}\right) \vec{q}_{3}+\left(\nabla^{2}+h^{2}+k^{3}-h^{2}\right) 1 /\left(h^{2}-h^{2}\right) \vec{q}_{2} \\
-\left(\nabla^{2}+k^{2}\right) \vec{q}_{3}+\vec{q}_{2}
\end{gathered}
$$

in virtue of [2.17]. [2.16] implies that

$$
\begin{equation*}
\left(\nabla^{2}+k^{2}\right) \vec{q}_{3}=0 \tag{2.18}
\end{equation*}
$$

\therefore We can write

$$
\begin{equation*}
\vec{\psi}=\left(c^{2} / h^{2} k^{2}\right) \operatorname{grad} p+\vec{q}_{3}: 1 /\left(k^{2}-h^{2}\right) \vec{q}_{2} \tag{2.19}
\end{equation*}
$$

where

$$
\begin{align*}
& \left(\nabla^{2}+h^{2}\right) \vec{q}_{2}=0 \text { and }\left(\nabla^{2}+k^{2}\right) \vec{q}_{3}=0, \tag{2.20}\\
& \operatorname{div}\left[\overrightarrow{q_{3}}-1 /\left(k^{2}-h^{2}\right) \overrightarrow{q_{2}}\right]-0 \text { and } \nabla^{2} p=0 \tag{2.21}
\end{align*}
$$

The solution of the vector wave equation $\left(\nabla^{2}+l^{2}\right) \vec{q}=0$ is expressible in terms of the solution of the scalar wave equation $\left(\nabla^{2}+1^{2}\right) \psi=0$ as follows:
(i) $\vec{q}=\operatorname{grad} \psi$
(ii) $\vec{q}=\operatorname{curl}(\vec{a} \psi)$
where \vec{a} is a constant unit vector.
and
(iii) $\vec{q}=(1 / l)$ curl curl $(\vec{a} \psi)$.

From [2.22], we find that the most suitable form of \vec{q}_{2} and \vec{q}_{3} which are divergence-free and most suited to satisfy the boundary conditions are obtained when \vec{a} is chosen as the constant unit vector along the axis of symmetry, i.e.

$$
\begin{equation*}
\vec{a}=(\cos \theta, \quad-\sin \theta, 0) \tag{2.23}
\end{equation*}
$$

and expression (iii) is raken. We then have

$$
\begin{equation*}
{\overrightarrow{q_{3}}}_{3}=(1 / k) \text { curl curl }\left(\vec{a} \psi_{1}\right), \vec{q}_{2}=(1 / h) \text { curl curl }\left(\vec{a} \vec{\psi}_{2}\right) \tag{2.24}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi_{1}=\sum_{n=0}^{\infty} R_{n}(v) p_{n}(\cos \theta), \psi_{2}=\sum_{n=0}^{\infty} S_{n}(r) p_{n}(\cos \theta) \tag{2.25}
\end{equation*}
$$

$P_{n}(\cos 6)$ being the Legendre polynomial of onder n and

$$
\begin{equation*}
R_{n}(r)=\delta_{n}(k r)^{\pi} f_{n}(k r), S_{n}(r)=\beta_{n}(h r)^{n} f_{n}(h r) \tag{array}
\end{equation*}
$$

where δ_{n} and β_{a} are constants and

$$
\begin{equation*}
f_{\mathrm{sin}}(\xi)=\left(-\frac{1}{\zeta} \frac{d}{d}\right)^{m} \frac{\exp (-i \zeta)}{\zeta} \tag{2.27}
\end{equation*}
$$

The boundary conditions to be satisfied are

$$
\begin{gather*}
u \cos \theta-v \sin \theta-U, u \sin \theta+v \cos \theta=0 \\
u_{\psi}=0 \text { or } r=1+e \cos \theta \tag{2.25}
\end{gather*}
$$

p saisfies the equation $\nabla^{2} p=0$, and we choose

$$
\begin{equation*}
p=\sum_{n=0}^{\infty} \frac{F_{i^{2 n}}}{i^{2+1}} P_{n}(\cos \theta) \tag{2.29}
\end{equation*}
$$

The non-vanishing veiocity and mioro-rotation components are given by the relations

$$
\begin{align*}
& u=\frac{c}{h^{2} k^{2}} \frac{\partial p}{\partial r}-\frac{1}{k r \sin \theta} \frac{1}{r} \frac{\partial}{\partial \theta}\left\{r \sin \theta\left(\psi_{1 r} \sin \theta+\frac{1 / 1 \theta}{} \frac{\cos \theta}{r}\right)\right\} \\
& -\frac{1}{h\left(k^{2} \cdots h^{2}\right) r \sin \theta} \frac{1}{r} \frac{\partial}{\partial \theta}\left(r \sin \theta\left(\phi_{2 r} \sin \theta \frac{\psi_{2 \theta} \cos \theta}{r}\right)\right) \tag{2.30}\\
& y=\frac{c}{l^{2} k^{2}} \frac{1}{r} \frac{\partial p}{\partial \theta}+\frac{1}{k r \sin \theta} \frac{\partial}{\partial r l}\left(r \sin \theta\left(\psi_{1 r} \sin \theta+\frac{\psi_{1} \cos \theta}{r}\right)\right) \\
& +\frac{1}{h\left(k^{2}-h^{2}\right) r \sin \theta} \frac{\partial}{\partial r}\left\{r \sin \theta\left(\psi_{2 r} \sin \theta+\frac{\psi_{2 \theta} \cos \theta}{r}\right)\right\}, \tag{2.31}\\
& y_{k}=\frac{n_{2}+n_{3}}{n_{3}} \frac{1}{\left[2 n_{3}+i \operatorname{Re} j_{0}\left(n_{2}+n_{3}\right)\right]}\left[\left(\frac{n_{3}^{2}}{n_{2}+n_{3}}-i \operatorname{Re}-k^{2}\right)\left(\operatorname{curl}{ }^{-2}\right) \cdot \hat{k}\right. \\
& \left.+\frac{1}{k^{2}-h^{i}}\left(\frac{n_{3}^{2}}{n_{2}+n_{3}}-i R e-h^{2}\right)\left(\operatorname{curl} \dot{q}_{2}\right) \cdot \hat{k}\right] \tag{2.32}
\end{align*}
$$

Substituting for p, ψ_{1} and ψ_{2} from [2.29] and [2.25] in [2.30]-[2.32] and thereafter in [2.28], we get three boundary conditions to be satisfied on $r=1+e \cos \theta$. These relations can be expanded in powers of $e \cos \theta(e \ll 1)$, so that we have

$$
\begin{aligned}
& K_{0}\left(F_{j}, \delta_{i}, \beta_{k k}\right)+K_{1}\left(F_{\mathrm{j}}, \delta_{j}, \beta_{k}\right) \cos \theta+K_{2}\left(F_{j}, \delta_{1}, \beta_{k}\right) \cos ^{2} \theta_{+} \cdots=U, \\
& L_{0}\left(F_{j}, \delta_{i}, \beta_{k}\right)+L_{1}\left(F_{j}, \delta_{j}, \beta_{k j}\right) \cos \theta+L_{2}\left(F_{j}, \delta_{i}, \beta_{k}\right) \cos ^{2} \theta_{+} \cdots=0 \\
& M_{0}\left(F_{j}, \delta_{i}, \beta_{k i}\right)+M_{1}\left(F_{j}, \delta_{j}, \beta_{k}\right) \cos \theta+M_{2}\left(F_{j} \delta_{i}, \beta_{k}\right) \cos ^{2} \theta_{+} \cdots=0
\end{aligned}
$$

This gives a triple infinity of equations in the triple infinity of unknowns

$$
F_{j}, \delta_{i}, \beta_{k} ; i, j, k,--1,2,3, \ldots
$$

Namely,

$$
\begin{align*}
& \mathrm{K}_{0}=U, \mathrm{~K}_{1}-0, \mathrm{~K}_{2}=0, \cdots, \\
& L_{0}=L_{\mathrm{B}}=L_{2}=\cdots=0 \\
& M_{0}=M_{1}=M_{2}=\cdots=0 \tag{2.33}
\end{align*}
$$

We have not calculated the actual expression for $F_{i}, \delta_{1}, \beta_{f}$ in the general case as they are extremely complicaled.

3. Particular Cases

Case (i): $e=0$, a sphere
We choose in this case

$$
\not \psi_{1}=\delta_{0} f_{0}(k r), \psi_{2}=\beta_{0} f_{0}(h r) \text { and } p=F_{1} \cos \theta / r^{2}
$$

u, v and ν_{ϕ} are given by

$$
\begin{align*}
u= & -\frac{2}{r^{3}} F_{1} \cos \theta \frac{c}{h^{2} k^{2}}-\frac{\delta_{0} 2 \cos \theta}{k r} \frac{d}{d r} f_{0}(k r)-\frac{\beta_{0}}{h\left(k^{2}-h^{2}\right)} \frac{2 \cos \theta}{r} \frac{d}{d r} f_{0}(h r), \\
v= & -\frac{1}{r^{3}} F_{1} \sin \theta \frac{c}{h^{2} k^{2}}+\frac{\delta_{0}}{r} \cdot \frac{\sin \theta}{k}\left(\frac{d^{2}}{d^{2}} f_{0}(k r)+\frac{1}{r} \frac{d}{d r} f_{0}(k r)\right) \\
& +\frac{\beta_{0} \sin \theta}{h\left(k^{2}-h^{2}\right)}\left(\frac{d^{2}}{d r^{2}} f_{0}(h r)+\frac{1}{r} \frac{d}{d r} f_{0}(h r)\right) . \tag{3.3}
\end{align*}
$$

and

$$
\begin{align*}
v_{\phi}= & \frac{n_{2}+n_{3}}{n_{3}} \cdot \frac{1}{2 n_{3}+i R e j_{0}\left(n_{2}+n_{3}\right)}\left[(\frac { n _ { 3 } ^ { 2 } } { n _ { 2 } + n _ { 3 } } - i R e - k ^ { 2 }) \frac { \delta _ { 0 } } { k r ^ { 2 } } \left\{r \frac{a^{3}}{d r^{3}} f_{0}(k r)\right.\right. \\
& \left.+2 \frac{d^{2}}{d r^{2}} f_{0}(k r)-\frac{2}{r} \frac{d}{d r} f_{0}(k r)\right\}+\frac{1}{k^{2}-h^{2}}\left(\frac{n_{3}^{2}}{n_{2}+n_{3}}-i R e-h^{2}\right) \frac{\beta_{0}}{h r^{2}} \\
& \left.\times\left\{r \frac{d^{3}}{d r^{3}} f_{0}(h r)+2 \frac{d^{2}}{d h^{2}} f_{0}(h r)-\frac{2}{r} \frac{d}{d r} f_{0}(h r)\right\}\right] \tag{3.4}
\end{align*}
$$

The boundary conditions to be satisfied are

$$
\begin{equation*}
u \cos \theta-y \sin \theta-\theta, \quad \psi \sin \theta+a \cos \theta-0, \quad y=0 \text { on } r=4 \tag{3~s}
\end{equation*}
$$

Using recurrence relations

$$
f_{0}(b)-(1 / b) f_{0}(b)=b^{2} f_{2}(b)
$$

nnd

$$
f_{0}^{\prime \prime}(\zeta):(l) f_{0}^{\prime}(\zeta)--f_{0}(\zeta)
$$

we find that the boundary conditions are satisfied, if

$$
\begin{gather*}
\frac{2}{3} \delta_{0} k f_{0}(k): \frac{2}{3} \frac{\beta_{0} /}{k^{2} \cdots h^{2}} f_{0}(h)-k \\
3 c F_{1}-\delta_{0} k^{3} f_{2}(k) \cdots \frac{\beta_{0} h^{3} f_{2}(h)}{h^{2}-h^{2}}=-0 \\
h^{2} h^{2} \tag{3.6}\\
-\delta_{0} h^{2}\left(\frac{n_{3}^{2}}{n_{2}-n_{3}}-i R e-k^{2}\right) f_{1}(k)-\frac{\beta_{0} h^{2}}{k^{2}-h^{2}}\left(\frac{H_{3}^{3}}{n_{3}-r_{3}}-i R e-h^{2}\right) f_{1}(h)=0 .
\end{gather*}
$$

Solving for $\delta_{6}, \beta_{3}, F_{1}$, we have

$$
\begin{align*}
& \delta_{0}=\frac{3}{2} \frac{U}{k f_{0}} \frac{B_{0}}{(k) B} \quad \frac{B_{0}}{k^{2}-h^{2}} \cdots \frac{3}{2} \frac{k}{h^{2}} \frac{U A}{f_{0}(k) B^{2}} \\
& \imath_{3} F_{3}-\frac{1}{2} \frac{U k}{B f_{0}(h)}\left[k f_{2}(k)-A h f_{2}(h)\right], \tag{3.7}
\end{align*}
$$

Where

$$
B=1 \frac{k}{h} A \frac{f_{0}(h)}{f_{0}(A)}
$$

and

$$
\begin{equation*}
A-\frac{\left[n_{3}^{2} /\left(n_{2}\right.\right.}{\left.\left[n_{3}^{2} /\left(n_{2}, r_{3}\right)-i R e-i R e-h^{2}\right) f_{1}(k)\right]} \tag{3.K}
\end{equation*}
$$

Case 2: Spheroid with small ellipticity $0<e \lll 1$:
For a spheroid with small ellipticity, we take the zeroth order approximation to p, ψ_{1} and ψ_{2} to be the same as that in the case of the sphere and further consider terms of order e, neglecting terms of order e^{2} and above. We choose

$$
\begin{aligned}
& p=\frac{F_{1} \cos \theta}{r^{2}}+e\left[\frac{F_{0}}{r}+F_{2} \cdot \frac{3 \cos ^{2} \theta-1}{2 r^{3}}\right] \\
& \psi_{1}-\delta_{0} f_{0}(k r) ; e \delta_{1} f_{1}(k r) k r \cos \theta
\end{aligned}
$$

and

$$
\psi_{2}=\beta_{0} f_{0}(h r)+e \beta_{1} \hat{f_{1}}(h r) \operatorname{lir} \cos \theta
$$

Expression for μ, v and v_{y} are found using [2.30]-[2.32]. The boundary conditions [2.28] will be satisied if

$$
\begin{aligned}
& \frac{2}{3} \delta_{0} k f_{0}(k)+\frac{2}{3} \frac{\beta_{0} h}{k^{2}-h^{2}} f_{0}(h)=U, \\
& \frac{3 F_{1} c}{h^{2} k^{2}}-\delta_{0} k^{3} f_{2}(k)-\frac{\beta_{0}}{k^{2}-h^{2}} h^{3} f_{2}(h)=0, \\
& \frac{c}{h^{2} k^{2}}\left(-F_{0}+\frac{3 F_{2}}{2}\right)+\delta_{1} k f_{1}^{\prime}(k)+\beta_{1} \frac{h f_{1}^{\prime}(h)}{k^{2}-h^{2}}=0 \\
& \frac{e}{h^{2} k^{2}}\left(9 F_{1}-\frac{15 F_{2}}{2}\right)+\delta_{0} k^{3}\left[2 f_{2}(k)+k f_{2}^{\prime}(k)\right]+\delta_{1} k\left[k f_{1}^{\prime \prime}(k)-f_{2}^{\prime}(k)\right] \\
& +\frac{\beta_{0} h^{3}}{k^{2}-h^{2}}\left[2 f_{2}(h)+h f_{2}^{\prime}(h)\right]+\frac{\beta_{1} h}{k^{2}-h^{2}}\left[h f_{1}^{\prime \prime}(h)-f_{1}^{\prime}(h)\right]=0, \\
& \frac{c}{h^{2} k^{2}}\left(-3 F_{1}-F_{0}+\frac{9}{2} F_{2}\right)-\frac{\delta_{0} k^{3}}{3}\left[2 f_{2}(k)+k f_{2}^{\prime}(k)\right]+\frac{2}{3} \delta_{0} k^{2} f_{0}^{\prime}(k) \\
& -\delta_{1} k\left[k f_{1}^{\prime \prime}(k) \div f_{1}^{\prime}(k)\right]-\frac{\beta_{0} h^{3}}{3}\left[2 f_{2}(h)+h f_{2}^{\prime}(h)\right]+\frac{2}{3} \frac{h^{2} \beta_{0}}{k^{2}-h^{2}} f_{0}^{\prime}(h) \\
& -\frac{\beta_{1} h}{k^{2}-h^{2}}\left[h_{1}^{\prime \prime}(h)+f_{i}^{\prime}(h)\right]=0, \\
& \left(\frac{n_{3}^{2}}{n_{2}+n_{3}}-i \operatorname{Re}-k^{2}\right) \delta_{0} k^{2} f_{1}(k)+\frac{1}{k^{2}-h^{2}}\left(\frac{n_{3}^{2}}{n_{2}+n_{3}}-i \operatorname{Re}-h^{2}\right) \beta_{0} h^{2} f_{1}(h)=0, \\
& \left(\frac{n_{3}^{2}}{n_{2}+n_{3}}-i R e-k^{2}\right)\left[\delta_{0} k^{3} f_{1}^{\prime}(k)+\delta_{1} k^{3} f_{1}^{\prime \prime \prime}(k)+4 k^{2} f_{1}^{\prime \prime}(k)-4 k f_{i}^{\prime}(k)\right] \\
& +\frac{1}{k^{2}-h^{2}}\left(\frac{n_{3}^{2}}{n_{2}+n_{3}}-i \operatorname{Re}-h^{2}\right)\left[\beta_{0} h^{3} f_{1}^{\prime}(h)+\beta_{1} h^{3} f_{i}^{\prime \prime \prime}(h)+4 h^{2} f_{1}^{\prime \prime}(h)\right. \\
& \left.-4 h f_{1}^{\prime}(h)\right]=0
\end{aligned}
$$

These seven equations have to be solved for the seven unknowns $\delta_{0}, F_{1}, \beta_{0}$; $\delta_{1}, \beta_{1}, F_{0}, F_{2}$. The expressions for $\delta_{0}, F_{1}, \beta_{0}$ are the same as in the case of the sphere, while $\delta_{1}, \beta_{1}, F_{0}, F_{2}$ specify the change in the velocity field and micro-rotation due to the ellipticity of the spheroid.

4 Disciscian of ine Rtshita

We have studied in detail the stream funetion and microwotation in case (i) and have compared the results with those obtained in referesence 1 . We can define a stram function ψ for the motion by the relations

$$
\begin{equation*}
w \cdots \frac{1}{r^{2} \sin \theta} \frac{\partial \varphi}{\partial \theta} \cdot \psi-\cdots \sin \theta \hat{\theta} \tag{4.1}
\end{equation*}
$$

Then

$$
\begin{gathered}
\Psi=\frac{U \sin ^{2} \theta}{2 r B}\left[\left(-1+\frac{3 i}{k} \cdot \frac{3}{k^{2}}\right)-3 r^{2}\left(\frac{i}{k r}+\frac{1}{h^{2} r^{2}}\right) \exp [-i k(r-1)]\right] \\
-\frac{U \sin ^{2} \theta}{2 r B} A \frac{k^{2}}{h^{2}} \exp [-i(h-k)]\left[\left(-1+\frac{3 i}{h}+\frac{3}{h^{2}}\right)\right. \\
\left.-3 r^{2}\left(\frac{i}{h r}, \frac{1}{h^{2} r^{2}}\right) \exp [-h(r-1)]\right] .
\end{gathered}
$$

Choosing h and k of the form

$$
h=h_{1}-i h_{2}, k=k_{1}-i h_{2}
$$

where $h_{3}, h_{2}, k_{1}, k_{2}>0$ and U of the form

$$
U_{=a}=\alpha \exp (i t) \text { where } a \text { is real }
$$

$$
\begin{aligned}
& \Psi=-\frac{\alpha \sin ^{2} \theta}{2} \left\lvert\,\left\langle\left(1+\frac{3 k_{2}}{k_{1}^{2}-k_{2}^{2}}-\frac{3\left(k_{1}^{2}-k_{2}^{2}\right)}{\left(k_{1}^{2}+k_{2}^{2}\right)^{2}}\right) \frac{B_{1}}{r}+\left(\frac{3 k_{1}}{k_{1}^{2}-k_{2}^{2}}+\frac{6 k_{1} k_{2}}{\left(k_{1}^{2}+h_{2}^{2}\right)^{2}}\right) \frac{B_{2}}{r}\right.\right. \\
& -3\left[\exp -k_{2}(r-1)\right]\left\{\left(-\frac{h_{2}}{k_{1}^{2}+k_{2}^{2}} \div \frac{k_{1}^{2}-k_{2}^{2}}{r\left(k_{1}^{2}+k_{2}^{2}\right)^{2}}\right) B_{1} \cos k_{1}(r-1)\right. \\
& -\left(\frac{k_{1}}{k_{1}^{2}-k_{2}^{2}}+\frac{2 k_{1} k_{2}}{\left(k_{1}^{2}+k_{2}^{2}\right)^{2} r}\right) B_{2} \cos k_{1}(r-1)+\left(-\frac{k_{2}}{k_{1}^{2}+k_{2}^{2}}+\frac{k_{1}^{2}-k_{2}^{2}}{r\left(k_{1}^{2}+k_{2}^{2}\right)^{2}}\right) x \\
& \left.\therefore B_{2} \sin k_{1}(1-1)+\left(\frac{k_{1}}{k_{1}^{2}-k_{2}^{2}}+\frac{2 k_{1} k_{2}}{r\left(k_{1}^{2}+k_{2}^{2}\right)^{2}}\right) B_{1} \sin k_{1}(r-1)\right\}>\cos t \\
& \therefore\left\langle\left(\frac{3 k_{1}}{k_{1}^{2}+k_{2}^{2}}+\frac{6 k_{1} k_{2}}{\left(k_{1}^{2}+\frac{k_{2}^{2}}{2}\right)^{2}}\right) \frac{B_{1}}{r}-\left(1+\frac{3 k_{2}}{k_{1}^{2}+k_{2}^{2}}-\frac{3\left(k_{1}^{2}-k_{2}^{2}\right)}{\left(k_{1}^{2}+k_{2}^{2}\right)^{2}}\right) \frac{B_{2}}{r}\right. \\
& +3\left[\exp -k_{2}(r-1)\right] \cdot\left\{\left(-\frac{k_{2}}{k_{1}^{2}+k_{2}^{2}}+\frac{k_{1}^{2}-k_{2}^{2}}{r\left(k_{1}^{2}+k_{2}^{2}\right)^{2}}\right) B_{1} \sin k_{1}(r-1)\right.
\end{aligned}
$$

$$
\begin{aligned}
& -\left(\frac{k_{1}}{k_{1}^{2}+k_{2}^{2}}+\begin{array}{c}
2 k_{1} k_{2} \\
\left(k_{1}^{2}+k_{2}^{2}\right)^{2} r
\end{array}\right) B_{2} \sin k_{1}(r-1)-\left(-\frac{k_{2}}{k_{1}^{2} \cdot k_{2}^{2}} \div \frac{k_{1}^{2}-h_{2}^{2}}{r\left(k_{1}^{n}-k_{2}^{3}\right)^{2}}\right) \\
& \left.\left.\because B_{2} \cos k_{1}(r-1)-\left(\frac{k_{1}}{k_{1}^{2}+k_{2}^{2}}+\frac{2 k_{1} k_{2}}{r\left(k_{1}^{2}+k_{2}^{2}\right)^{2}}\right) B_{1} \cos k_{1}(r-1)\right\rangle \sin t\right]-
\end{aligned}
$$

a similar expression where $k_{1}, k_{2}, B_{1}, B_{2}$ are replaced by $h_{1}, h_{2}, C_{1}, C_{2}$ respectively,

$$
1 / B=B_{1}+i B_{2}
$$

and

$$
(A / B)\left(A^{2} / h^{2}\right) \exp [-i(t,-h)]-C_{1} \div i C_{2}
$$

The expression for y_{ϕ} is

$$
\begin{aligned}
& \nu_{4}=\cdot \frac{n_{2}+n_{3}}{n_{3}} \cdot \frac{\left[n_{3}^{2}\left(\left(n_{2}+n_{3}\right)-i R e-k^{2}\right)\right]}{2 n_{3}+i \operatorname{Re} f_{0}\left(n_{2}-i n_{3}\right)} \cdot \frac{3}{2} \frac{U}{r} \cdot \frac{k f_{1}(k)}{f_{0}(k) B}\left[\frac{f_{1}(k r)}{f_{1}(k)}-\frac{f_{1}(h r)}{f_{1}(h)}\right] \\
& =-\frac{1}{r^{4}}\left\langle\frac { \operatorname { e x p } [- k _ { 2 } (r - 1)] } { (1 + k _ { 2 }) ^ { 2 } - k _ { 1 } ^ { 2 } } \left\langle\left\langle K_{1}\left[\left(1+k_{2} r\right)\left(1+k_{2}\right)+k_{1}^{2} r\right]\right.\right.\right. \\
& \left.-K_{2} k_{1}(r-1\rangle \cos k_{1} r-1\right)!\left\langle K_{2}\left[\left(1 \cdots k_{2} r\right)\left(1+k_{2}\right)--k_{1}^{2} r\right]\right. \\
& \left.\left.\therefore K_{1} k_{1}(r-1)\right\rangle \sin k_{1}(r-1) j\right\rangle \cos t \\
& +\frac{1}{r^{4}}\left\langle\frac{\exp \left[-k_{2}(r-1)\right]}{(1}:\left\langle k_{2}\left[\left(1-k_{2} r\right)\left(1+k_{2}\right)-k_{1}^{2} r\right]\right.\right. \\
& \left.\because K_{1} k_{1}(r--1)\right\rangle \cos k_{1}(r-1) \cdots\left\langle K_{1}\left[1+k_{2} r\right)\left(1 ; k_{2}\right)+k_{1}^{0} r\right] \\
& \left.\left.\left.-K_{2} k_{1}(r-1)\right\rangle \sin k_{1}(r-1)\right\}\right\rangle \sin t
\end{aligned}
$$

- a similar expression where k_{1}, k_{2} are replaced by h_{1}, h_{2},
and

$$
K_{1}: i K_{2} \sim \frac{n_{2}+n_{3}}{n_{3}} \cdot \frac{\left(n_{3}^{2} / n_{2}+n_{3}\right)-i R e-k^{2}}{2 n_{3}+i} \cdot \frac{3}{\operatorname{Re} j_{0}\left(n_{2}+n_{3}\right)} \cdot \frac{k f_{1}(k)}{2} \alpha,
$$

Numerical results have been compuled for Reynolds numbers $R e=0.5$, $R e=8$ aud $R e=50$, for a micropolar fluid with $n_{2}=n_{3}=1$. The results in the case of a Newtonian fluid are also given for the above values of the Reynolds number for comparison.

We note the following points:
(1) For large values of the Reynolds number, the magnitude of velocity components in the case of a micropolar flu is are almost identical with those in the case of a Newtonian fluid. As we move away from the sphere l_{1}^{2} and $l \frac{2}{2}$ for a micropolar finid are slightly less than that for a Newtonian fluid, but the decrease is not as marked as in the case of Oldroyd or Rivlin-Ericksen fluids.
(2) The magnitude of the micro-rotation is of the order of 10^{-23} and 10^{-47} at $t=10$ for Reynolds number 8 and 50 respectively. This shows that when the Reynolds number is large, the microrotation is negligibly small at some distance away from the sphere. Even close to the sphere, namely $r=2.5$, the maguitu 'e of the microrotation is of the order of 10^{-6} and 10^{-14} respectively in the above two cases. In effect, a micropolar fluid is ahnosc indistinguishable from a Newionian fluid at large Reynolds numbers. When the characteristic velocity of the fluid is large, the microrotations are suppressed and their effect is hardly percepible.
(3) On the other hand, for small values of the Reynolds number, we notice that the magnitude of the u and v velocities in the case of a micropolar finid differ markedly from those of a Newtonian fluid. Close to the sphere this deviation is prominent, whereas as we move away, the flow becomes more and more Newtonian. We observe that the presence of micro-totations causes the u and v velocities to have a larger magnitude than in the Newtonian case. This is to be compared with that for a general non-Newtonian fluid, where the non-Newtonian normal siresses cause a decrease in the magnitude. The non-Newtonian stresses act in opposition to the forces causing the motion and tend to damp out the disturbance, whereas the micro-rotations act in conjunction, helping the disturbance to grow close to the sphere.

In the case of a spheroid with small ellipticity, the basic nature of flow is the same as in the case of a sphere, suitably modified by terms of order e. A detail study has been made in reference 1 for a non-Newtonian fluid.

5. Acknowledgement

The author is gratefui to Professor P. L. Bhatnagar for suggesting the problem and for his help and guidance throughout the preparation of this paper.

6. References

1. Bhatnagar, P. L. and Renuka Ravindran	\ldots	To be published.	
2. Eringen, A. C.	\ldots	\ldots	Jour. Math. Mech., 1966, 16, 1.
3. Lamb, E.	\ldots	\ldots	Hydrodynamics, Dover Publications, New
4. Buchanan, J.	\ldots	\ldots	York, 1938.

			l_{1}^{2}	$\tan \epsilon_{1}$	l_{2}^{2}	Lan ϵ_{2}	l_{3}^{2}	$\tan \epsilon_{3}$
$\mathrm{Re}=0.5$	Micropolar	25	0171675	0.470798	$0.237843 \cdot 10^{-1}$	37.373672	0.689634×10^{-3}	-5.347334
		5.0	. 874372×10^{-2}	1.723066	$.294976 \times 10^{-3}$	-. 188333	. $984387 \cdot 10^{-6}$. 671224
		10.0	. $101553: 10^{-3}$	3.983673	$.356075: 10^{-4}$	9.067033	$.423822 \cdot 10^{-10}$	1.521945
	Newtonian	2.5	. 141639	. 278212	. 179040×10^{-1}	5.673047		
		5.0	$.798036 \times 10^{-2}$	1.122190	. 218542×10^{-2}	$-.076605$	\ldots	\ldots
		10.0	. 386353 - 10^{-4}	2.346893	$.316925 \times 10^{-4}$	2.538100		
$\mathbf{R e}=8$	Micropolar	2.5	. $199185: 10^{-1}$. 665878	. $890220 \cdot 10^{-2}$. 424547	.746011 $\because 10^{-6}$	-1.041784
		5.0	$.275448 \times 10^{-3}$. 649121	$.685195: 10^{-4}$. 639597	$.758509 \cdot 10^{-12}$	-2.016067
		10.0	$.430215 \times 10^{-5}$. 649784	. 107548×10^{-5}	. 649784	$.234463 \div 10^{-23}$	59.042895
	Newtonian	2.5	$.202673 \times 10^{-1}$. 658008	$.914632 \times 10^{-2}$. 392105		
		5.0	$.277197 \times 10^{-3}$	641691	$.686203 \times 10^{-4}$. 626188	\ldots	...
		100	$.432810 \times 10^{-5}$. 642857	$.108250 \times 10^{-5}$.642857		
$\mathrm{Re}=50$	Micropolat	2.5	. 745032 > 10^{-2}	. 276823	$.184312 \times 10^{-2}$. 270922	. 523653×10^{-14}	1.193328
		5.0	$.116393 \times 10^{-3}$. 277266	. 290986×10^{-4}	. 277269	. $139350 \therefore 10^{-28}$	1.484383
		10.0	$.181870 \times 10^{-5}$. 277265	$.454630 \times 10^{-6}$. 277265	$171878 \cdot 10^{-67}$.479206
	Newionian	2.5	$.744860 \times 10^{-2}$. 276570	$.184680 \times 10^{-2}$. 269362		
		5.0	. $116454: 10^{-2}$. 276923	$.291100: 10^{-4}$. 276923 ${ }^{\prime}$
		10.0	$.181960 \times 10^{-5}$. 276923	. $455000 \div 10^{-6}$. 276923		

