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ABSTRACT

The characteristic equation for swiface waves (Ey) on a metal-dise backed
delectric dise is formulated and solved for radial and transverse propagation
constants, atrenuation consiunts and percentage reduction in phase velocity.
Expressions for the power flow in the radial and transverse directions, and the
division of power between the inside and outside the dielectric dise have also been
derived.  Bv using the perturbation technique, artenugtion constant for Ey wave in
the dielectric dise has been calculated.

1. INTRODUCTION

The present study is a continuation of the investigations! = on surface

wave phenomena and radiation from dielectric objects that are being
conduected in the Indian Institute of Science for the last two decades. The
present study is concerned with the study of the characteristics of surface waves
(E, mode) excited by means of a sustable horn placed above a dielectric disc
backed by a metallic disc.  The Jaunching cone is fed by a coaxial guide
pa s ng ihrough the centre of the disc.  This wuve 15 essentially analogous to
the radial form of ‘Zenneck Wave'. The propagation of clectromagnetic
wive: along interfaces between different media was a controversial subject
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which led to lengthy philosophical discussions about the existence and
physical realisability of surface waves. Schelkanofi® in his discussion of the
anatorny of surface waves has mentioned that Dr. James R. Wait has prepared
a list of eleven wave types which have been mentioned by different authors
as surface waves. Plane waves guided by a plane inmterface between ap
insulaior and a good conductor were first studied by Uller®.  Zemmeck®
recognised the importance of these studies on the propagation of electro-
magnetic waves along the earth. Zenneck’s investigation concerned with the
case where one-half space is a pure dieleciric backed by a dielectric which is
more or less conductive. An illuminating discussion of ° surface waves’ i
given in Barlow’s®™ book. The present study has been motivated by the
necessity of understanding certain phenomena in connection with the study of
the dieleciric disc as an aerial. The radialion characteristics of such an
acrial is under investigation and the results will be reported elsewhere.

2, Fierp CoMPONENTS

The field components for the different media for the metal -disc backed
dielectric disc (¢, €;, #4) immersed in air (og €5 4g) and excited in E,
surface wave mode are (Fig. 1)

WED 2 | 0y, €4, Mo

T MED t | oy €y Mo
4]
o = o0 : s
— . P
Fig. 1

Ceometry of the Problem

Medium 1: 0O<z=<a, Psr
Eq=A[(J (0, +jwe)] HP(—j1P) cosuy z
Epl_ =A (/{0 +] we,)] Hl(z)(’j Ye)sinw z
Hy=4 HP(—j Y P) cos uyz {1]

Medium 21 a=z, P>r
E,=4(Vfwey) exp (~u,2) HP (—j 7 P)

Epy=A(nfj w €g) exp (~uy2) HP (=) 7 p)
Hyy=A exp (~u2) HP (—j Y 1) [2]
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where, the time variation of the field quantities is assumed to be exp (j w )

and
wy =y Iy
w=a,~j by
Y=a+jB
W= 143
A= w? g€y
ke jwp (7 Fjoe)=—("+ud)=wlu ¢
B —ul=w? uge, (e, —1)

€, €/ {31

»

3. BounNbDarY CONDITIONS

The radial (P) componeni of the electric field and the azimuthal
component (¢) of the magnetic field are continvous at z=a. Therefore,
matching the impedances at the air-dieleciric interface (z=a), we obtain,

Fpy[Hy =FEpy/Hy, [4]

4., CHARACTURISTIC EQUATION
Using the appropriate field components {eqn. I and 2] and the impedance
relation [eqn. 4], the following characteristic equation is obtained.
Ao+ jwe)] HP (—jYPYsinua
AH@(—-jrg)ycosu a

LA/ we exp (~m @) HP (=7 7P)
Aexp (—uya) HF (- j7P)

which yields —up=(€,)" "y tan (4, a) (B

The above equation [5] can be solved by plotting (€,)"" u; tan w,a vs.
as f(a, €,) and [12+(w¥/c?) (e,— DI vs. u; as f (4, €,). The values of u,
satisfying the above equation for different values of a and ¢, are obtained
from the intersections of the two sets of curves. The values of ¥ andiw,
can be found from the corresponding values of u;. Assuming « to be very
small 8 for different values of a and €, can be determined from the corres-
ponding values of 7. The phase velocity o, (=w/f) of the surface waves and
hence the percentage reduction in phase velocity (e—v)/e 9, for different
values of @ and €, can be determined.
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5. SOLUTION FOR &, &, 4, and &,
From the relations [eqn. 3] we obtain

w—ul= (w?c*) (6,~ 1)

ayhy= o« B
49 Iil = — dﬁ {6}
which yield the following quartic equation in a,
a+ai[(w?ed) e, + o~ = o’ i
Similarly,
di-a? B - [(w?¥e?) (e,~ D)+t - b]=0 8

The solutions of eqn. [7] and equ. [8] are respectively

- [—uw*/c*) €, 82 =BV {[(0¥fe)) 6, + 2P - B+ da? §) }

19

a5

éy

- { {(w (B, — Vs =B} s/ {[(w?/ e, — 1) + (e} - PP +4a? ) }m (o
2

The values of b, and b, are Jdetermined by using the relations eqn. [6]
appropriately in eqn. [9] and eqn. [10] respectively.

by~ ug”'[(tﬂ’/c’)eﬁ az—ﬁz]d:\/{i(zwz/c'z)€,+ a2—32]2+40ﬂ‘i}}m )

byw B /{{(w’/cﬂ (e,—1)+a%—b§};w{((w’/zz)<e,—1>+(a$~b?)1’+4a’ﬁz}}”’
2
(]
6. SOLUTION FOR o AND

By adopting the same procedure as above, the following quartic equation
for « is obtained.

ot ol (@ b2+ w? g €g) —alBi=0 {13

The solution of equation [13] is

(14

“,[wi— 3 w? g € IV - B3+ w? g eo)1+4a§h§]m
2

The values for § are determined from the relstion f=a, b,/ o and eqn. (14}
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7. Pyass Verodity

An accurate value of the phase velocity v, I8 determined from the value
of B obtained as above without placing restrictions on the value of « and is
given by the relation

_ u_{*(aﬁ—bﬁ bw? sy €g) V(6 b w? g eV +4dak bz’] tiz [15]

Y

8. Powkr FLow

The total power Bow in the radial (P,) and transverse (P,) directions
consist of power flowing inside the disc in the f and z directions and power
flowing outside the disc and is given by the foliowing relations

In @ 2T a
=1 Re ¢;" I E,zlvlgzl'd¢dz+§1{e¢_[0 fo £, Hy rdep = [16]

2m e
P,= +Re f j Ep, H3, Pdgap+} [0 pi{, E, H: pdg dp [17]

$=0 p=r

where the asterisk represents the complex conjugate and the field components
are maximum values in time and r is the radius of the disc, ry is the outer
radius of the coaxial guide passing through the ceptre of the dise. This
coaxial guide forms a part of the launching device which will be described in
a later paper. The thickness of the dielectric disc is represemied by a.
Substituting proper field compouents from equations {1} and [2] in equations
[16] and [17] and integrating, we obtain

P A "L Re 11 HP (RO (7P [ ]
G

@

2 ® M ]
TA Y Re [V HE (—j0) HO (1 P) | cos? uy zd}
z=0

N

w €y

=TT Ry HE (—jve) HY 78 (- a)

wey

2 3 i
<A Re {’Y HE (—j10) H{Y (j’YmP)(—;— + ““‘f}i‘)J [s]
*

W&y

where,
[HE (~j 01" =HE (770 (see Appendix A.D)
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o . d
and the integral [ bas been replaced by the iniegral [ where, d represents

2=4q =g
the distance in the z direction within which most of the power is located,
This relation can be utilised to determine the constant percentage power
contour. The computation is under progress and will be reported elsewhere.

PR [ BEE (- EP G R pde

wé‘o =y

2 N ~ - o
_3:‘61 Re ['Lx_s'_';;"x_: Pf, HP -y HO (G ) pdp] 119]
w 1 -
A g [ T HY Gy BO(= )

ST Re (X2
w€g [j Y-yt

FIYH@ (D HED (7!

= ®
=2 O R Y ) B (<))
7T

) o - “) s * 3
FJVHE () HP (7 )}

A P msin2uz  r
- & 7 -

{j Y HD G HR (=

FIVHE (=) HP (jw*r)” (20}

since at P=oo, all the Hankel functions vanish, the integrals im egn. [19]
have been evaluated by using the following relation

J e they e, (U2) 2z =[2/RF = ) {16, (2) o, (km) ~k ¢, (k) o, (1)}, & #1
where, z=/ and k=~ and 7=j7*

9. EVALUATION OF P, AND P,
Muking small argument approximations (see Appendix A.2) eqn. 18]
and {20] reduce respectively to
" o s
Lam At _(d_a){ oc(ozzq uzDB) s Blar—gB)]
© €, SLEY a8}

P

&
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»47VA21‘[%_(7J( alagrphy Blap—gp)]
2 [

e T iy
c A Al (aler—gh) faarpl
wey { ya wipr
{(al cos 2 aay sinh 2 a*hy — by sin 2 a a; cosh 2 Zabyy) o lw g+rB) B
4 (af+ bz) o ( W
B (xp-9B) N 1{ ay 8in 2aay cosh 2aby -+ by cos 2aay sinh 2aby | of
wia g )] L&+ J ] 21}
and
’ H_{?bz{ pPafrg(a?-p) 2p afrg(oi-pY
T ueg | af (af+ By TTaB (et )
_mAT (b sin2a zcosh2bz 2paftg(aP—F7
we, w4 afB o+ pR
4@ cosla zsinh2biz 2p af+g(a~pY 221
e aB a2
where =% In (0.89r)% (a®-+ B

g=arc tan B/ a
=% 1In (0.89 )% (a*+ 8D

But expressions for P, and P, (eqns. 18 and 20) reduce to the following by
making large argument approximations (see Appendix A.2)

P

~ A% ,8
ool (d— )\/( T /32 exp (—2 af)

P

+ AT = - a B
we, wp exp ( Z@P)[T \/(ULZ‘{'BZ)

. B 4, sin 2 ga, cosh 2 ab + b, cos 2 aa, sinh 2 ab,
V{ar+fh (a0

P a, €08 2 aa, sinh 2 ab, —b, sin 2 aa, cosh 2 ab, [23]
V{(a?+ B 4(at+b})
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exp (-2 @r)

oo nf]- 2 By

weg| wr daf Valif

2 2y g ‘ o]
—— gxp{—=avr
+7‘(}‘1 4 Otﬁ "\,/(0.2 32) i { 1)

2 inh 2 b, z
7 A4 7 iexp( 70&))[(b‘ cos 2 a,zsinh2 b, z

wey, 4af w® 2

_gsin2ay zeosh2bzy @ a,cos2a,z8inh 1b z
2 V(TR B

I sin 24,z cosh 24,z B ] 14
2 V(B .

10. DivisioN OF POWER

The power flow inside (P,,) and outside (P,,) the dielectric disc takes
place both in the P direction as well as in the z direction which canbe
symbolised as

B =rh P [23]

PR+ P 8%

om out

which for small argument approxiumations reduce Lo

=7}_Ajf_a_[_4{a(dq+pﬂ> R /:?(ozp qB)H 7?1_47"[_4({3(0@0_#[3)

" we, 2 aie B2 T ara pr . ot f

£
we,

CTE pﬁ) fay cos2aay s nh 2ab, - b, sin2a a, cosh °ab n
B 46} + b7 ;

_fa(uq#g@ L Blp=—apyy
S Y -

ja, sin 20 0y cosh 2a by +£) cos 2aqy sinh2a b))
{ 4{af+17) }

_wA* [ b, sin2a,z cosh 28,z 2pafitg (0t ,[“)
we, |n? af a2 AT

L @ cos2a, zsinh 2k 2 2[15//3%1(&’- /32]

ot aff o s 3%
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aw A2 [ (b sin2a zcosh2bz 2y 01,94 (,v(:x.2 £
12 xf B

L ay cos2a, zsinh2h =2p dﬁay.q(alﬁﬁz)}
ol «f ol B2

w ARy _alxlag+phy | B(ap—qﬁ)
Pour";;'g;(’l “)[ { «Z+p? - Ry )}

+-/vAz 26, 2pafig (- F7)
weg | w B (ari+fE

For large argument approximations equations [25] and [26] reduce to

AR 2 8
= = -2
o we wf e (= aP)[9 V(T B

B a,sin2 aa; cosh2ah +h cos2aa, sinh2ab

VTR I@ 15

.« a, cos2aay sinh2ab, ~by sin2aa; cosh2ab,
Via? + B 4 (at - b3)

_ WAIKHI cos2a ssinh2h 2z bysin 24z cosh?.b,z)y
© €, 2 2 ’

Foff 2

roo2 B _ [b cos2a,zsinh2 bz
4043 wr A (at+B)

dy sin 2ay z cosh 2b) z

_0 )
2 )4ocﬁ;x/(oc ﬁ’)]em( ®n

_mA? [ (b cos2dyzsinh2bz 4 sinZalzc;osth,z)><
we, |\7 7 2 2

X—‘_-_____

4afB 7 ry V(a2 +BY

a2 o <a,c032alzsinh2blz

bysin2a,zcosh2b 2\ r, 2 B
+ 2 i i 1 — o exp (—2 a )
2 )4aﬂvvr1 w’(a2+,82)J t
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Ay 2 B 5
= - P
P s (a >7\P\/(o:2 7 exp (—2xf)
+'§flj ar __J,M‘._?; N by ¥ /3‘ ’)
weg \\TaB V(aTr Y wr  daf V(aZ1 B wr

_mr @ 2 k2N ran
daB V(2P Y w44 V(oRe B wr ) exp (~2ar) 3]

18, ATTENUATION CONSTANT

The atteruation constant « derived by using perturbation technique is
given by the relation

a=—{P/2P,) 3

where, P, is the total power lost per unit length and P, represents the power flow
in the @ direction as a surface wave. Assuming that there is no loss of power
by radiation in the transverse direction and that the power in the transverse
is concentrated within a distance d, the only loss is the dielectric loss in the
material of the disc. In this paper, we shall consider only the dielectric loss
and ignore the radiation loss. The attenuation constant & in eq. [31] can be
put in a more convenient form by using the Poynting’s theorem which states
the energy balance relation as follows :

j}'-Edwj(E-_ By - )a’v [ (ExH)nda=

A {cross section pcrpendmzhr to the direction of flow)

Y e > =
where, the Poynting vector is S 2 £ < H and the current density J = a E
The energy stored in the volume of the dielectric being zero, the energy
balance equation reduces to

—o [ E2dy~ [Snda=1f [32]
v A
i d .= N
- S-ndg = — 2 33
70 a7 %f nda a_{L da [33]
f‘l 2T 2
. a E*rd o dz
= 1L 22, iy L7008
| ¢ dpj =

(

a 27 w 2w N
S [ B Hyragpdz+ [ E, Hy, rd ¢ d:l)
=0 ¢=0 f=a ¢%0
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where, [EP=1E P+ |E % So, « reduces to

fa B, [P (i':%—fu | B,z
D 4 [34]

[=]= ; o
[ F. HE dz + [ E,HE, 1/:]
a a 1

where, o, is the conductivily of the dielectric disc.

Using appropriate fleld components, performing the integrations and
simplifying eqn. [39] reduces to
g (sin2u,a | a

2 2 N
co | A H® (—jypya [Sn28a , a)
=0 e+ wier U0 ’ 1{ du, 2]

AR D (— gy 12 exp {— Zuza))
2u

= Azw(d;a)H(g) (—7 "/P)H(,')(]'V*P)
w &g

sin2ula+_a_ i
4 2

b H(Z’(—np)H‘”(ﬂ*m( -
1

0+Jm

: (“smul )[Hﬂ>(~1 WP+, T2 (e

a‘l—\-mze 4u‘ 2e? 2u,
ld HH“’(—JWP)H“)(n ?) f—u HP(—j90) HPY™p) (S‘"z”‘” ‘i)
@€ +jwe; 4, 2
ek 135)

= (F—'r DAt

2 ay by (") x_,,ﬂ LApg ahy X,
T

+
B ez w? wlel B

1
+ o S e Y {4apg— (@ —p?) %2 + 2pq >}
1 i
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22
—~2_ﬁ_ a-r X+ ﬂy-:l' f 5 X3
wel  at 7wt €
f 1 2 2 2
B=o,{— - —5 {208 —pD) X, (07 + 2 pg v}
o’,+w“€, x2
2 (gt—p* 4 f
L 1Y Tﬂ,_qxﬁ»!’zﬁ_ﬁ_zx‘,
® €9 ™ wtE;
1 ty by #
e et 2o (4 pg — (=P Xyt 2 pg Xy
B ol
+£2_"’* 21 v 4pg b ¥
w el zﬁ “ wE Bwled
- 4 ta- a/?(pﬁl-\qazb,) PRI ¢ NI
wrlee,  allii I 4 4
4 d~a (paghy—qfH B a -
——— Xy, = 2 I Ry 7L
b w’r[ T e, az b2+ B 3 F e

ki

212, ph
=L 0.8 ,2)(“2 ’E_z_ﬁ )

g=ar o tan (8% a, by)

_ay sin 2a oy cosh lal by coJZaa, smhlab
Py

_acos2da sinh2ab—b, sin2aa, cosh2ab,
2 lil§+h§

_@ycosh2aa, cos2 ab, b2 sinh 2 ¢ az sin 2 g by
gm0 R Rt Mt X
ay - P i b3

_bpcosh2aay cosBaby, a sinh 2 a n2 sin 2 sin2qby

Ta _ iy

_{ro hiBytpwe, B4qw € (@ 0,/By—ga, B
o1t ty/B)rwe Bl +lw €1a,0,/8) — o, BP

_Goyamhtqoue Bepue;abtp ¢, 858
(o3 hyrw € B +(we, a,by— ¢, B7)?

1
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For large arrangement approximations eyn. [35] reduces to

E'Z },FZ v2
* -l S 37
il ((}‘"iv}F) 1371
where,

Ty fdy 'y . n By Xy b,
[l o 0 - S )
(\nzﬁbz X0 B Xg) (”27}2_)'2—/})'1> } ]

o, ay by J(a2 by [ ay by \
P I L + L :
’ a%+w2e%< g Bys) T ) (i)

v

: \
N a2 "2y By ”21723(,/39‘1‘0 )
' I ez J1e2
B w” € w" €
\ A [ °

ay b . a. "’2 ]
A=y sinh2p 222 cos2p B ~cosh2p 272 cos2p B!
NI bz//an TE { B 5 ;

2
ERCEIRE ]

5 | b b
M:(% N %) ("zﬁ,z vt By ) = ( ”_zﬁg o ﬁ,;-,)
=2 (b , X, 4 (ﬂ,ziz -
»a 4(3}1TIQJ> <4 , 2)\/33)2 By

{costhafg”z sin2p AB-sinh2p @E”_Zsinzpﬁ}

X X
Xg=—2 28
2 2
X, X
Xg=_—4 - 21
2 2
x=% sinh2aay cos2ab, + by eosh2aay sin2ab,
P 2
w3+ b3
5. Pasinh2aa, cos2aby — ay cosh2amsin2ab,
Y=

i b2

The experimental verification of the theory is under progress
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APPENDIX A.1

HE = 7,()—1 Y, ()

S @) (sinw p—icos mpy ok iJ_,(2)
sin x p

J, (z)cosmp—J_,(2)
sin 7 P

since Y,(z)=

Using exponential functions.

il e ipm) =T, (2)

HD (2} = -
s p

) exp (—ipm)~J_, (2 )
=z -z

[HE,Z) (:) ]1: =1 ‘[II

SIM 7%
But HO (z%) =T, (z%) +1p,(z%)
e (e exp G )T, (=)
sin e @

So HE ()] = HP (=%)

Hence [HE ) Pr=H (z%)

APPENDIX A2
Small argument approximations
HP(jy#r) =1+7(2/w) n0.89 ) Ver=j(2/n) n 089 Y*r
H@(—j1r)=1-j2/m) In(~0.89/ Y r)=—](2/~) n0.89 77
HD (jysr)y=—2/x" *r
H®(—jvr)=-2/xYr
Using the relations

In(x+jp)=Ins+j@+2nk)=Ins+j0

231
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where s=4/(x? 4y, B=ar¢ tan y/x
k is an integer ot zero
Tea-jf
So, HY(jr*) =2 tp—jia)
where, p=4In(0835)* (a?+ %)
g=arxc tan f/a

Large argument approximaiions :

HP @ ~VEmDlew {jle—(p 1) =21}

HP () ~ (WQma)lesp { —jlz~(p 1 D) w/2}
which yieid

H () ~ W@ ) exp {—] (- /)

HY (@) ~V Q@ D)]exp {jz=3n/4]



