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Tip? present invea~igalion is a sequel lo our carlisr papcr' on the 
oscillatioll of a spheroid along its axis in a non-Newtonian fluid. It was 
undertaken with a view : (i) to compare the stream function for thc flow in 
the case of a micropolar fluid with that in the case of a non-Newtonian 
fluid, (ii) lo study the nature of microrotation, aud (iii) to examine the 
effect of varying Reynolds number on the Aow. We have considered a 
a spheriod to be suspended in an infinitely extending micropolar fluid, whose 
constitut;ve equation was given by Eringen2, and we have studied the flow 
induced when it perfornis small amplitude osciltations along its axis. The 
assumption that the amplitude of oscillation is small is generally the case in 
any experimental set-up and il introduces much simplification in our calcu- 
lations. We are now able to express the stream function in terms of Bessel 
funcrions and Legendre polynomials, wilhout the use of complicatcd 
spheroidal wave functions3' 4. 

Let Ihe spheroid be defined by the equation R - a  (14-e cos 0) in a 
spherical polar coordinate system (R, 8, 4) with origin ,+t a focus and the 
axis of synlmetry of ihe spheroid as the 8 =0 axis. The spheroid oscillates 
along 0 - 0  aboui its mean position. Since the amplitude of oscillation is 
I ~ S S U ~ L - d  12 bd small, w.: have taken S:ok:sZ approx;mstion to hold at all 
poillti wjrhin the fluid. Under this approx;mation, we csn fnkz the 
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dependence of all velocity Components and rnicrc-r; h..t'on crinpccenrr: n:? 
time T through a factor elnT, omiting all powirs ;id $:.L,L., ,;. v,loc,,j ,,A 
micro-rotation components. 

The field equations of the micropolar fluids :Ire given by the following 
partial differential eqoations : 

Continuity equatio:~ : 
; ~ / e r  . - V .  ( P ~ ) - O ,  12. I] 

ichere o and v are the velocity vector and the micro-rotai;on vector 
- -. 

respectively, P the density of the fluid, A,., ILL,,, K,. are coefficients of viscosity 
and a,,, p,, 7,. are coefficients of gyro-viscosity ; f and I give the body force - - - 

and body couple, respectively ; p is the isotropic pressure and the micro- . . 
inertid rotation is given by a,-j v,, where j is a constant on the assumption 
of micro-isorropy. 

Let u, 0 ,  IV be the physical components of tho velocity vector and v,, v e ,  
u4 those of the micro-rotation vector in the r ,  8, p directions, respectively. 
Then we have 

We non-dtmensionalise the quantities involved by the relations : 

The non-dimensional form of the equations governing the motion :ire (on 
kopp:ng bars) : 



being the unit vecron in the direction of i., 0, q4 increasing respectively. 
i 

Eliminating v between equations 12-71 and [2.5]. 
+ 

we get the following equation to determine q : 
* -* -. 

V 4 y - a  g 2 q + b y - c g r a d  p ,  
where 

n (291, i- n3) n = i R e  [ I - :  j, (nz-+n3)1.k--1---.~-- , 
912 - ' ~  ?13 

Since a  and b are constants, we can write [2.10] in the form 

where the operators are commutative and 

are in general complss quantities. 
+ 

We define a  vector q, such that 



rb rt .* 
Choose q1 -- (13 -it I /(I$ - h2) (IZ 

-, -* 4. 

(P'-!-k') q1 -(V2 i li2) (r3t  (VZ.i- k')  ! ( / k t - .  11') qz, 

- = ( ~ 5 , k 2 ) ~ 1 - ( V 2 - , - 1 2 2 : k s - l r 2 ) l / ( k 2 - h ' ) ~  . - :  -. -> 
-- ( T9 ". k 2 )  q3 - '72, 

in virme of 12.179. [2.16] implies that ' 

(vZ-I-~?);;,-=O, 
;.We can wrile 

-t * 
q = (r/hZ X L )  grad p q, ' I/(k"h2) q2 f2.191 

where 
-+ 

(V"+h2)  < = O  and ( V 2 + k 2 )  q , = O ,  f2.201 

* 
d ~ v  [;, 1/(k2-- h2) q,]-0 and V 2 p = 0 .  l2.211 

+ 
The solution of the vector wave equation (V2+12) q = O  is  expressible 

in terms of the solution of the sdalar wave equation (v2+/" )=0 as follows: 
-* 

(i)  9 = p a d  4 
-, i 

(ii) q= curl ((z $) [2.23] 

where o is a constani u n i l  vector. 

and 

(iii) ;=-(I//) curl curt (;;$I. 
, + + 

From f2.221, we find that the most suitable form of q, and q3 which are 
divergence-free and most suited to satisfy rhe boundary conditions are 

4. 

obtained when a is chosen as the constant unit vector along the axis of 
symmetry, i .e. 

.+ 
a - ( C O S ~ ,  -s in8,0)  L2.231 

and expression (iii) is taken. We then hava 

-+ 4. -* -. 
q 3 - ( l / k )  curl curl (a $,), q , = ( l / h )  curl curl (n  $,) [?.23] 



where 

P, (CGS @) being the Legeridre polyncm~~al of' older P I  and 

(TI = 8,, (krjn.fn (kr )$  Sn -fir, (hr)=L, ({I?) ,  

where 6, ail3 13, are conrtanta and 

The boundary conditions lo be satisfied are 

ircosB--usinO-C, u s i n 8  I v cos  0-0, 

a,+ - 0  or. r - 1  + P  cos 0. 

I h e  non-vanishing veiocity and micro-rotation componenu are given by the 
relations 

,,+ "223 _ _ _ - _  - h 

[ ( L - i R e - k 2 ) ( c u r l q 3 ) . k  
nj P 3 + i R e , i ,  (n,+nJl n 2 i n ,  

j 4- - i Rr - h2 (curl q,) . [Z.??] 
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Substituting for p, 9, and & from I2.291 and l2.251 in [2.30] -12.321 and 
in [2.28], we get three boundary conditions to be satisfied on 

r = l  + e  cos 0. These relations can be expanded in  powers of e cosB ( e  < cr I), 
$0 that we have 

K, (F], s$, P*)-!-K, (1;.,s,. fikn.) cos B-I-K; ( F ) .  s,, P,~) cos2e+ . . . =u, 
L, (FJ, Si, PA) r L, (Fa,  6,, &) CQS 6 i L, (Fi. S',, P,) eos '8, - . -0, 
Mo(F1, 8,, P*) +-MI (FI, 6i. PI:) COS 0 -t- M2 (F, St, pk) cos '0+ a - -0. 

This gives a triple infinity of' equations in the triple infinity of unknowns 

We have not calculated the actual expression for 5 ,  S,, ,t$ in the general 
case as they are extremely complicated. 

3. PAKTICL'IAR CASBS 
Ca~e ( i )  : e= 0 ,  n sphere 

We choose in this case 

I), =6,& (kr) ,  +'~~=,b'~./b ( h r ) ,  and p = &  cos 0/r2. 

ir, u and ug are given by 

2 u =  -- 8 2 Cos 6 d 2 cos 0 d 
r ,  Fl cos 0 2- -L--- - fo (kr)  O- - 

h 2 k Z  kr  (lr' 
- h w ,  

h (kZ - h2) r f h  



For a spheroid with small ellipticity, wr. take the zeroth order approxima- 
tion t o p ,  $, and Gz to be the same as that in the case of the sphere and 
further consider terms o f  order e, neglecting terms of order eZ and above. 
WE choose 

3 cos 2o -- I 
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Expression for u, u and v+ are found using [2.30]-r2.323. The boundary 
Eonditions [2.281 will be satisfied if 

2 2 'is, I1 - So k J, ( k )  -; - ---- fa (h )  - U. 
3 3 k1 - 11' ' 

These seven equations have to be solved for the seven unknowns So, FIF,, ; 
81, 81. F,, F,. The expressions for &, F,, 8, are the same as in the case of 
the sphere, while 8,. &, Fo, F2 specify the change in the velocity and 
micro-rotation due to the ellipticity of the spheroid. 



We have slud~ed In d e t ~ i l  ihc nreem funcliorl and micro-rotation in 
case (i) and h,ue compared  he results wirh those obtained in referesence 1. 
We can define a stream frmction Y for  rhc motion by the relations 

Choosing h and k of the form 

h = h , - i l l 2 ,  k=k,  - t k 2  

where h,, h,. k , ,  k, z 0 and U of the form 

U== 2 exp ( i  I )  whew cl i s  real 
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a similar expression where k , ,  k,, B,, B, are replaced by h,,  IT,, C,, C, 
respectively, 

1 / B  -:B, - i B 2  
:ind 

( A I B )  (X2/ir') exp j -- i ( 1  . - A ) ] - - -  CI .- i C3. 

The expression for v g  is 

- K I r - 1 > i k (r - 1 )  sin t 

- a similar expression where k,, k,  are replaced by :I,, h,, 

and 

Numerical results have been computed for Reynolds numbers Re=0.5, 
Re=8 aud Re=50, for a micropolar fluid with n2=n3 = I.  The results in the 
case of a Newtonian fluid are also given for the above valucs of the Reynolds 
"umber for compar:son. 



WE ,ioie rhe ,folIoi~~ing p n i ~ ~ t s  : 

( I )  For large vatues of' Lhe Reynolds !imtber, the magnitude of veloc;ty 
components in the case of a lnicropolar Ail  cis :ire almost identical with those 
in the case of a Newtonian fluid. As we move away from the sphere 
1 ;  and I :  for a micropolar fluid are sl;eh:ly less than that for a Newtonian 
fluid, but the decrease is nor as marked as in the case of Oldroyd or 
Rivlin-Ericksen fluids. 

(2) The magnitude of the micro-rotation is of the order of and 10-4' 
at ? = I 0  for Reynolds number 8 and 50 respectively. This shows that when 
the Reynolds number is large, the micro-rotation is negligibly small at some 
distance away from the sphere. Even close to the sphere, namely ~ ~ 2 . 5 ,  
the maguitu'e of the micro-rotation is o f  the order of and lo-'" 
respectively in the above two cases. In effect, a micropolar fluid is almos~ 
indistinguishable from a Newtonian fluid at large Reynolds numbers. When 
the characteristic velocity of the fluid is large, the microrotations are 
suppressed and their effect is hardly perceptible. 

(3) On the other hand, for small values of the Reynolds number, we 
notice that the magnitude of the I r  and o velocities in the case of a micropolar 
fluid differ markedly from those of a Newtonian fluid. Close ro the sphere 
this deviation is prominent, whereas as we move away, rhe flow becomes more 
and more Newtonian. We observe that the presence of micro-rotation, 
causes the P and o velocilies to have a larger magnitude than in the Newtonian 
case. This is ro be compared with that Tor a general non-Newtonian fluid, 
where the non-Newtonian normal stresses cause a decrease m the magnitude. 
The non-Newtonian stresses act in opposition to the forces causing the 
motion and tend to damp out the d~sturbance, whereas the micro-rotations 
act in conjunction, helpmg the disturbance to grow close to the sphere. 

In the case of a spheroid with small ellipt-city, the basic nature of flow 
is the same as in the case of a sphere, suitably modified by terms of order e. 
A detail study has been made in reference 1 for a non-Newtonian fluid. 

The author is grateful to Professor I?. L. Bhatnagar for suggesting the 
problem and for his help and guidance throughout the preparation of this paper. 
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