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ABSTRACT

The present paper investigates the nature of the flow fieid when a spheroid is
suspended in a infinitely extending micropotar fluid. This is a sequel to our earlier
paper on a similar motion in an elastico~viscous fiuid and was underiaken with a view
1o studving the effect of micro rotation on the flow field and to compare the flow
behaviowr of the above two fluids. The particular case of a sphere is studied in
detail.

t INTRODUCTION

The present invesiigation is a sequel to our earlier paper’ on the
oscillation of a spheroid along its axis in a non-Newtonian fluid. 1t was
undertaken with a view: (i) to compare the stream function for the flow in
the case of a micropolar fluid with that in the case of a non-Newtonian
fluid, (ii) to study the nature of microrotation, and (iil) to examine the
effect of varying Reynolds number on the flow. We have considered a
a spheriod to be suspended in an infinitely extending micropolar fluid, whose
constitutive equation was given by Eringen?, and we have studied the flow
induced when it performs small amplitude oscillations along its axis. The
assumption that the amplitude of oscillation is small is generally the case in
any experimental set-up and it introduces much simplification in our calcu-
lations. We are now able to express the stream function in terms of Bessel

functions and Legendre polynomials, without the use of complicated
spheroidal wave functions® 4,

2. FORMULATION OF THE PROBLEM

Let the spheroid be defined by the equation R=g (l4e cos0) in a
spherical polar coordinate system (R, 8, ¢) with origin at a focus and the
axis of symmetry of the spheroid as the #=0 axis. The spheroid oscillates
along 0«0 aboui its mean position. Since the amplitude of oscillation is
assumed to be small, we have taken Siok:ss’ approximation to hold at all
poinis within the fluid. Under this approximation, we can fake the
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dependence of all velocity components and micre-reit’on ermponents on
ume T through a factor €7, omiting all powers wid produces ul ¥oloCiy wud
micro-rotation components.

The fleld equations of the micropolar fluids are given by the following
partial differential equations :

Continuity equation
Bpfar+ V. (P p)=0, 12.1]

1 %
Momennim equation :

(.\‘,:Z,u Sk) VY. u—w,'m YV 2V ~ oK, v \N,,._V],.;pf
v/éf"— (V‘U)W'LVDL 2

o
=)
i

»

First stress moment equarion :

(0, 58,+7) T v, V- Vyik, Vxo=26, v 4pl=P/,, (23]

where p and v are the velocily vector and the micro-rotaiion vector
respectively, P the density of the fluid, A,, u,, €, are coefficients of viscosity
and %, B, ¥, are coefficients of gyro-viscosity; f and / give the body force
and body couple, rtespectively; p is the isotropic pressure and the micro-
inertial rotation is given by z;,,=J' {/k, where j is a constant on the assumption
of micro-isotropy.

Let u, p, w be the physical components of 1he velocity vector and w,, vy,
vs those of the micro-rotation vector in the r, 8, ¢ directions, respectively.
Then we have

w=y (#r, 8) ™7, v=v(r, 6) "7, w=0,

}
L
=0, 4y=0, v, =w, (r, 8) &"T J

[2.4]
We non-dimensionalise the quantities involved by the relations:

u=anu, p=anv, vy=n ;4,, p=P a1ty t=wl1, rear, m-p, @Y,
ny={k, @*[1,,), j=0"jo Re=Pa’n{(x,+k,)=Reynolds number [2.5]

The non-dimensional form of the equations governing the motion are {on
Iroppiag bars) :

a 2
qu 2w 1 opo,wcotd [2.6]
ar ro3 r

Viga ny (g 4 11) curly—Re grad p=i Be g, [2.7]
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and
— > . . . LT
~ curl curl » +ay curl g= {2ay 1 Rejy (1~ ny)t v,
where

>

N ~ - ~
g=ui+yj and v=yy &,

28

29

i, j, k being the unit vectors in the direction of », 8, ¢ increasing respectively,

-
Eliminating » between equations {2.7] and [2.8],

-

we get the following equation to determine g :

- PO
Vig-agiqtbg=cgradp,
where

a=iRe[l+j, (ny+ny)]+ 1y @ trg)

s

b=[2n3+-i Re j, (my+n)}i Re, c=ib.
Since a and b are constants, we can write [2.10] in the form
(V241 (V1442 g=c grad p,
where the operators are commutative and

2

EY

are in general complex quantities.
We define a vector Z]: such that

R

g=g,+(c/R* k¥) grad p,
then, provided ¥ ?p=0, we have

-
(Vi) (VE+kY ¢, =0,
with
div g, =0,

Let

(V2 4k 4=,
then [2.15] states that
I AVAEY ) ;2: 0.

(2.1

[2.14]

[2.15]

[2.16)
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Choose G =5 1R =) 7
(V3 0= (V24K g4 (V26 10K 1)
(TR gy (V2R R ) 1R~ 1)
“(V? D 0 0

in virtue of [2.17}. [2.16] implies that

(T4 7,0, [2.18]
2 We can wrile
d=(e/R k) grad p Gy 1K -11) 4, §2.19)
where
(V2+h?) 3,=0 and (V244 43=0, 12.20]
div {dy + 1/(k*~ 1) 23] =0 and V2p=0. [2.21]

The solution of the vector wave equation (V2+/2) ¢=0 is expressible
in terms of the solution of the scalar wave equation (V7 2+/%) =0 as follows :

) 7= erad ¥

-
(ii) g= curl (a¢) [2.22]
-+ . .

where ¢ is a constanl unit vector.

and

(i) 9=/0) eurl curl (a ).

From (2.22], we find that the most suitable form of ;;2 and l—I; which are
divergence-free and most suited to satisfy the boundary conditions are

3. -+ : - . .
obtained when o is chosen as the constant unit vector along the axis of
symmetry, i.e.

>
a={cos 8, —sinb, 0) {223

and expression (jii) is taken. We then have

Ga= (/) curl curd (@), g,= (/) curl curl (@ i) [2.24]
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where
= & R, () B, (cos ), g= & S, (r) P, (cos B) 2.25]
=0 n=0

P, (cos &) being the Legendre polynomual of order » and
R, (1) =8, (k) 7, (ke), S, (r) =B, (Y f,, (hr), [2 26}

where §, and £, are constanis and

v [ 1 d\mexp(—it
Fu D) f—(——g« {—,‘—) ,—e—xﬁ(zﬂ'ﬁn 2.7

The boundary conditions 1o be satistied are
ucos O—ysin @=U, usind 4y cos 8=0,

vy=0 or r=14e cos 8. [2.25)

p sausfies the cquation ¥ ?p=0, and we choose

= = F“ P, (cos 8). [2.28}
=0 7

The non-vanishing veiocity and micro-rotation components are given by the
relations

¢ ap { 1 a3 Y, cos B }'
P ST S | sn@{ g, sin g1 165050
k2 3 krsin® 7 ?Hi' sin (‘/ sin r J

1 RN thag €08 B
e S o, . lrsiné it
I (k* =iy rsin® 69 s <¢’ i r )) 230

P A or, 1 ! 2 «fl sin 8 (zjz” sin 8+ #1g C08 6>
e

Ry 30 krsinB ar| |

: R 3 . . iy cOs 81
& oL sin ) 26 ¥ 31
TETS T ar{r sin (z,l:2r sm6+—-r )f’ [2.31]
Ny ity 1 n§ X z" oA
- i N —iRe- vk
VT BmiiRer, Gnbn [( e IRe—k )(curl 93)

..L.
TR\

2 \ “
1 ( S e - hz) (curlg,) . k] [2.32]
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Substituting for p, ¥; and ¢, from [2.29] and [2.25] in [2.30]—[2.32] and
thereafter in [2.28], we get three boundary conditions to be satisfied on
r=1+e cos §. These relations can be expanded in powers of ¢ cosf (e < < 1),

so that we have
Ky (Fpu 80 Bid + Ky (Fp, By, B) cos 0+ K, (F, 5., By) cos 20, « » - =),
Ly (Fp 8, B+ Ly (Fy, 8, Byd €08 8 2L, (Fy, 8, By) cos 6, - - . =0,
My(Fy, 8,5 By) + M, (F. 8, Br) ©os 0+ My (F 5, ) cos 26, - - o =0
This gives a triple infinity of equations in the triple infinity of unknowns

]:Ps,.,ﬁk; Lk = 12,3, « o«
Ko=U, K,=0, Kyg=0, « + « ,
Lo=Ly=Ly= « .« =0,
My=My=M,= + .. =0. [2.33)

Namely,

We have not calculated the actual expression for F 5,, B, in the general
case as they are extremely complicated..

3. PaRTICULAR CASES
Case () : e=90, a sphere
We choose in this case
thy =8y fy (k1) sy =B fy (hr) and p="F, cos §/rt.

4, v and vy are given by

2 ¢ 8y 2 cos 8 d B 2c059d
t=—— F cos 8 ——__L-__, - o £ CO8C —=
7 10y T 7 o )~y == o (),

1 . ¢ 5, < sin 8/ 2 1 d
el posing.C B -8in®f . 01 d
v~ Fysin (”.rzfo k) + drfz(kr))

et k
. Bysind
Y d=f°(l"') ‘"‘"“f"(hr)) e
and
P . TS S | (R S Y ® % 1, "' Jo (k)
My 2ng+iRe o (nytng) |\ mptny el

+2 ——fo(kr) 22 f;,(kr)} ‘\hz(_ﬁ._ Y h’)ﬂ"

1yt 1y

. d? d? 2 d
x { r 23 fa () 2 5 iy Giry = = 2 fy () }.] [3.4]
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‘The boundary conditions to be satisfied are

ucosB—psinf=, asinflpcost=0, vy~0onr=1i, &

)

Using recurrence relations
A0 (D=0
and ‘ ‘ )
S 8y D D - S (D

we find that the boundary conditions are satisfied, if

2., L2 Bk
Tl kAt = ﬁ"Tﬁf (-,
30 F ﬁa /, A
1\»2/; — 8o K Sy (k) ~ a =0,
2 p2
—B, k2 (—-’—— ~i Re~k® )f, &) — lgo h* l(»_’i,, ,iRe—hz)ﬂ (hy=0. [3.6]
Hy iy T h My
Solving for §,. £#,, F,. we hate
3 U Bu 3k Ud
fgm= e e B T s
TEhuo s ISR TR GOB
cF, 1 Uk .
R UL Y S § S I V) ml 3.7
i T Fgy W AWl 37
where
B KoLty
I k)
and

{3/ Y- F Re - &P )f‘ (k)}

A -
D3/, s ryy i Re— 4%y f; ()

{3.8

Case 21 Spheroia with small ellipiicity 0 < ¢ < < 1

For a spheroid with small ellipticity, we take the zeroth order approx;ma-
tion to p, ¢ and ¥, to be the same as that in the case of the sphere and
further consider terms of order e, neglecting terms of order ¢* and above.
We choose

])ﬂF1 c;)s()» (,[Fo +F, 3.00: 8»]}
r ~)~

P S Sy (kry - ¢ 8, fi (k) kr cos O
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and da =By fo (k) +e By fy (W) Ir cos 6.

Expression for u, » and y; are found using [2.30]—-[2.32]. The boundary
conditions [2.28] will be satisfied if

2 A
Zakptos ol fun-u

aF, 8
e AU R ACED

3 F. } I
h_zc/?f(”F"““ 2)%811»)’1 ")+, _'A_(_’E 0

(97 BE) a1 )kl @145, kA -1 (o

+ B" (2 )iy (0] .A/S h

-1y (M]=0,

9

wa(3F-R 5 F) “2E p w1+ 2 0k

ulw

R R LY OV U B ” B

Bl

s A" N7 U] =0,

2 2
(-2 ——iRe—-—k’) 50 k2, (k)-%--«‘_( n_ ~1Re~h’) Bo 11, () =0,

7T .
\My + 1y k2 —r\ ny-ny

/ 2
( % iRe-— kl) [S, K21 (k) +8, KA Uy +4 K2 [ (Ry—4 K fy (K]

Uy Ay

Eéﬁ’(“i =i Re~h’) Bo i f )48, R () +4 R F7 (B

Ny 1y
—4hf) (}=0

These seven equations have to be solved for the seven unknowns 8 Fy, By
3y, ﬁu , F,.  The expressions for 8, F;, By are the same as in the case of
the Sphefe while §,, B,,-F,, F, specify the change in the velocity field and
micro-rotation due to the ellipticity of the spheroid.
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4 DISCUSSION OF (rE RTSULTR
We have studied m detail (he siream function and microwrotation in
case (i) and have compared the results with those obtained in referesence 1.
We can define a siream funcuion ¥ for the motion by the relations
, t ¥ o [ 1
o g S g e ‘
T L rant o 2p !

Then

~

Usinté 3f 3 ( ; i
Aol ¥ U R AT PO PN U i
irB K k k’) "% kz,z>ew[ ik (7 1}]]

Usin® 3i 3
-—~—-——A—~— —i(h—& —l‘;_~:~ e
2+ B exp (=il )][ /12)

i, 1 . i

\

Choosing # and & of the form
h=hy—ihy, k=k,—1k,

where by, #,. ky, ky > 0 and U of the form
U= exp (i) where = is real
po & sin 20 L3k _ 306\ B,
2 K-k A- GEss

] ik K2 -
=3 exp ~kp =1 {f -k o KT -
2 ) (k iR Tw s B, cosk, r—1)

3-

(’ 3k, 6k, iy )B,

Pt MEER s e
k: -+ k% (k% + k§)2 I

by . 2kyky { k K2 -k
[ . — Y Bycosk, (P 4+ | - 2o w212
e R N N u«f+k§>’>

o k 2
a4 By sinky -1+ (k’ ‘Z-_- - r(kf "’;\22)2> B, sink, (r —1)»> cost?

/zki & (’lf ky \ By —-(1-& 3k, 3k B,
N\ &2+ Y BT (khk r

4 e (e k ki —k3 .
£ 3 [exp —ky (7 1)] -{( ~57:; + U\!‘f-f——/»‘:’gﬁ) B, sink, (r—1)
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. 2k kg 9 o3 42
LTI T N Ny SR LS W (. S bt S
Tew T w ey FE TRk

% By cosk, (r—1) — (-2—7 o+ _%i\,‘alz) ) B, cos ky (r ~l)> sin IJ -
i R

1

a similar expression where k,, k,, B,, B, are replaced by 4, h,, (i,

respectively,
1/B=B,4iB,

and
(A[BY (R*/1P) exp |~ i (h~k)]=Cy iy

The expression for vy is
Py 1y In}/(n, +my) i Re —kz)]
ny 2ng 4§ Re fo (ny = n3)

vg = -

__L_/‘kf', (k) [/l (kr) A (hr)}
r fok)B [ filk)y  f (B

2
2

__ 1 Jexp[ -k (r»vl) . . )
< G Ktk n kg -k

)A
SRk (r—=1v) cos k=1 SR UL ky ) (L -Hg) KT ]

\,
< Kyl r =1 sinky (5 1)) ) cos?

e e N AR IR AR

PN (LR

Kk 1) cosktr = 1) - (B (114 Ey ) (1- k) + A% 7]
~Kyky(r = 1)) sin ky (r-1)} > sin ¢

- a similar expression where k,, k, are replaced by /,, 1,

and

My 1y (;13/;12 Fny)~i Re k2 _E_ k £ (K)
Ny 2ny+iRejy(natny) 2 Bfy xy’

Ky i Ky

177

G

Numerical results have been computed for Reynolds numbers Re=0.5,

Re=8 aud Re=50, for a micropolar fluid with my=ny=1.

The results in the

case of a Newtonian fluid are also given for the above values of the Reynolds

pumber for comparison.
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We note the following pointys :

(1) For large values of the Reynolds number, the magnitude of velocity
components in the case of a micropolar flu.ds are almost identical with those
in the case of a Newtonian fluid. As we move away from the sphere
12 and 1% for a micropolar fluid are slightly less than that for a Newtonian
fluid, but the decrease is not as marked as in the case of Oldroyd or
Rivlin-Ericksen finids.

(2) The magnitude of the micro-rotation is of the order of 102 and 10-#
at r=10 for Reynolds number 8 and 50 respectively. This shows that when
the Reynolds number is large, the micro-rotation is negligibly small at some
distance away from the sphere. Even close to the sphere, namely r=2.5,
the maguitu’e of the micro-rotation is of the order of 107 and 10-%
respectively in the above two cases, In effect, a micropolar fluid is almosc
indistingnishable {rom a Newtonian fluid at large Reynolds numbers. When
the characteristic velocity of the fluid is large, the microrotations are
suppressed and their effect is hardly perceptible.

(3) On the other hand, for small values of the Reynolds number, we
notice that the magnitude of the u and p velocities in the case of a micropolar
fiuid differ markedly from those of a Newtonian fluid. Close to the sphere
this deviation is prominent, whereas as we move away, the flow becomes more
and more Newtonian. We observe that the presence of micro-rotations
causes the w and » velocities to have a larger magnitude than in ithe Newtonian
case. This is 1o be compared with that for a general non-Newtonian fluid,
where the non-Newtonian normal siresses cause a decrease m the magnitude.
The non-Newtonian stresses act in opposition 1o the forces causing the
motion and tend to damp out the disturbance, whereas the micro-rotations
act in conjunction, helping the disturbance to grow close to the sphere.

In the case of a spheroid with small ellipticity, the basic nature of flow
is the same as in the case of a sphere, suitably modified by terms of order e
A detail study has been made in reference 1 for a non-Newtonian fluid.
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